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Abstract: In many cases the smoothness of splines is important (for qualitative approximation, for the calculation
of a number of functionals, etc.). In the case of discontinuity of approximated functions it is difficult to use
ordinary splines. It is desirable to have splines with similar properties of the approximated function. The purpose
of this paper is to introduce the concept of general smoothness with the aid of linear functionals having a definite
location of supports. Splines are often used for processing numerical information flows; a lot of scientific papers
are devoted to these investigations. Sometimes spline treatment implies to the filtration of the mentioned flows or
to their wavelet decomposition. A discrete flow often appears as a result of analog signal sampling, representing
the values of a function, and in this case, the splines of the Lagrange type are used. In all cases, it is highly
desirable that the generalized smoothness of the resulting spline coincides with the generalized smoothness of
the original signal. Here we formulate the necessary and sufficient conditions for general smoothness of splines,
and also a toolkit is being developed to build mentioned splines. The proposed scheme allows us to consider
splines generated by functions from different spaces and to apply the obtained result to sources which can appear
in physics, chemistry, biology, etc.
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1 Introduction

The continuity of splines was considered from the mo-
ment of their appearance. Often the requirement of
a certain continuity (spline or its derivatives) was in-
cluded in the definition of a spline (see [1] – [6]).
Basically these considerations concern polynomial
splines, the last of which were defined as piecewise
polynomial functions. For non-polynomial splines
obtained from approximation relations (for the so-
called minimal splines), necessary and sufficient con-
tinuity conditions have been obtained relatively re-
cently (see [17]).

In many cases the continuity of splines is impor-
tant (for qualitative approximation, for calculation of
functional values, etc.), since the functions approxi-
mated by them are, as a rule, continuous. A study of
the continuity of splines and their derivatives is de-
voted to a lot of work (see also [7] – [18]).

Splines are often used for processing numerical
information flows; a lot of scientific papers are de-
voted to these investigations. Sometimes spline treat-
ment implies to the filtration of the mentioned flows or
to their wavelet decomposition. A discrete flow often
appears as a result of analog signal sampling, repre-
senting the values of a function, and in this case, the

splines of the Lagrange type are used.
In all cases, it is highly desirable that the general-

ized smoothness of the resulting spline coincides with
the generalized smoothness of the original signal.

When a discontinuous function is approximated,
the behavior of the function in a neighborhood of the
discontinuity point is often known. Approximation of
that function by ordinary splines is difficult. It is de-
sirable to have splines with properties similar to prop-
erties of the approximated function.

Such properties can be formulated with the help
of linear functionals, in particular, the usual continuity
of the function can be considered as an equality of the
values of two linear functionals applied to this func-
tion: one functional is the left limit of the function at
this point, and the second is the right limit of it. The
purpose of this paper is to introduce the concept of
general smoothness with the aid of linear functionals
having a definite location of supports. In what follows
general smoothness are called pseudo-continuity.

Here we formulate the necessary and sufficient
conditions for the pseudo-continuity of splines, and
also a toolkit is being developed to build pseudo-
continuous splines. The proof use properties of com-
plete chains of vectors, local orthogonality mentioned
chains, as well as the vector identities.
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Thus,in this paper we propose a general scheme
that allows us to consider splines generated by func-
tions from spacesC l, Lp, W l

p, and handle nonsmooth
data, and sources which can be generated in physics,
chemistry, biology, etc.

2 Preliminaries
An ordered setA = {aj}j∈Z of vectorsaj ∈ Rm+1

is calleda chain of vectors. There are different enu-
merations of the same chain; moreover, two enumer-
ations can differ by only a constant term and direc-
tion of enumeration, for example,A = {aj′ | j′ =
−j + j0, j ∈ Z} (wherej0 is an integer constant) is
another enumeration of the same chain.

ChainA = {ai}i∈Z is calledlocally orthogonal
to a chainB = {bj}j∈Z, if there exists an enumera-
tion such that

bT
j aj−p = 0 ∀j ∈ Z, (1)

p ∈ Im, Im = {1, 2, . . . , m}.
The next assertion is obvious.

Lemma 1. If chain A is locally orthogonal to
chainB, then chainB is locally orthogonal to chain
A.

The local orthogonality is symmetric, and we can
say that chainsA andB arelocally orthogonal.Chain
A is nondegenerateif it does not contain zero ele-
ments and degenerate in the opposite case.

We denote by Aj a matrix with columns
aj−m,aj−m+1, . . . ,aj−1,aj i.e.,

Aj =
(
aj−m,aj−m+1, . . . ,aj−1,aj

)
.

ChainA = {ai}i∈Z is calledcompleteif det Aj 6= 0
for all j ∈ Z. It is clear that a complete chain is non-
degenerate. The set of all complete chains is denoted
byA .

Lemma 2. Let A = {ai}i∈Z and B =
{bj}j∈Z be locally orthogonal and nondegenerate
chains. Then chainA is complete if and only if chain
B is complete.

Lemma 3. If chains A = {ai}i∈Z and B =
{bj}j∈Z are complete and (1) holds, then

bT
j aj 6= 0, bT

j+m+1aj 6= 0. (2)

The proof of formula (2) follows by contradiction.
Lemma 4. For any complete chain of vectors a

nondegenerate locally orthogonal chain exists. The
directions of vectors of this chain are uniquely deter-
mined.

Corollary 1. For any complete chain there exists
a locally orthogonal complete chain that is uniquely
determined up to a nonzero constant factor.

The proof follows from Lemma 2 and Lemma 4.
Lemma 5. LetA = {ak} be complete a chain.

Suppose a chainB = {bk} is obtained by the formula

bT
k x ≡ det(ak−m,ak−m+1, . . . ,ak−1,x)

∀x ∈ Rm+1,

and a chainC = {cj} is obtained by the relation

cT
j x ≡ det(bj+1,bj+2, . . . ,bj+m,x) (3)

∀x ∈ Rm+1.

Then the relationcj = λjaj ∀j ∈ Z holds, where
the constantsλj are not zero.

Proof. According to Lemma 2 chainB is com-
plete. It is obvious thatbk ⊥ ak−m, bk ⊥ ak−m+1,
. . ., bk ⊥ ak−1 ∀k ∈ Z; the last relations are equiv-
alent to the next onesaj ⊥ bj+1, aj ⊥ bj+2, . . .,
aj ⊥ bj+m ∀j ∈ Z. Taking into account that the
chainC = {cj} is obtained by formula (3), we see
that the relationscj ⊥ bj+1, cj ⊥ bj+2, . . . , cj ⊥
bj+m ∀j ∈ Z are fulfilled. Comparing the last
one with the relation obtained just before we get the
needed result.

3 Some vector identities

Let u0,u1, . . . ,um−1 ∈ Rm+1 be vector columns.
Consider multivector production

(u0×u1×. . .×um−1)Tx = det(u0,u1, . . . ,um−1,x)

∀x ∈ Rm+1.

For shortness we denote it by symbol

m−1∏

i=0

×ui = u0 × u1 × . . .× um−1,

so that

(
m−1∏

i=0

×ui)Tx ≡ det(u0,u1, . . . ,um−1,x) (4)

∀x ∈ Rm+1.

Lemma 6. The next assertions are right:
1) a transposition of neighbor factors changes the

sign of result,
2) two collinear factors result in zero,
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3) the multivector production has a distributive
property; in particular, ifi ∈ {1, 2, . . . ,m− 2} then

u0×u1×. . .×ui−1×(u ′
i+u ′′

i )×ui+1×. . .×um−1 =

= u0×u1× . . .×ui−1×u ′
i×ui+1× . . .×um−1+

+u0 × u1 × . . .× ui−1 × u ′′
i × ui+1 × . . .× um−1,

4) if a vector b ∈ Rm+1 is a factor in
multivector production

∏m−1
i=0 ×ui then the relation(∏m−1

i=0 ×ui

)T
b = 0 is right.

The proof is followed by formula (4).
Theorem 1. Let v0, . . . ,v2m−2, f ∈ Rm+1 be

column vectors and let

C =
(m−1∏

i=0

×vi, . . . ,
2m−2∏

i=m−1

×vi, f
)

be matrix with columnf . Then the relation

det C = (−1)m
m−2∏

i=0

det(vi, . . . ,vi+m) · fTvm−1

(5)
is correct.

Proof. By definition put

Vj =
(
(
m−1∏

i=0

×vi)
Tvj , (

m∏

i=1

×vi)
Tvj , . . .

. . . , (
2m−2∏

i=m−1

×vi)
Tvj , fTvj ,

)T
, j = 0, 1, . . . , m.

Consider the production of matrixCT and
(v0, . . . ,vm). We have

CT (v0, . . . ,vm) = (V0,V1, . . . ,Vm).

Now we discuss the vectors

Wk =
(
0, 0, . . . , 0︸ ︷︷ ︸

k+1

, (
m+j∏

i=j+1

×vi)
Tvk,

(
m+j+1∏

i=j+2

×vi)
Tvk, . . . , (

2m−2∏

i=m−1

×vi)
Tvk, fTvk

)T
,

k = 0, 1, . . . , m− 1,

and vector

Wm =
(
(
m−1∏

i=0

×vi)
Tvm, 0, 0, . . . , 0, fTvm

)T
.

Taking into account formula (4) and point 4) of
Lemma 6, we obtain

Vj = Wj ∀j ∈ {0, 1, . . . , m};

therefore we have

det CT (v0, . . . ,vm) = det(W0,W1, . . . ,Wm).

Calculating the right determinant by the ”delet-
ing” of the first row and of the last column, we obtain
the determinant of the triangular matrix:

det CT · det(v0, . . . ,vm) =

= (−1)m(
m−1∏

i=0

×vi)Tvm · (
m∏

i=1

×vi)Tv0 · . . .

. . . · (
2m−2∏

i=m−1

×vi)Tvm−2 · fTvm−1.

Using Lemma 6 and relation (4), we deduce

det CT · det(v0, . . . ,vm) =

= (−1)m det(v0, . . . ,vm) · (−1)m det(v0, . . . ,vm)·
·(−1)m det(v1, . . . ,vm+1) · . . .

. . . · (−1)m det(vm−2, . . . ,v2m−2) · fTvm−1.

Here we havem factors(−1)m. Because the relation
(−1)m2

= (−1)m holds, we get the equality (5).
Corollary 2. Letv0, . . . ,v2m−1 ∈ Rm+1 be col-

umn vectors. Then the relation

det
(m−1∏

i=0

×vi, . . . ,
2m−1∏

i=m

×vi

)
=

=
m−1∏

i=0

det(vi, . . . ,vi+m) (6)

is fulfilled.
Proof. If we put f =

∏2m−1
i=m ×vi in relation (5)

then we get formula (6).

4 Classification of complete chains

Consider a complete chainA = {aj}j∈Z of column
vectorsaj ∈ Rm+1.

It is clear that the multiplication of vectors for
a complete chain by nonzero numbers gives a new
complete chain. The aforementioned multiplication
generates the relation of equivalency between chains.
Two nondegenerate chainsA = {aj}j∈Z andA ′ =
{a ′j}j∈Z are called equivalent chains, if there are
nonzero numbersλj sucha ′j = λjaj . The introduced
equivalency is denoted by∼; it divides the setA on
classes of equivalent chains.

Consider a complete chainA ∈ A. LetA ⊂ A be
the class of equivalent complete chains such thatA =
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{A ′ | A ′ ∼ A}. The set of all classes is denoted by
K.

Let us return to the discussion of the local orthog-
onality of complete chains. LetA = {ai}i∈Z be a
complete chain. By definition putB = {bj}j∈Z,
where

bj =
m∏

s=1

×aj−s ∀j ∈ Z. (7)

We want to prove that chainsA andB are locally
orthogonal. For anyp ∈ {1, 2, . . . ,m} we havej −
p ∈ {j− 1, j− 2, . . . , j−m}, so that the vectoraj−p

locates among the factors of multivector production
in formula (7). Let us verify the relation (1). Using
Lemma 6 (see its point 4), we get relation (1). This
completes the proof.

Suppose that chainB ∈ A, B = {bj}j∈Z, is
local orthogonal to chainA ∈ A, A = {ai}i∈Z,
i.e. relation (1) is fulfilled. Consider classesA =
{A ′ | A ′ ∼ A} andB = {B ′ | B ′ ∼ A}.

DiscusschainsA ′ ∈ A, A ′ = {a ′j}i∈Z, and
B ′ ∈ B, B ′ = {b ′

j}j∈Z. According to the definition
of equivalence we havea ′i = λiai, b ′

j = µjbj , where
λi, µj are nonzero numbers. Multiplying relation (1)
by µjλj−p, we obtain a relation

(b ′
j)

Ta ′j−p = 0 ∀j ∈ Z, p ∈ Im.

The last one is equivalence to the local orthogonality
of chainsA ′ andB ′.

Thus, a chain of classA is local orthogonal to
each chain of classB, and otherwise, a chain of the
classB is local orthogonal to each chain of classA.
In the discussed case the classesA andB arecalled
local orthogonal classes. Applying Lemma 5, we see
that each class has the unique local orthogonal class.

Using formula (5), it is possible to make Lemma
5 more precise: the next assertion is right.

Lemma 7. Let A = {ak} be complete chain.
Suppose chainB = {bk} is obtained by formula

bk = ak−m × ak−m+1 × . . .× ak−1, (8)

and chainC = {cj} is obtained by formula

cj = bj+1 × bj+2 × . . .× bj+m. (9)

Then the relation

cj = (−1)m
m−2∏

i=0

det(ai−m+j+1, . . . ,ai+j+1)aj

(10)
is right.

Proof. By formula (9) we have

cT
j x = det(bj+1, . . . ,bj+m),x) ∀x ∈ Rm+1.

Taking into account formula (8), we obtain

cT
j x = det

( j∏

i=j+1−m

×ai,

j+1∏

i=j+2−m

×ai, . . .
j+m−1∏

i=j

×ai,x
)
.

By substitutioni ′ = i + m− j − 1 we have

cT
j x = det

(m−1∏

i ′=0

×ai ′−m+j+1,
m∏

i ′=1

×ai ′−m+j+1, . . .

. . . ,
2m−2∏

i ′=m−1

×ai ′−m+j+1,x
)
.

Using (5) forvi ′ = ai ′−m+j+1, f = x, ∀x ∈ Rm+1,
we deduce relation (10).

The passage from classA to the orthogonal class
B is denoted by?(star), so that for discussed classes
we haveB = A?

, A = B?
. It is evident thatA =

(A?)?. Thus, the passage from classA to the local
orthogonal class is involution in the setK.

5 Space of minimal splines of the La-
grange type

On a finite or infinite interval(α, β) ⊂ R1 we con-
sider a grid

X : . . . < x−1 < x0 < x1 < . . . ; (11)

hereα = limj→−∞ xj , β = limj→+∞ xj .
Let A = {aj}j∈Z be a complete chain of column

vectorsaj ∈ Rm+1.
Introduce some notation

G = ∪j∈Z(xj , xj+1), Sj = [xj , xj+m+1],

Jk = {k −m, k −m + 1, . . . , k − 1, k} ∀k, j ∈ Z.

Let U = U(G) be a linear space of functions de-
fined on the setG; the last one depends on grid (11).

Considerm + 1-component vector functionϕ(t)
with components in the spaceU(G). Discuss the next
supposition

(L) The component of vector functionϕ(t) are the
linear independent system on the setG∩(c, d) for any
interval (c, d) ⊂ (α, β).

We define functionsωj(t), t ∈ G, j ∈ Z, by
approximate relations

∑

j′
aj′ωj′(t) ≡ ϕ(t) ∀t ∈ G, (12)
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ωj(t ′) ≡ 0 ∀t ′ ∈ G\Sj . (13)

Accordingto (12) – (13) we obtain

k∑

j′=k−m

aj′ωj′(t) ≡ ϕ(t) ∀t ∈ (xk, xk+1) ∀k ∈ Z.

(14)
By (14) we havesupp ωj ⊂ Sj , ωj ∈ U(G)

∀j ∈ Z, and

ωj(t) =
det

(
{aj′}j′∈Jk,j′ 6=j ‖ ′jϕ(t)

)

det
(
{aj′}j′∈Jk

) (15)

∀t ∈ (xk, xk+1) ∀j ∈ Jk,

where symbol ‖ ′j denotes that the determined of
the numerator is deduced from the denominator by the
replacement of the columnaj with columnϕ(t) (with
preservation of the previous order of columns). Thus,
the linear space

S̃ = {ũ | ũ(t) =
∑

j∈Z

cjωj(t) ∀t ∈ G, ∀cj ∈ R1},

(16)
is contained in the spaceU(G).

By (12) – (16) we see that the set of elements of
the spacẽS does not change if vectorsaj are mul-
tiplied with the nonzero coefficientsλj . Let A be a
class of equivalent chains, which contains the chain
A = {aj}j∈Z. It is clear that spaceS does not depend
on the choice of a chain in classA, but that it depends
on the choice of classA. Therefore we will denote the
space (16) bỹS(X,A,ϕ). This space is called thespace
of minimal splines of the Lagrange type.

6 On representation of minimal
splines

Let {dj}j∈Z be complete chain. In formulas (12),
(15) – (16) we put

aj =
j+m∏

s=j+1

×ds. (17)

Using (15) forj = k, we have

ωk(t) =
det(ak−m,ak−m+1, . . . ,ak−1, ϕ(t))
det(ak−m,ak−m+1, . . . ,ak−1,ak)

(18)

∀t ∈ (xk, xk+1).

By (17) equality (18) can be rewritten:

ωk(t) =
N

D
,

where

N = det
( k∏

s=k−m+1

×ds,
k+1∏

s=k−m+2

×ds, . . .

. . . ,
k+m−1∏

s=k

×ds, ϕ(t)
)
, (19)

D = det
( k∏

s=k−m+1

×ds,
k+1∏

s=k−m+2

×ds, . . .

. . . ,
k+m−1∏

s=k

×ds,
k+m∏

s=k+1

×ds

)
(20)

∀t ∈ (xk, xk+1).

Using Theorem 1 forvi = di+k−m+1, f = ϕ(t)
we transform (19) – (20). As a result we obtain

N =

= (−1)m
m−2∏

i=0

det(di+k−m+1, . . . ,di+k+1)·ϕT (t)dk,

D =
m−1∏

i=0

det(di+k−m+1, . . . ,di+k+1).

Thus, we have

ωk(t) = (−1)m · dT
k ϕ(t)

det(dk, . . . ,dk+m)
. (21)

7 Pseudo-continuity of minimal
splines

We assume that for integerk there exists a pair of lin-
ear functionalsF−

k andF+
k in the adjoint spaceU∗

with supports in segments[xk−1, xk] and [xk, xk+1]
accordingly. We assume that the action of a functional
on a vector function is understood as componentwise,
so that we obtain a constant vector.

A function u ∈ U is called pseudo-continuous in
xk if F−

k u = F+
k u. We denote byCU (xk),

CU (xk) = {u | u ∈ U, F−
k u = F+

k u}.

It is obvious thatCU (xk) is a linear space and
CU (xk) ⊂ U . The linear space of all (m + 1)-
dimensional vector-valued functions with components
in CU (xk) is denoted byCU (xk).

We consider the conditions under whichωj , j ∈
Z, belong toCU (xk).
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Lemma 8.Assume thatj, k ∈ Z are such that
k− j ∈ Jm and the functionalF ∈ U∗ has support in
[xk, xk+1]. ThenFωj = 0, if and only if

det
(
{aj′}j′∈Jk,j′ 6=j ‖ ′jFϕ

)
= 0.

The proof follows from (15).
Lemma 9.Letϕ ∈ CU (xk) andA ∈ A. If

F−
k ωk−m−1 = 0, F+

k ωk = 0, (22)

then
F−

k ωj = F+
k ωj (23)

If ak−m−1 andak are not collinear, then (23) is a
sufficient condition for the validity of (22).

Proof. Necessity. Replacingk with k− 1 in (14),
we get

k−1∑

j=k−m−1

ajωj(t) ≡ ϕ(t), t ∈ (xk−1, xk), (24)

which implies

k−1∑

j=k−m

ajF
−
k ωj = F−

k ϕ (25)

in view of the first relation in (22).
Similarly, by (14) and the second relation in (22),

k−1∑

j=k−m

ajF
+
k ωj = F+

k ϕ. (26)

Since the vectorsak−m,ak−m+1, . . . ,ak−1 are
linearly independent andF−

k ϕ = F+
k ϕ by assump-

tion, from (25) and (26) we obtain (23). Necessity is
proved.

Sufficiency. Using (24), we find

k−1∑

j=k−m−1

ajF
−
k ωj = F−

k ϕ, (27)

and (14) implies

k∑

j=k−m

ajF
+
k ωj = F+

k ϕ. (28)

Subtracting (28) from (27) and taking into ac-
count (23) and the conditionϕ ∈ CU (xk), we find
ak−m−1F

−
k ωk−m−1 = akF

+
k ωk. Sinceak−m−1 and

ak are linearly independent, we get (22).
Theorem 2. Letϕ ∈ CU (xk) andA ∈ A. Then

the functionsωj(t) (∀j ∈ Z), in the pointxk are
pseudo-continuous if and only if (22) holds.

Proof. Sufficiency. If (22) holds, then it is obvi-
ous that

F−
k ωk−m−1 = F+

k ωk−m−1, F+
k ωk = F−

k ωk,

since the right-hand sides of the last identities vanish
because of the location of supports of the function-
als. If k is such thatxk lies outside the support of
ωj , thenF−

k ωj = F+
k ωj since the right-hand and left-

hand sides of these identities vanish because the sup-
ports of functionals do not intersect the supports of
functions to which these functionals are applied. By
the relations (23), which are valid in view of Lemma
9, sufficiency is established. Necessity is obvious.

For the equal (by assumption)F−
k ϕ andF+

k ϕ we
setΦk: Φk = F−

k ϕ = F+
k ϕ.

Theorem 3. Let ϕ ∈ CU (xk), k ∈ Z, and let
A ∈ A. Thenωj(t) (∀j ∈ Z) are pseudo-continuous
on the grid X if and only if

dT
j Φj = 0 ∀j ∈ Z. (29)

Proof. By (21) equalities (29) are equivalent to
relations

F+
j ωj = 0, ∀j ∈ Z. (30)

Consider a chaiñdj =
∏j−1

s=j−m×as. According
to Lemma 7, the chain is equivalent to{dj}. There-
fore formula (29) can be written in equivalent form

det
(
aj−m,aj−m+1, . . . ,aj−1,Φj

)
= 0 ∀j ∈ Z.

Replacingj with j + m + 1 in the last formula,
we find

det
(
aj+1,aj+2, . . . ,aj+m, Φj+m+1

)
= 0 ∀j ∈ Z,

which impliesF−
j+m+1ωj = 0 ∀j ∈ Z, in view of

(15). Replacingk = j + m + 1, we arrive at the
relation

F−
k ωk−m−1 = 0 ∀k ∈ Z. (31)

Thus, the identities (29) are equivalent to (30) and
(31). It remains to use Lemma 9.

8 Conclusion
This paper discusses continuity of a function as a co-
incidence of values of two linear functionals on the
function where mentioned functionals have their sup-
ports in adjacent segments. It gives the opportunity to
discuss different sorts of continuity.
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For example, for adjacent segments(xk−1, xk)
and(xk, xk+1) we put

F−
k u = lim

τ→−0

∫ 0

τ
ψ(ξ)u(xk + ξ)dξ,

F+
k u = lim

τ→+0

∫ τ

0
ψ(ξ)u(xk + ξ)dξ,

whereψ(τ) is a weight function. In that case the
equalityF−

k u = F+
k u is ”mean weighted continuity”.

Consider another example:

F−
k u = lim

τ→−0
ψ(τ)u ′(xk + τ),

F+
k u = lim

τ→+0
ψ(τ)u ′(xk + τ).

Now the equalityF−
k u = F+

k u illustrates ”weighted
continuity of derivative”.
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