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Abstract: - The present paper is devoted to the application of local polynomial integro-differential splines to the 
solution of integral equations, in particular, to the solution of the integral equations of Fredholm of the second 
kind. To solve the Fredholm equation of the second kind, we apply local polynomial  integro-differential 
splines of the second and third order of approximation. To calculate the integral in the formulae of a piecewise 
quadratic integro-differential spline and piecewise linear integro-differential spline, we propose the 
corresponding quadrature formula. The results of the numerical experiments are given.  
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1 Introduction 
Integral equations often arise in different 
applications. Astrophysics, the theory of elasticity, 
hydrodynamics, geology, etc. problems are 
formulated in terms of integral equations. Solutions 
of certain problems of mathematical physics are 
often reduced to the solution of integral equations. 
The solution of the Fredholm equations of the 
second kind is the most studied. Well known 
methods for solving the Fredholm integral equations 
of the second kind, such as the method of 
quadratures, the Galerkin method, the method of 
least squares, the collocation method, the method of 
replacing the kernels with the degenerate one. 
Nevertheless, in connection with the emerging 
needs for constructing methods of high accuracy, 
many researchers again resort to modernizing the 
known methods for solving integral equations and 
construction the new ones. In paper [1] a collocation 
method with high precision by using the polynomial 
basis functions is proposed to solve the Fredholm 
integral equation of the second kind with a weakly 
singular kernel. The authors introduce the 
polynomial basis functions and use them to reduce 
the given equation to a system of linear algebraic 
equation. In paper [2] the authors consider the 
Legendre multi-Galerkin methods to solve  the 
Fredholm integral equations of the second kind with 
a weakly singular kernel and the corresponding 
eigenvalue problem. In study [3] a numerical 
scheme for approximating the solutions of nonlinear 
system of fractional-order Volterra-Fredholm 
integral differential equations (VFIDEs) has been 
proposed. The proposed method is based on the 
orthogonal functions defined over (0,1), combined 
with their operational matrices of integration and 

fractional-order differentiation. The main 
characteristic behind this approach is that it reduces 
such problems to a linear system of algebraic 
equations.  
   Paper [4] presents the method for approximation 
of two-dimensional function integrals. Then, by 
combining this approximation with Bernstein 
collocation method for numerical solution of two-
dimensional nonlinear Fredholm integral equations, 
the kernels double integrals of the integral equations 
were approximated. The combination of the two-
dimensional functions numerical integration method 
with numerical solution of integral equations 
method (in both methods, Bernstein polynomials 
were used) resulted in an increase of convergence 
speed and accuracy of the method.  
    In paper [5] a new and efficient method is 
presented for solving three-dimensional Volterra-
Fredholm integral equations of the second kind, first 
kind and even singular type of these equations. 
Here, the authors discuss three variable Bernstein 
polynomials and their properties. This method has 
several advantages in reducing computational 
burden with good degree of accuracy. Furthermore, 
the authors obtain an error bound for this method.  
    Paper [6] presents a computational technique 
based on a special family of the Mёuntz-Legendre 
polynomials to solve a class of Volterra-Fredholm 
integral equations. The proposed method reduces 
the integral equation into algebraic equations via the 
Chebyshev-Gauss-Lobatto points, so that the system 
matrix coefficients are obtained by the least squares 
approximation method. The useful properties of the 
Jacobi polynomials are exploited to analyze the 
approximation error.  
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   In  paper [7] the authors study the numerical 
approximation of functional integral equations, a 
class of nonlinear Fredholm-type integral equations 
of the second kind, by the collocation method with 
piecewise continuous basis functions. The resulting 
nonlinear algebraic system is solved with the Picard 
iteration method.  
    Paper [8] compares the performance of the 
Legendre wavelets (LWs) with integer and 
noninteger orders for solving fractional nonlinear 
Fredholm integro-differential equations (FNFIDEs). 
The generalized fractional-order Legendre wavelets 
(FLWs) are formulated and the operational matrix 
of fractional derivative in the Caputo sense is 
obtained. Based on the FLWs, the operational 
matrix and the Tau method an efficient algorithm is 
developed for FNFIDEs. The FLWs basis leads to 
more efficient and accurate solutions of the FNFIDE 
than the integer-order Legendre wavelets.  
     For solving a Fredholm integral equation of the 
second kind, the authors of the paper [9] 
approximate its kernel by two types of bivariate 
spline quasiinterpolants, namely the tensor product 
and the continuous blending sum of univariate 
spline quasi-interpolants. The authors give the 
construction of the approximate solutions, and we 
prove some theoretical results related to the 
approximation errors of these methods. Everyone 
knows about the complicated solution of the 
nonlinear Fredholm integro-differential equation in 
general. Hence, often, authors attempt to obtain the 
approximate solution.  
    In paper [10] a numerical method for the 
solutions of the nonlinear Fredholm integro-
differential equation (NFIDE) of the second kind in 
the complex plane is presented. In fact, by using the 
properties of Rationalized Haar (RH) wavelet, 
authors try to give the solution of the problem.  
   At present, the theory of approximation by local 
interpolation splines continues to evolve. 
Approximation with local polynomial and local non-
polynomial splines of the Lagrange types can be 
used in many applications. Approximation with the 
use of these splines is constructed on each mesh 
interval separately as a linear combination of the 
products of the values of the function at the grid 
nodes and basic functions. The basis functions are 
defined as a solution of a system of linear algebraic 
equations (approximation relations). The 
approximation relations are formed from the 
conditions of accuracy of approximation on the 
functions forming the Chebyshev system.  
   The constructed basic splines provide an 
approximation of the prescribed order which is 
equal to the number of equations in the system, or, 

in other words, it is equal to the number of grid 
intervals in the support of the basic splines. Using 
basic splines, one can construct continuous types of 
approximation.  
Integro-differential splines were considered by the 
authors earlier in the following papers (see [12–19]), 
which compete with existing polynomial and 
nonpolynomial splines of the Lagrange type. The 
main features of integro-differential splines are the 
following: the approximation is constructed 
separately for each grid interval (or elementary 
rectangular); the approximation constructed as the 
sum of products of the basic splines and the values 
of function in nodes and/or the values of integrals of 
this function over subintervals. Basic splines are 
determined by using a solving system of equations 
which are provided by the Chebyshev system of 
functions. It is known that when integrals of the 
function over the intervals are equal to the integrals 
of the approximation of the function over the 
intervals then the approximation has some physical 
parallel. Recently, scientists from China joined in 
the construction and research of the properties of 
new integro-differential splines [20]. 
   In this paper, the one-dimensional polynomial 
basic splines of the third or the second order 
approximation are constructed when the values of 
the function are known in each point of 
interpolation. For the construction of the spline, we 
could also use quadrature with the appropriate order 
of approximation. These basic splines can be used to 
solve various problems, including the approximation 
of a function of one and several variables; the 
construction of quadrature and cubature formulas; 
the solution of boundary value problems; the 
solution of the Fredholm equation, and the Cauchy 
problem. Currently there are papers in which certain 
types of splines are used to solve the Fredholm 
equation and the Heat equation (see [11, 21-31]).  
   In this paper we consider the solution of the 
Fredholm equation using polynomial integro-
differential splines of the third order approximation 
and  the second order approximation. When integro-
differential splines are applied to the solution of 
integral equations, we replace the integral in the 
formula of the integro-differential spline with the 
corresponding quadrature formula. The results of 
numerical experiments are given in every section.  
 
 
2 Option 1. Construction of a solution 
of the Fredholm equation with the use 
of quadratic polynomial splines 
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   Suppose that 𝑎𝑎, 𝑏𝑏 are real numbers and 𝑛𝑛 is a 
natural number. We construct on the interval [𝑎𝑎, 𝑏𝑏] a 
uniform grid �𝑥𝑥𝑗𝑗 �𝑗𝑗=0

𝑛𝑛  with step ℎ = 𝑏𝑏−𝑎𝑎
𝑛𝑛

. 
     First we prove two auxiliary statements. 
 
 Lemma 1. Let function 𝑢𝑢(𝑥𝑥) be such that 𝑢𝑢 ∈
𝐶𝐶3[𝑥𝑥𝑗𝑗−1,𝑥𝑥𝑗𝑗+1  ]. The following formula is valid: 

� 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈
ℎ

12

𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
�5𝑢𝑢(𝑥𝑥𝑗𝑗+1 ) + 8𝑢𝑢(𝑥𝑥𝑗𝑗 )                    

− 𝑢𝑢(𝑥𝑥𝑗𝑗−1)).                                    (1) 
 
Proof. We put ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
∫ 𝑣𝑣(𝑥𝑥)𝑑𝑑𝑑𝑑,𝑥𝑥𝑗𝑗+1
𝑥𝑥𝑗𝑗

 
where 

𝑣𝑣(𝑥𝑥) = 𝑢𝑢�𝑥𝑥𝑗𝑗−1�𝑤𝑤𝑗𝑗−1(𝑥𝑥) + 𝑢𝑢�𝑥𝑥𝑗𝑗 �𝑤𝑤𝑗𝑗 (𝑥𝑥) + 
𝑢𝑢�𝑥𝑥𝑗𝑗+1�𝑤𝑤𝑗𝑗+1(𝑥𝑥), 𝑥𝑥 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�,      (2) 

Determining the basic splines 𝑤𝑤𝑗𝑗−1(𝑥𝑥), 𝑤𝑤𝑗𝑗 (𝑥𝑥),
𝑤𝑤𝑗𝑗+1(𝑥𝑥) solving the system of equations 𝑣𝑣(𝑥𝑥) =
𝑢𝑢(𝑥𝑥),𝑢𝑢(𝑥𝑥) = 1,𝑥𝑥, 𝑥𝑥2, we obtain 

𝑤𝑤𝑗𝑗−1(𝑥𝑥) =
(𝑥𝑥 − 𝑥𝑥𝑗𝑗 )(𝑥𝑥 − 𝑥𝑥𝑗𝑗+1)

(𝑥𝑥𝑗𝑗−1 − 𝑥𝑥𝑗𝑗 )(𝑥𝑥𝑗𝑗−1 − 𝑥𝑥𝑗𝑗+1)
, 

 

𝑤𝑤𝑗𝑗 (𝑥𝑥) =
�𝑥𝑥 − 𝑥𝑥𝑗𝑗−1��𝑥𝑥 − 𝑥𝑥𝑗𝑗+1�
�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗−1��𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗+1�

 , 

 

𝑤𝑤𝑗𝑗+1(𝑥𝑥) =
�𝑥𝑥 − 𝑥𝑥𝑗𝑗−1��𝑥𝑥 − 𝑥𝑥𝑗𝑗 �

�𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗−1��𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗 �
 . 

 
After integration we obtain  formula (1). 
The proof is complete. 

    Remark 1. It is not difficult to obtain the 
following relation with the help of (2) 

,],['''
27

3|)()(|
11

3

+−
≤−

jj
xxuhxvxu  𝑥𝑥 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�. 

Using (1) it can be shown that 
 
�∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑑𝑑 − ℎ

12
𝑥𝑥𝑗𝑗+1
𝑥𝑥𝑗𝑗

�5𝑢𝑢(𝑥𝑥𝑗𝑗+1 ) + 8𝑢𝑢(𝑥𝑥𝑗𝑗 ) −

𝑢𝑢(𝑥𝑥𝑗𝑗−1))� ≤ 𝐾𝐾1ℎ4 ∥ 𝑢𝑢′′′ ∥[𝑥𝑥𝑗𝑗−1,𝑥𝑥𝑗𝑗+1], 𝐾𝐾1 > 0. 
 
Lemma 2. Let function 𝑢𝑢(𝑥𝑥) be such that 𝑢𝑢 ∈
𝐶𝐶3[𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+2  ]. The following formula is valid: 
 

� 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈
ℎ

12

𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
�5𝑢𝑢(𝑥𝑥𝑗𝑗  ) + 8𝑢𝑢(𝑥𝑥𝑗𝑗+1)                   

− 𝑢𝑢(𝑥𝑥𝑗𝑗+2)).                                    (3)  
 

Proof. We put ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈𝑥𝑥𝑗𝑗+1
𝑥𝑥𝑗𝑗

∫ 𝑣𝑣(𝑥𝑥)𝑑𝑑𝑑𝑑,𝑥𝑥𝑗𝑗+1
𝑥𝑥𝑗𝑗

 
where 

𝑣𝑣(𝑥𝑥) = 𝑢𝑢�𝑥𝑥𝑗𝑗 �𝑤𝑤𝑗𝑗 (𝑥𝑥) + 𝑢𝑢�𝑥𝑥𝑗𝑗+1�𝑤𝑤𝑗𝑗+1(𝑥𝑥) + 
𝑢𝑢�𝑥𝑥𝑗𝑗+2�𝑤𝑤𝑗𝑗+2(𝑥𝑥), 𝑥𝑥 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�.         (4) 

 
Determining the basic splines 𝑤𝑤𝑗𝑗 (𝑥𝑥), 𝑤𝑤𝑗𝑗+1(𝑥𝑥),
𝑤𝑤𝑗𝑗+2(𝑥𝑥) solving the system of equations 𝑣𝑣(𝑥𝑥) =
𝑢𝑢(𝑥𝑥),𝑢𝑢(𝑥𝑥) = 1,𝑥𝑥, 𝑥𝑥2, we obtain 

𝑤𝑤𝑗𝑗 (𝑥𝑥) =
(𝑥𝑥 − 𝑥𝑥𝑗𝑗+2)(𝑥𝑥 − 𝑥𝑥𝑗𝑗+1)

(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗+2)(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗+1)
, 

 

𝑤𝑤𝑗𝑗+1(𝑥𝑥) =
�𝑥𝑥 − 𝑥𝑥𝑗𝑗+2��𝑥𝑥 − 𝑥𝑥𝑗𝑗 �

�𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗+2��𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗 �
 , 

 

𝑤𝑤𝑗𝑗+2(𝑥𝑥) =
�𝑥𝑥 − 𝑥𝑥𝑗𝑗+1��𝑥𝑥 − 𝑥𝑥𝑗𝑗 �

�𝑥𝑥𝑗𝑗+2 − 𝑥𝑥𝑗𝑗+1��𝑥𝑥𝑗𝑗+2 − 𝑥𝑥𝑗𝑗 �
 . 

 
After integration we obtain  formula (3). 
The proof is complete. 

Remark. It is not difficult to obtain the following 
relation with the help of (4)

,],['''
27

3|)()(|
2

3

+
≤−

jj
xxuhxvxu  𝑥𝑥 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�. 

Using (3) it can be shown that 
�∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑑𝑑 − ℎ

12
𝑥𝑥𝑗𝑗+1
𝑥𝑥𝑗𝑗

�5𝑢𝑢(𝑥𝑥𝑗𝑗 ) + 8𝑢𝑢(𝑥𝑥𝑗𝑗+1) −

𝑢𝑢(𝑥𝑥𝑗𝑗+2))� ≤ 𝐾𝐾2ℎ4 ∥ 𝑢𝑢′′′ ∥[𝑥𝑥𝑗𝑗 ,𝑥𝑥𝑗𝑗+2], 𝐾𝐾2 > 0. 
 
Consider the Fredholm equation of the second kind 

𝜑𝜑(𝑥𝑥) − ∫ 𝐾𝐾(𝑥𝑥, 𝑠𝑠) 𝜑𝜑(𝑠𝑠) 𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥).𝑏𝑏
𝑎𝑎      (5) 

 
We construct an approximate solution of the integral 
equation by applying quadratic polynomial splines 
as follows. 
First we represent the integral in (5) in the following 
form: 

∫ 𝐾𝐾(𝑥𝑥, 𝑠𝑠) 𝜑𝜑(𝑠𝑠) 𝑑𝑑𝑑𝑑 = ∫ 𝐾𝐾(𝑥𝑥, 𝑠𝑠) 𝜑𝜑(𝑠𝑠) 𝑑𝑑𝑑𝑑 +𝑏𝑏−ℎ
𝑎𝑎

𝑏𝑏
𝑎𝑎

∫ 𝐾𝐾(𝑥𝑥, 𝑠𝑠) 𝜑𝜑(𝑠𝑠) 𝑑𝑑𝑑𝑑𝑏𝑏
𝑏𝑏−ℎ .       (6) 

 
We make the following transformation in the first 
integral of right side of (6). First, we replace the 
function 𝜑𝜑(𝑠𝑠), 𝑠𝑠 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�, by 𝜓𝜓(𝑠𝑠):   
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𝜓𝜓(𝑠𝑠) = 𝜑𝜑�𝑥𝑥𝑗𝑗 �𝜔𝜔𝑗𝑗  (𝑠𝑠) + 𝜑𝜑�𝑥𝑥𝑗𝑗+1�𝜔𝜔𝑗𝑗+1(𝑠𝑠) +

∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑 𝜔𝜔𝑗𝑗<1>(𝑠𝑠).𝑥𝑥𝑗𝑗+2
𝑥𝑥𝑗𝑗+1

    (7) 

Here 𝜔𝜔𝑗𝑗  (𝑠𝑠),  𝜔𝜔𝑗𝑗+1(𝑠𝑠), 𝜔𝜔𝑗𝑗<1>(𝑠𝑠) are the continuous 
integro-differential splines which will be defined 
later. Now we can rewrite (7) using (1) in the form 
𝜓𝜓(𝑠𝑠) ≈ 𝜑𝜑�𝑥𝑥𝑗𝑗 �𝜔𝜔𝑗𝑗  (𝑠𝑠) + 𝜑𝜑�𝑥𝑥𝑗𝑗+1�𝜔𝜔𝑗𝑗+1(𝑠𝑠) +
ℎ

12
�5𝜑𝜑(𝑥𝑥𝑗𝑗+2 ) + 8𝜑𝜑(𝑥𝑥𝑗𝑗+1)− 𝜑𝜑(𝑥𝑥𝑗𝑗 )�𝜔𝜔𝑗𝑗<1>(𝑠𝑠).     (8) 

Lemma 3. Suppose 𝜑𝜑(𝑥𝑥) be such that 𝜑𝜑𝜑𝜑𝐶𝐶3�𝑥𝑥𝑗𝑗 ,𝑥𝑥𝑗𝑗+2� 
and 𝜓𝜓(𝑥𝑥) is given by (8). The following formulae 
are valid: 
 

𝜔𝜔𝑗𝑗  (𝑠𝑠) = (𝑠𝑠−ℎ−𝑗𝑗ℎ)(3𝑠𝑠−5ℎ−3𝑗𝑗ℎ)
5ℎ2 ,      (9) 

𝜔𝜔𝑗𝑗+1(𝑠𝑠) = − (𝑠𝑠−𝑗𝑗ℎ)(9𝑠𝑠−14ℎ−9𝑗𝑗ℎ)
5ℎ2 ,       (10) 

𝜔𝜔𝑗𝑗<1>(𝑠𝑠) = 6(𝑠𝑠−ℎ−𝑗𝑗ℎ)(𝑠𝑠−𝑗𝑗ℎ)
5ℎ3 .        (11) 

 
Proof. Using 𝜓𝜓(𝑠𝑠) = 𝜑𝜑(𝑠𝑠),𝜑𝜑(𝑠𝑠) = 1, 𝑠𝑠, 𝑠𝑠2, formula 
(8) and the Taylor expansion, it is not difficult to 
obtain the relations (9), (10), (11). The proof is 
complete. 
 
Remark. If 𝑠𝑠 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�, 𝑡𝑡 ∈ [0,1], 𝑠𝑠 = 𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ, 
then the basic splines (9), (10), (11) can be written 
in the form: 
 

𝜔𝜔𝑗𝑗 (𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ) =
(𝑡𝑡 − 1)(3𝑡𝑡 − 5)

5
, 

 
    𝜔𝜔𝑗𝑗+1�𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ� =  −t(9t − 14)/5, 

 

𝜔𝜔𝑗𝑗<1>�𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ� =
6t(t − 1)

5h
. 

 
Plots of the functions 𝜔𝜔𝑗𝑗 (𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ),     𝜔𝜔𝑗𝑗+1�𝑥𝑥𝑗𝑗 +
𝑡𝑡ℎ), 𝜔𝜔𝑗𝑗<1>�𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ� are shown on Fig. 1. 

 
Fig.1. Plots of the functions 𝜔𝜔𝑗𝑗 (𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ),     𝜔𝜔𝑗𝑗+1�𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ�, 

𝜔𝜔𝑗𝑗<1>�𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ� 
 

 
In the second integral of (6) we apply the following 
transformation using integro-differential splines. 
We replace the function 𝜑𝜑(𝑠𝑠), 𝑠𝑠 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�, by 
𝜓𝜓(𝑠𝑠):   

𝜓𝜓(𝑠𝑠) = 𝜑𝜑�𝑥𝑥𝑗𝑗 �µ(𝑠𝑠) + 𝜑𝜑�𝑥𝑥𝑗𝑗+1�µ𝑗𝑗+1(𝑠𝑠) +
      ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑 µ𝑗𝑗<−1>(𝑠𝑠).𝑥𝑥𝑗𝑗

𝑥𝑥𝑗𝑗−1
                (12) 

Here µ𝑗𝑗  (𝑠𝑠),  µ𝑗𝑗+1(𝑠𝑠), µ𝑗𝑗<−1>(𝑠𝑠) are the continuous 
integro-differential splines which will be defined 
later. Now we can rewrite (12) using (3) in the form 
𝜓𝜓(𝑠𝑠) ≈ 𝜑𝜑�𝑥𝑥𝑗𝑗 �µ𝑗𝑗  (𝑠𝑠) + 𝜑𝜑�𝑥𝑥𝑗𝑗+1�µ𝑗𝑗+1(𝑠𝑠) +
ℎ

12
�5𝜑𝜑(𝑥𝑥𝑗𝑗−1 ) + 8𝜑𝜑(𝑥𝑥𝑗𝑗 ) − 𝜑𝜑(𝑥𝑥𝑗𝑗+1)�µ𝑗𝑗<−1>(𝑠𝑠).  (13) 

  
 Lemma 4. Suppose 𝜓𝜓(𝑠𝑠) be such that 𝜓𝜓 ∈
𝐶𝐶3[𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+2] and 𝜓𝜓(𝑠𝑠) is given by (12). The 
following formulae are valid: 
 

µ𝑗𝑗  (𝑠𝑠) = − (9s+5h−9jh )(s−h−jh)
5h2 ,    (14) 

µ𝑗𝑗+1(𝑠𝑠) = (3s+2h−3jh)(s−jh )
5h2 ,      (15) 

µ𝑗𝑗<−1>(𝑠𝑠) = 6(s−h−jh)(s−jh)
5h3 .     (16) 

 
Proof. Using 𝜓𝜓(𝑠𝑠) = 𝜑𝜑(𝑠𝑠), 𝜑𝜑(𝑠𝑠) = 1, 𝑠𝑠, 𝑠𝑠2, 
formulae (13), and the Taylor expansion, it is not 
difficult to obtain the relations (14), (15), (16). The 
proof is complete. 
 
Remark. If 𝑠𝑠 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�, 𝑡𝑡 ∈  [0,1], 𝑠𝑠 = 𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ,  

the basic splines (14), (15), (16) can be written in 

the form: 

µ𝑗𝑗  �𝑥𝑥𝑗𝑗 + t h� = −
(9t + 5)(t − 1)

5
, 

 
µ𝑗𝑗+1 

�𝑥𝑥𝑗𝑗 + t h� = t(3t + 2)/5, 

µ𝑗𝑗<−1>�𝑥𝑥𝑗𝑗 + t h� = 6t(t − 1)/(5h). 

Plots of the functions µ𝑗𝑗  �𝑥𝑥𝑗𝑗 + t h�,  µ𝑗𝑗+1 �𝑥𝑥𝑗𝑗 + t h�, 
µ𝑗𝑗<−1>�𝑥𝑥𝑗𝑗 + t h�  are shown on Fig. 2. 

 
Fig.2. Plots of the functions µ𝑗𝑗  �𝑥𝑥𝑗𝑗 + t h�,  

µ𝑗𝑗+1 �𝑥𝑥𝑗𝑗 + t h�, µ𝑗𝑗<−1>�𝑥𝑥𝑗𝑗 + t h� 
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It is not difficult to obtain the following relation: 

|𝜑𝜑(𝑥𝑥) − 𝜓𝜓(𝑥𝑥)| ≤ 𝐾𝐾ℎ3  ∥ 𝜑𝜑′′′ ∥[𝑥𝑥𝑗𝑗−1,𝑥𝑥𝑗𝑗+1], 𝑥𝑥 ∈
�𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�, K>0. 
 
Using (8), (9)-(11), (13), (14)-(16) and the following 
notations: 

𝐴𝐴𝑗𝑗<𝑙𝑙>(𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 �𝜔𝜔𝑗𝑗 (𝑠𝑠) −

ℎ
12

𝜔𝜔𝑗𝑗<1>(𝑠𝑠)�𝑑𝑑𝑑𝑑, 

 

𝐵𝐵𝑗𝑗<𝑙𝑙>(𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 �𝜔𝜔𝑗𝑗+1(𝑠𝑠) +

2 ℎ
3
𝜔𝜔𝑗𝑗<1>(𝑠𝑠)�𝑑𝑑𝑑𝑑, 

 

𝐶𝐶𝑗𝑗<𝑙𝑙>(𝑥𝑥) =  
5 ℎ
12

� 𝐾𝐾(𝑥𝑥, 𝑠𝑠)
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 𝜔𝜔𝑗𝑗<1>(𝑠𝑠)𝑑𝑑𝑑𝑑, 

𝐴𝐴𝑛𝑛−1
<𝑟𝑟>(𝑥𝑥) =  

5 ℎ
12

� 𝐾𝐾(𝑥𝑥, 𝑠𝑠)
𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−1

 µ𝑛𝑛−1
<−1>(𝑠𝑠)𝑑𝑑𝑑𝑑, 

𝐵𝐵𝑛𝑛−1
<𝑟𝑟>(𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−1

 �µ𝑛𝑛−1(𝑠𝑠) +
2 ℎ
3
µ𝑛𝑛−1

<−1>(𝑠𝑠)�𝑑𝑑𝑑𝑑, 

𝐶𝐶𝑛𝑛−1
<𝑟𝑟>(𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−1

 �µ𝑛𝑛(𝑠𝑠) −
 ℎ
12

µ𝑛𝑛−1
<−1>(𝑠𝑠)�𝑑𝑑𝑑𝑑, 

we get the following system of equations for 
calculating 𝜑𝜑�(𝑥𝑥𝑖𝑖) ≈ 𝜑𝜑(𝑥𝑥𝑖𝑖), 𝑖𝑖 = 0, … ,𝑛𝑛: 
 
𝜑𝜑�(𝑥𝑥𝑖𝑖) − ∑ ( 𝜑𝜑�(𝑥𝑥𝑗𝑗 )𝑛𝑛−2

𝑗𝑗=0 𝐴𝐴𝑗𝑗<𝑙𝑙>(𝑥𝑥𝑖𝑖) +

𝜑𝜑��𝑥𝑥𝑗𝑗+1�𝐵𝐵𝑗𝑗<𝑙𝑙>(𝑥𝑥𝑖𝑖) + 𝜑𝜑��𝑥𝑥𝑗𝑗+2�𝐶𝐶𝑗𝑗<𝑙𝑙>(𝑥𝑥𝑖𝑖)) −

(𝜑𝜑�(𝑥𝑥𝑛𝑛−2)𝐴𝐴𝑛𝑛−1
<𝑟𝑟>(𝑥𝑥𝑖𝑖) +

(𝜑𝜑�(𝑥𝑥𝑛𝑛−1)𝐵𝐵𝑛𝑛−1
<𝑟𝑟>(𝑥𝑥𝑖𝑖)+�𝜑𝜑�(𝑥𝑥𝑛𝑛)𝐶𝐶𝑛𝑛−1

<𝑟𝑟>(𝑥𝑥𝑖𝑖)� = 𝑓𝑓(𝑥𝑥𝑖𝑖). 

2.1 Numerical results 
Here we present some numerical results. Fig.4 
shows the error of numerical solution of equation 
(5) when 𝐾𝐾(𝑥𝑥, 𝑠𝑠) = 𝑥𝑥2𝑠𝑠2,𝜑𝜑(𝑥𝑥) = 𝑥𝑥

3
2 sin(𝑥𝑥),  here 

𝑓𝑓(𝑥𝑥) was constructed using 𝐾𝐾(𝑥𝑥, 𝑠𝑠) and 𝜑𝜑(𝑠𝑠), 
ℎ = 0.1,𝑎𝑎 = 0, 𝑏𝑏 = 1.     

 

Fig 4. Plot of the error of numerical solution when  𝐾𝐾(𝑥𝑥, 𝑠𝑠) =
𝑥𝑥2𝑠𝑠2,𝜑𝜑(𝑥𝑥) = 𝑥𝑥3/2  𝑠𝑠𝑠𝑠𝑠𝑠⁡(𝑥𝑥), ℎ = 0.1 

 
Fig.5 shows the error of numerical solution of 
equation (5) when  ℎ =  0.01, 𝐾𝐾(𝑥𝑥, 𝑠𝑠) = 𝑒𝑒𝑥𝑥 cos(𝑠𝑠),  
𝜑𝜑(𝑥𝑥) = 𝑥𝑥

3
2 sin(𝑥𝑥),𝑎𝑎 = 0, 𝑏𝑏 = 1.     

 
Fig 5. Plot of the error of numerical solution when     
𝐾𝐾(𝑥𝑥, 𝑠𝑠) = 𝑒𝑒𝑥𝑥 cos(𝑠𝑠) ,𝜑𝜑(𝑥𝑥) = 𝑥𝑥

3
2 sin(𝑥𝑥), ℎ =  0.01 

 
In  Table 1 one can see  absolute values of the  
difference between the exact solutions and  
solutions, obtained with the  method being 
suggested in this section, when 𝑎𝑎 = 0, 𝑏𝑏 = 1, with 
𝑛𝑛 = 10 and 𝑛𝑛 = 100, Digits=15. Here 𝑓𝑓(𝑥𝑥) was 
constructed using 𝐾𝐾(𝑥𝑥, 𝑠𝑠) and 𝜑𝜑(𝑠𝑠). 
 
Table 1. Absolute values of errors of approximation when 

𝑛𝑛 =  10 and 𝑛𝑛 =  100. 
K(x, s), φ(x) n = 10 n = 100 
K= x2·s2 ,  φ=x3/2sin(x) 
K=ex·cos(s),φ=x3/2sin(x) 
K=  𝑥𝑥𝑥𝑥,𝜑𝜑 = 1/(1 + 25 𝑥𝑥2) 

0.21·10-5 
0.37·10-3 
0.60·10-4 

0.24·10-7 
0.44·10-6 
0.61·10-8 

 
Table 2 shows the condition numbers for solved 
systems of linear algebraic equations when n = 10 
and n = 100. 
 

Table 2. The condition numbers when n = 10 and 
 n = 100. 

K(x, s), φ(x) n = 10 n = 100 
K(x, s)= x2·s2 ,  φ(x)=x3/2sin(x) 
K(x,s)=ex·cos(s),φ(x)=x3/2sin(x) 
K(x, s)= x·s, φ(x)=1/(1+25x2) 

1.795 
21.661 
2.508 

1.879 
23.025 
2.613 

 
 
3 Option 2: Construction of a solution 
of the Fredholm equation with the use 
of  linear polynomial splines  
In this section let us take 𝜑𝜑�(𝑠𝑠)in the form:  
𝜑𝜑�(𝑠𝑠) = 𝜑𝜑�𝑥𝑥𝑗𝑗 �𝜔𝜔𝑗𝑗 (𝑠𝑠) + ∫   𝜑𝜑(𝑠𝑠)𝑑𝑑𝑑𝑑𝜔𝜔𝑗𝑗<0>(𝑠𝑠),𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 (17) 

𝑠𝑠 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�, 
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where 𝜔𝜔𝑗𝑗 (𝑠𝑠),𝜔𝜔𝑗𝑗<0>(𝑠𝑠) are the basis integro-
differential splines which we obtain later. Using 
Lemma 1 and Lemma 2 we obtain for 𝑠𝑠 ∈  �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�: 

 𝜑𝜑�(𝑠𝑠) ≈ 𝜑𝜑(𝑥𝑥𝑗𝑗 )𝜔𝜔𝑗𝑗 (𝑠𝑠) +
ℎ

12 (5𝜑𝜑(𝑥𝑥𝑗𝑗 )                                 

+ 8𝜑𝜑(𝑥𝑥𝑗𝑗+1) − 𝜑𝜑(𝑥𝑥𝑗𝑗+2))𝜔𝜔𝑗𝑗<0>(𝑠𝑠),   (18) 
  𝑗𝑗 = 0, … ,𝑛𝑛 − 2, 

 
 𝜑𝜑�(𝑠𝑠) ≈ 𝜑𝜑(𝑥𝑥𝑛𝑛−1)𝜔𝜔�𝑛𝑛−1(𝑠𝑠) + ℎ

12
(5𝜑𝜑(𝑥𝑥𝑛𝑛)   +

8𝜑𝜑(𝑥𝑥𝑛𝑛−1) − 𝜑𝜑(𝑥𝑥𝑛𝑛−2))𝜔𝜔�𝑛𝑛−1
<0>(𝑠𝑠).                                                      

(19) 
 
Lemma 5 Suppose 𝜑𝜑�  (𝑠𝑠) be such that 𝜑𝜑 � ∈
С2�𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1� and 𝜑𝜑 � (𝑠𝑠) is given by (17). The 
following formulae are valid: 

𝜔𝜔𝑗𝑗  (𝑠𝑠) =
12s − 5𝑥𝑥𝑗𝑗 − 8𝑥𝑥𝑗𝑗+1 + 𝑥𝑥𝑗𝑗+2

7𝑥𝑥𝑗𝑗 − 8𝑥𝑥𝑗𝑗+1 + 𝑥𝑥𝑗𝑗+2
,   (20) 

𝜔𝜔𝑗𝑗<0>(𝑠𝑠) =
s − 𝑥𝑥𝑗𝑗

−7𝑥𝑥𝑗𝑗 + 8𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗+2
,   (21) 

𝜔𝜔�𝑗𝑗 (𝑠𝑠) =
12s + 𝑥𝑥𝑗𝑗−1 − 8𝑥𝑥𝑗𝑗 − 5𝑥𝑥𝑗𝑗+1

−𝑥𝑥𝑗𝑗−1 + 4𝑥𝑥𝑗𝑗 − 5𝑥𝑥𝑗𝑗+1
,    (22) 

𝜔𝜔�𝑗𝑗<0>(𝑠𝑠) =
s − 𝑥𝑥𝑗𝑗

𝑥𝑥𝑗𝑗−1 − 4𝑥𝑥𝑗𝑗 + 5𝑥𝑥𝑗𝑗+1
.            (23) 

 
Proof. Using 𝜑𝜑�(𝑠𝑠) = 𝜑𝜑(𝑠𝑠),𝜑𝜑(𝑠𝑠) = 1, 𝑠𝑠, where 
𝑠𝑠 ∈  �𝑥𝑥𝑗𝑗 ,𝑥𝑥𝑗𝑗+1�  and (17), (1), (3) and the Taylor 
expansion, it is not difficult to obtain  relations (20)-
(23). The proof is complete. 

Remark. If 𝑠𝑠 ∈  �𝑥𝑥𝑗𝑗 ,𝑥𝑥𝑗𝑗+1�, 𝑡𝑡 ∈ [0,1], 𝑠𝑠 = 𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ 
the basic splines can be written in the form: 

𝜔𝜔𝑗𝑗  �𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ � = 𝜔𝜔�𝑗𝑗 �𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ � = 1 − 2𝑡𝑡, 

𝜔𝜔𝑗𝑗<0>�𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ� = 𝜔𝜔�𝑗𝑗<0>�𝑥𝑥𝑗𝑗 + 𝑡𝑡ℎ� = 𝑡𝑡/6. 
It is not difficult to obtain the following relation: 
 

|𝜑𝜑(𝑥𝑥) − 𝜑𝜑�(𝑥𝑥)| ≤ 𝐾𝐾ℎ2  ∥ 𝑢𝑢′′ ∥�𝑥𝑥𝑗𝑗−1,𝑥𝑥𝑗𝑗+1�, 

𝑥𝑥 ∈ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1�, 𝐾𝐾 > 0. 

 
Plots of the functions 𝜔𝜔𝑗𝑗 (𝑠𝑠), 𝜔𝜔𝑗𝑗<0>(𝑠𝑠) are shown on 
Fig. 6. 

  
Fig 6. Plots of the functions 𝜔𝜔𝑗𝑗 (𝑠𝑠), 𝜔𝜔𝑗𝑗<0>(𝑠𝑠) 

 
Using (18)-(23) we get the system of equations  for 
obtaining 𝜑𝜑�(𝑥𝑥𝑖𝑖) ≈ 𝜑𝜑(𝑥𝑥𝑖𝑖), 𝑖𝑖 = 0, … ,𝑛𝑛: 
 
𝜑𝜑�(𝑥𝑥𝑖𝑖) − ∑ 𝜑𝜑��𝑥𝑥𝑗𝑗 �𝐴𝐴𝑗𝑗 (𝑥𝑥𝑖𝑖)𝑛𝑛−2

𝑗𝑗=0 − ∑ �5𝜑𝜑��𝑥𝑥𝑗𝑗 � +𝑛𝑛−2
𝑗𝑗=0

8𝜑𝜑��𝑥𝑥𝑗𝑗+1� − 𝜑𝜑��𝑥𝑥𝑗𝑗+2��𝐵𝐵𝑗𝑗 (𝑥𝑥𝑖𝑖) −

𝜑𝜑�(𝑥𝑥𝑛𝑛−1)𝐴̃𝐴𝑛𝑛−1(𝑥𝑥𝑖𝑖) − �5𝜑𝜑�(𝑥𝑥𝑛𝑛) + 8𝜑𝜑�(𝑥𝑥𝑛𝑛−1)−

𝜑𝜑�(𝑥𝑥𝑛𝑛−2)�𝐵𝐵�𝑛𝑛−1(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖), 

where 

𝐴𝐴𝑗𝑗 (𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)𝜔𝜔𝑗𝑗  (𝑠𝑠)𝑑𝑑𝑑𝑑,
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 

𝐵𝐵𝑗𝑗 (𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)𝜔𝜔𝑗𝑗<0>(𝑠𝑠)𝑑𝑑𝑑𝑑,
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 

𝐴̃𝐴𝑗𝑗 (𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)𝜔𝜔�𝑗𝑗 (𝑠𝑠)𝑑𝑑𝑑𝑑,
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 

𝐵𝐵�𝑗𝑗 (𝑥𝑥) = � 𝐾𝐾(𝑥𝑥, 𝑠𝑠)𝜔𝜔�𝑗𝑗<0>(𝑠𝑠)𝑑𝑑𝑑𝑑.
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗
 

 
 
3.1 Numerical results 
Here we present some numerical results. In  Table 3 
one can see  absolute values of the  difference 
between the exact solutions and  solutions, obtained 
with method being suggested in this section, when 
𝑎𝑎 = 0, 𝑏𝑏 = 1, with 𝑛𝑛 = 10 and 𝑛𝑛 = 100, Digits=15, 
𝑓𝑓(𝑥𝑥) was constructed using 𝐾𝐾(𝑥𝑥, 𝑠𝑠) and 𝜑𝜑(𝑠𝑠). 
 
Table 3. Absolute values of errors of approximation when 

𝑛𝑛 =  10 and 𝑛𝑛 =  100. 
K(x, s), φ(x) n = 10 n = 100 
K= x2·s2 ,  φ=x3/2sin(x) 
K=ex·cos(s),φ=x3/2sin(x) 
K= x·s, φ=1/(1+25x2) 

0.32·10-4 
0.28·10-3 
0.20·10-4 

0.97·10-8 
0.35·10-6 
0.98·10-8 
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Fig. 7 shows the error of numerical solution of 
equation (5) when 𝐾𝐾(𝑥𝑥, 𝑠𝑠) = 𝑥𝑥2𝑠𝑠2,𝜑𝜑(𝑥𝑥) =

𝑥𝑥
3
2 sin(𝑥𝑥) , 𝑓𝑓(𝑥𝑥) was constructed using 𝐾𝐾(𝑥𝑥, 𝑠𝑠) and 
𝜑𝜑(𝑠𝑠), ℎ = 0.1,𝑎𝑎 = 0, 𝑏𝑏 = 1.  Fig. 8 shows the error 
of numerical solution of equation (5) when  ℎ =

 0.01, 𝐾𝐾(𝑥𝑥, 𝑠𝑠) = 𝑒𝑒𝑥𝑥 cos(𝑠𝑠),  𝜑𝜑(𝑥𝑥) = 𝑥𝑥
3
2 sin(𝑥𝑥),𝑎𝑎 =

0, 𝑏𝑏 = 1.     
   
 

 
Fig 7. Plot of the error of numerical solution when   

𝐾𝐾(𝑥𝑥, 𝑠𝑠) = 𝑥𝑥2𝑠𝑠2,𝜑𝜑(𝑥𝑥) = 𝑥𝑥3/2  𝑠𝑠𝑠𝑠𝑠𝑠⁡(𝑥𝑥) , ℎ = 0.1 
 
 

 
Fig 8. Plot of the error of numerical solution when     
𝐾𝐾(𝑥𝑥, 𝑠𝑠) = 𝑒𝑒𝑥𝑥 cos(𝑠𝑠) ,𝜑𝜑(𝑥𝑥) = 𝑥𝑥

3
2 sin(𝑥𝑥), ℎ =  0.01 

 
Table 4 shows the condition numbers for solved 
systems of linear algebraic equations. 
 

Table 4. The condition numbers when n = 10 and 
 n = 100. 

K(x, s), φ(x) n = 10 n = 100 
K(x, s)= x2·s2 ,  φ(x)=x3/2sin(x) 
K(x,s)=ex·cos(s),φ(x)=x3/2sin(x) 
K(x, s)= x·s, φ(x)=1/(1+25x2) 

1.284 
4.623 
1.515 

1.254 
3.962 
1.505 

 
 
4 Comparison with classical methods 
for solving integral equations 
In this section we compare the results of the 
numerical solution of integral equations by the 
methods proposed in sections 2 and 3 with the 

results of applying classical methods [32-36]. First 
consider the rule of the trapezium. The method is 
well known, but we recall briefly its construction.  
Let us divide the interval of integration [𝑎𝑎, 𝑏𝑏] into 𝑛𝑛 
equal parts, thus ℎ = (𝑏𝑏−𝑎𝑎)

𝑛𝑛
. We denote 𝑥𝑥𝑘𝑘 = 𝑎𝑎 +

𝑘𝑘ℎ,𝑔𝑔𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘).  
Let us take a compound formula of trapezes: 

 ∫ 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈ ℎ
2

𝑏𝑏
𝑎𝑎 𝑔𝑔0 + ℎ∑ 𝑔𝑔𝑗𝑗 + ℎ

2
𝑛𝑛−1
𝑗𝑗=1 𝑔𝑔𝑛𝑛 .  

 
Applying this formula to  equation (5) and rejecting 
an error we receive the equation in which 𝜑𝜑�(𝑥𝑥𝑘𝑘) ≈
𝜑𝜑(𝑥𝑥𝑘𝑘)  is to be obtained: 

𝜑𝜑�(𝑥𝑥) =
ℎ
2
𝐾𝐾(𝑥𝑥, 𝑥𝑥0)𝜑𝜑�(𝑥𝑥0) + ℎ∑ 𝐾𝐾�𝑥𝑥, 𝑥𝑥𝑗𝑗 �𝜑𝜑�𝑛𝑛−1

𝑗𝑗=1 �𝑥𝑥𝑗𝑗 � +
ℎ
2
𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛)𝜑𝜑�(𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥).  

Now we can put 𝑥𝑥 = 𝑥𝑥𝑖𝑖 ,   𝑖𝑖 = 0,1, … ,𝑛𝑛. Denoting 
𝜑𝜑�𝑖𝑖 = 𝜑𝜑�(𝑥𝑥𝑖𝑖) we receive the system of equations 
(trapezoid method): 

𝜑𝜑�𝑖𝑖 =
ℎ
2
𝐾𝐾𝑖𝑖0𝜑𝜑�0 + ℎ�𝐾𝐾𝑖𝑖𝑖𝑖

𝑛𝑛−1

𝑗𝑗=1

𝜑𝜑�𝑗𝑗 +
ℎ
2
𝐾𝐾𝑖𝑖𝑖𝑖𝜑𝜑�𝑛𝑛 + 𝑓𝑓𝑖𝑖 ,  

𝑖𝑖 = 0,1, … ,𝑛𝑛.   
 
Similarly we can apply a compound formula of 
Simpson (𝑛𝑛 is even): 
 
∫ 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈ ℎ

3
𝑏𝑏
𝑎𝑎 (𝑔𝑔0 + 4(𝑔𝑔1 + 𝑔𝑔3 + ⋯+ 𝑔𝑔𝑛𝑛−1) +

2(𝑔𝑔2 + 𝑔𝑔4 + ⋯+ 𝑔𝑔𝑛𝑛−2) + 𝑔𝑔𝑛𝑛)  
 
In this case the system of the equations will have the 
form: 

𝜑𝜑�𝑖𝑖 =
ℎ
3
𝐾𝐾𝑖𝑖0𝜑𝜑�0 + 4ℎ

3
∑ 𝐾𝐾𝑖𝑖𝑖𝑖𝑛𝑛−1
𝑗𝑗=1(2) 𝜑𝜑�𝑗𝑗 + 2ℎ

3
∑ 𝐾𝐾𝑖𝑖𝑖𝑖𝑛𝑛−2
𝑗𝑗=2(2) 𝜑𝜑�𝑗𝑗 +

ℎ
3
𝐾𝐾𝑖𝑖𝑖𝑖𝜑𝜑�𝑛𝑛 + 𝑓𝑓𝑖𝑖 ,      𝑖𝑖 = 0,1, … ,𝑛𝑛.  

This system can be written  in the form (Sympson 
method): 
𝜑𝜑�𝑖𝑖 = ℎ

3
𝐾𝐾𝑖𝑖0𝜑𝜑�0 + 4ℎ

3
(𝐾𝐾𝑖𝑖1𝜑𝜑�1 + 𝐾𝐾𝑖𝑖3𝜑𝜑�3 + ⋯+

𝐾𝐾𝑖𝑖𝑖𝑖−1𝜑𝜑�𝑛𝑛−1) + 2ℎ
3

(𝐾𝐾𝑖𝑖2𝜑𝜑�2 + 𝐾𝐾𝑖𝑖4𝜑𝜑�4 + ⋯+

𝐾𝐾𝑖𝑖𝑖𝑖−2𝜑𝜑�𝑛𝑛−2) + ℎ
3
𝐾𝐾𝑖𝑖𝑖𝑖𝜑𝜑�𝑛𝑛) + 𝑓𝑓𝑖𝑖 ,   𝑖𝑖 = 0,1, … ,𝑛𝑛.  
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Table 5 shows the errors in absolute values of 
solution of the same integral equations using 
trapezoid method when 𝑛𝑛 =  10, 100. 
 

Table 5.  Absolute values of errors of approximation 
when 𝑛𝑛 =  10 and 𝑛𝑛 =  100. 

K(x, s) φ(x) n = 10 n = 100 
x2·s2 
ex·cos(s) 
x·s 

x3/2sin(x) 
x3/2sin(x) 
1/(1+25x2) 

0.364·10-2 
0.163·10-2 
0.133·10-2 

0.363·10-4 
0.159·10-4 
0.129·10-4 

 
Table 6 shows the results of numerical solution of 
the same integral equations using Simpson rule 
when 𝑛𝑛 =  10, 100. 
 
Table 6. Absolute values of errors of approximation when 

𝑛𝑛 =  10 and 𝑛𝑛 =  100. 
K(x, s) φ(x) n = 10 n = 100 
x2·s2 
ex·cos(s) 
x·s 

x3/2sin(x) 
x3/2sin(x) 
1/(1+25x2) 

0.113·10-4 
0.786·10-4 
0.177·10-3 

0.110·10-8 
0.180·10-7 
0.126·10-7 

 
4 Conclusion 
 
The quadratic polynomial integro-differential spline 
and linear polynomial integro-differential spline 
proposed in this paper showed the possibility of 
applying them to solving the Fredholm integral 
equation. In the proposed quadratic method, it is 
necessary to calculate the integrals 𝐴𝐴𝑗𝑗<𝑙𝑙>(𝑥𝑥), 
𝐵𝐵𝑗𝑗<𝑙𝑙>(𝑥𝑥), 𝐶𝐶𝑗𝑗<𝑙𝑙>(𝑥𝑥), 𝐴𝐴𝑛𝑛−1

<𝑟𝑟>(𝑥𝑥), 𝐵𝐵𝑛𝑛−1
<𝑟𝑟>(𝑥𝑥), 𝐶𝐶𝑛𝑛−1

<𝑟𝑟>(𝑥𝑥). In 
the proposed linear method, it is necessary to 
calculate the integrals. 𝐴𝐴𝑗𝑗 (𝑥𝑥), 𝐵𝐵𝑗𝑗 (𝑥𝑥), 𝐴̃𝐴𝑗𝑗 (𝑥𝑥), 𝐵𝐵�𝑗𝑗 (𝑥𝑥). 
It should be noted that for the application of 
classical methods, you need to be sure that not only 
the desired solution, but also the kernel has the 
necessary smoothness.  
    In future papers, the application of 
nonpolynomial splines to solve the Fredholm 
equation will be investigated. 
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