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Abstract: Prime geodesic theorem gives an asymptotic estimate for the number of prime geodesics over underlying
symmetric space counted by their lengths. In any setting, the search for the optimal error term is widely open. Our
objective is to derive a weighted, generalized form of the prime geodesic theorem for compact, even-dimensional,
locally symmetric Riemannian manifolds of strictly negative sectional curvature. We base our methodology on
an application of the integrated, Chebyshev-type counting function of appropriate order. The obtained error term
improves the corresponding, and best known one in the case of classical prime geodesic theorem. Our conclusion
in the case at hand is that a weighted sense yields a better result.
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1 Introduction
Recently, the authors in [2], improved the error term in
DeGeorge’s prime geodesic theorem [4], for compact,
n-dimensional, locally symmetric Riemannian mani-
folds Y with strictly negative sectional curvature (see,
[8] for yet another proof of the same result in the even-
dimensional case).

The prime geodesic theorem [2], [8] states that

πΓ (x)

=

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

2ρ n+ρ−1
n+2ρ−1

,2ρ
] li
(
xs

p,τ,λ
)

+

O
(
x

2ρ n+ρ−1
n+2ρ−1 (log x)−1

)
(1)

as x → +∞, where πΓ (x) is the number of prime
geodesics over Y of the length at most log x, and li (x)

=
x∫
2

dt
log t .

Let us explain this into more details.
Y can be represented as a double coset space

Γ\G/K = Γ\X , where G is a connected, linear,
semi-simple Lie group of real rank one, K is a max-
imal compact subgroup of G, and Γ is a discrete, co-
compact, torsion-free subgroup of G.

Since Γ is co-compact and torsion-free, there are
only two types of conjugacy classes: the class of the
identity e ∈ Γ and classes of hyperbolic elements.

It is known that every hyperbolic element g ∈ G
is conjugated to some element agmg ∈ A+M , where
A+ = exp (a+), a+ is the half line in a on which
the positive roots take positive values, a is a maxi-
mal abelian subspace of p, p is given by the Cartan
decomposition g = k ⊕ p of the Lie algebra g of G,
Φ+ (g, a) ⊂ Φ (g, a) is a system of positive roots,
Φ (g, a) is the root system, and M is the centralizer
of a in K (see, [3], and e.g., [7]).

As it is also known, a prime geodesic over Y cor-
responds to a conjugacy class of a primitive hyper-
bolic element in Γ.

If γ ∈ Γ is a primitive hyperbolic element, then
the corresponding prime geodesic over Y is denoted
by Cγ .

Now, for g ∈ Γ, the number l (g) = l (agmg) =
|log ag| is the length of the closed geodesic over Y
determined by g.

One can see that πΓ (x) is the number of prime
geodesics Cγ over Y , whose norm N (γ) = el(γ) is
not larger than x.

ρ is defined by

ρ =
1

2

∑
α∈Φ+(g,a)

dim (nα)α,

WSEAS TRANSACTIONS on MATHEMATICS Dzenan Gusic

E-ISSN: 2224-2880 237 Volume 17, 2018



where

n =
∑

α∈Φ+(g,a)

nα

is the sum of the root spaces.
For s ∈ C, Re (s) > ρ resp. Re (s) > 2ρ, the

Selberg Zeta function ZS,χ (s, σ) resp. the Ruelle zeta
function ZR,χ (s, σ) is defined by the infinite product
(see, [3, pp. 96-97])

ZS,χ (s, σ)

=
∏

γ0∈PΓh

+∞∏
k=0

det

(
1−

(
σ (mγ0)⊗ χ (γ0)⊗

Sk
(
Ad (mγ0aγ0)n̄

) )
e−(s+ρ)l(γ0)

)
,

resp.

ZR,χ (s, σ)

=
∏

γ0∈PΓh

det

(
1−

(
σ (mγ0)⊗ χ (γ0)

)
×

× e−sl(γ0)

)−1

,

where Sk is the k−th symmetric power of an endo-
morphism, n̄ = θn, θ is the Cartan involution of g,
σ and χ are finite-dimensional unitary representations
of M and Γ, respectively, and Γh resp. PΓh is the set
of Γ−conjugacy classes of hyperbolic resp. primitive
hyperbolic elements in Γ.

By Fried [6], the Ruelle zeta function can be ex-
pressed as a product of Selberg zeta functions.

In our case, there are sets

Ip =
{

(τ, λ) | τ ∈ M̂, λ ∈ R
}

such that ∧pnC, p ≥ 0 (considered as a representation
of MA) decomposes with respect to MA as

∧pnC =
∑

(τ,λ)∈Ip

Vτ ⊗ Cλ,

where A follows from the Iwasawa decomposition G
= KAN that corresponds to the Iwasawa decomposi-
tion g = k⊕a⊕n, Vτ is the space of the representation
τ , nC is the complexification of the Lie algebra n of

N (available since G is a linear group), and Cλ is the
one-dimensional representation of A given by A 3 a
→ aλ ∼= a∗C (see, [3, p. 99]).

Now,

ZR,χ (s, σ)

=

n−1∏
p=0

∏
(τ,λ)∈Ip

ZS,χ (s+ ρ− λ, τ ⊗ σ)(−1)p .

Finally, sp,τ,λ in (1) denotes a singularity of the
Selberg zeta function ZS (s+ ρ− λ, τ),
where ZS (s+ ρ− λ, τ) is obtained from
ZS,χ (s+ ρ− λ, τ ⊗ σ) by fixing χ ∈ Γ̂, σ ∈ M̂ and
omitting them in the notation.

The relation (1) follows easily from the relation

ψ0 (x)

=

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

2ρ n+ρ−1
n+2ρ−1

,2ρ
]
xs

p,τ,λ

sp,τ,λ
+

O
(
x

2ρ n+ρ−1
n+2ρ−1

)
,

(2)

where the counting function ψ0 (x) is defined by

ψ0 (x) =
∑

γ∈Γh,N(γ)≤x

Λ0 (γ) ,

and

Λ0 (γ) = logN (γ0)

for γ ∈ Γh, γ = γ
nΓ(γ)
0 (see, e.g., [12, p. 102]).

Here, we use the fact that γ ∈ Γh is of the form
γ = γ

nΓ(γ)
0 for some γ0 ∈ PΓh, where nΓ (g) =

# (Γg/〈g〉), Γg is the centralizer of g in Γ, and 〈g〉
is the group generated by g.

Therefore, it is enough to prove (2) to have (1)
(see, [2, p. 317], [1, p. 368]), i.e., it is enough to prove
that ∑

γ∈Γh,N(γ)≤x

Λ0 (γ)

=

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×
(3)
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×
∑

sp,τ,λ∈
(

2ρ n+ρ−1
n+2ρ−1

,2ρ
]
xs

p,τ,λ

sp,τ,λ
+

O
(
x

2ρ n+ρ−1
n+2ρ−1

)
,

holds true.
The relation (1) is widely known as a prime

geodesic theorem. Since it follows from the relation
(3), we shall call the relation (3) by the same name.

In order to obtain (3) (or (2)), one usually uses a
higher order counting function ψj (x), j ∈ N, where
ψj (x) is defined recursively by

ψj (x) =

x∫
0

ψj−1 (t) dt, j ∈ N.

By [11, p. 18, Th. A],

ψj (x) =
1

j!

∑
γ∈Γh,N(γ)≤x

Λ0 (γ) (x−N (γ))j .

In this paper we pay attention to function

ψ1 (x) =
∑

γ∈Γh,N(γ)≤x

Λ0 (γ) (x−N (γ)) .

Since ψ1 (x) is integrated ψ0 (x), we pay our particu-
lar attention to function ψ1(x)

x .
We shall prove that the counting function

ψ1 (x)

x
=

∑
γ∈Γh,N(γ)≤x

Λ0 (γ)

(
1− N (γ)

x

)
.

yields the error term

O
(
x

2ρ n+ρ−1
n+2ρ−1

− ρ
n+2ρ−1

)
in a variant of (3), i.e., a better result than the one
obtained by an application of the counting function

ψ0 (x) =
∑

γ∈Γh,N(γ)≤x

Λ0 (γ) .

Such result is usually called a weighted, general-
ized prime geodesic theorem.

2 Motivation and main ideas
overview

In this section we review the main steps that have led
us to the result (1) in [2].

In order to obtain (1), i.e., (2), we have used the
higher order counting function ψ2n (x).

Consequently, to move from the level ψ2n (x) to
the level ψ0 (x), we applied the order 2n differential
operator ∆+

2n.
There, we assumed that 1 ≤ h ≤ x

2 .
We have derived the equation (12) in [2], where

Ap,τ,λ is the set of poles of

(logZS (s+ ρ− λ, τ))
′ xs+2n

2n∏
k=0

(s+ k)

,

and cz (p, τ, λ) is the residue at s = z.
Having in mind the singularity pattern

[3, p. 113, Th. 3.15] of ZS (s+ ρ− λ, τ), we divided
Ap,τ,λ into:

1. Ip,τ,λ, the set of singularities z of
ZS (s+ ρ− λ, τ) such that z ∈ I−2n =
{0,−1, ...,−2n} (note that these singularities
are the only poles of
(logZS (s+ ρ− λ, τ))

′ xs+2n

2n∏
k=0

(s+k)

of order two),

2. I
′
p,τ,λ = I−2n \ Ip,τ,λ,

3. Sp,τ,λ, the remaining singularities of
ZS (s+ ρ− λ, τ).

Hence, following Hejhal [9], we calculated
csp,τ,λ (p, τ, λ) for sp,τ,λ ∈ Sp,τ,λ, c−j (p, τ, λ) for −j
∈ Ip,τ,λ and −j ∈ I ′p,τ,λ (see, (13)-(15) in [2]).

There, op,τ,λ
sp,τ,λ

is the order of the singularity
sp,τ,λ, and ap,τ,λ1,−j is given by the series expansion of

(logZS (s+ ρ− λ, τ))
′

at −j.
Note the following:

(a) the error term in (2) is O
(
x

2ρ n+ρ−1
n+2ρ−1

)
,

(b) ψ0 (x) ≤ h−2n∆+
2nψ2n (x),

(c) h−2n∆+
2nx

sp,τ,λ+2n =(
sp,τ,λ + 2n

) (
sp,τ,λ + 2n− 1

)
...
(
sp,τ,λ + 1

)
·

x̃s
p,τ,λ

for some x̃ ∈ [x, x+ 2nh].
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In other words: O
(
x

2ρ n+ρ−1
n+2ρ−1

)
is the error term

we were looking for in the explicit expression (2) for
ψ0 (x), the final form (2) for ψ0 (x) follows from
h−2n∆+

2nψ2n (x), and h−2n∆+
2n acts on xs

p,τ,λ+2n

very similarly to the classical differential operator.
We further dividedAp,τ,λ, by introducing the sets:

Bp,τ,λ, B
′
p,τ,λ, Ckp,τ,λ, 1 ≤ k ≤ 4, and Sp,τ,λ−ρ+λ = Sp,τ,λ

\ Sp,τ,λR , where Sp,τ,λR = Sp,τ,λ ∩ R.
The corresponding equation in [2] is (16).
Clearly, an analogous formula for

h−2n∆+
2n

∑
z∈Ap,τ,λ

cz (p, τ, λ)

holds also true.
Let us explain our motivation to introduce the

aforementioned sets.
Since (a) and (b) hold true, we required that ei-

ther the corresponding sum in ψ2n (x) or the cor-
responding sum in h−2n∆+

2nψ2n (x) be of the size

O
(
x

2ρ n+ρ−1
n+2ρ−1

)
.

In particular, we required that the sum in
h−2n∆+

2nψ2n (x) that corresponds to C4
p,τ,λ be of the

form: an explicit term larger than O
(
x

2ρ n+ρ−1
n+2ρ−1

)
plus the error term O

(
x

2ρ n+ρ−1
n+2ρ−1

)
. More precisely,

O
(
x

2ρ n+ρ−1
n+2ρ−1

)
size summands in ψ2n (x) are re-

placed by O
(
x

2ρ n+ρ−1
n+2ρ−1

)
, the operator h−2n∆+

2n is
applied to the newly-acquired ψ2n (x), and, finally,

O
(
x

2ρ n+ρ−1
n+2ρ−1

)
size summands in h−2n∆+

2nψ2n (x)

are replaced by O
(
x

2ρ n+ρ−1
n+2ρ−1

)
. The obtained for-

mula is the formula (2).
X is the universal covering of Y . It is a Rieman-

nian symmetric space of rank one. Therefore, it is a
real, complex or quaternionic hyperbolic space or the
hyperbolic Cayley plane.

We assume that the Riemannian metric over Y in-
duced from the Killing form is normalized such that
the sectional curvature of Y varies between −4 and
−1. Therefore, n = k, 2m, 4l, 16 and ρ = 1

2 (k − 1),
m, 2l + 1, 11 for X = HRk (k ≥ 2, k even), HCm
(m ≥ 2), HHl (l ≥ 2), HCa2, respectively. Here we
assume that m ≥ 2 and l ≥ 2 since HC1 ∼= HR2 and
HH1 ∼= HR4 (see, e.g., [10]).

Note that, c−2n (p, τ, λ) is O
(
x

2ρ n+ρ−1
n+2ρ−1

)
. On

the other side, 2n > 2ρ and n+ρ−1
n+2ρ−1 < 1 yield that

c0 (p, τ, λ) is not O
(
x

2ρ n+ρ−1
n+2ρ−1

)
. In other words,

the definition of the set Bp,τ,λ is a natural one. It
determines the complement B

′
p,τ,λ of Bp,τ,λ in I−2n

uniquely.
Recall Theorem 3.15 in [3, pp. 113-115]. The

topological singularities of ZS (s+ ρ− λ, τ) are less
than −ρ + λ. There are infinite many of them since
they are generated via the lattice L (σ) introduced
in [3, p. 47, Def. 1.13]. The spectral singulari-
ties of ZS (s+ ρ− λ, τ) are contained in the union
of the interval [−2ρ+ λ, λ] with the line −ρ + λ +
iR. There may be an overlap of the topological and
the spectral singularities at finite many points inside
[−2ρ+ λ,−ρ+ λ).

Note that z ≤ − 2n − 1 < − 2ρ + λ for z ∈
C1
p,τ,λ. Moreover, z ∈ Sp,τ,λR ⊂ Sp,τ,λ for z ∈ C1

p,τ,λ,
i.e., C1

p,τ,λ ∩ I−2n = ∅. In other words, we intro-
duced C1

p,τ,λ to deal with infinite many simple poles

of (logZS (s+ ρ− λ, τ))
′ xs+2n

2n∏
k=0

(s+k)

given as topolog-

ical singularities of ZS (s+ ρ− λ, τ).
The set C2

p,τ,λ ⊂ Sp,τ,λR ⊂ Sp,τ,λ is introduced to
agree with csp,τ,λ (p, τ, λ), sp,τ,λ ∈ Sp,τ,λ, and thus
automatically enable a cancellation of exponents, i.e.,
to produce the estimate cz (p, τ, λ) = O

(
x

2ρ n+ρ−1
n+2ρ−1

)
for z ∈ C2

p,τ,λ.
Similarly, the set C3

p,τ,λ ⊂ Sp,τ,λ is
introduced to agree with csp,τ,λ (p, τ, λ), sp,τ,λ ∈
Sp,τ,λ and (c), i.e., to automatically produce the es-
timate h−2n∆+

2ncz (p, τ, λ) = O
(
x

2ρ n+ρ−1
n+2ρ−1

)
for z ∈

C3
p,τ,λ.

Having in mind what we said above about the
spectral singularities of ZS (s+ ρ− λ, τ), the defini-
tion of Sp,τ,λ−ρ+λ is also natural one.

The remaining poles of
(logZS (s+ ρ− λ, τ))

′ xs+2n

2n∏
k=0

(s+k)

are denoted by

C4
p,τ,λ.
C4
p,τ,λ also agrees with csp,τ,λ (p, τ, λ), sp,τ,λ ∈

Sp,τ,λ and (c).
Consequently, (see, e.g., [13, p. 246], [12, p. 101],

[2, p. 316]), the equation (32) in [2] holds true.
Furthermore, the equation (35) in [2] holds true.
There, O

(
x−ρ+λMn−1

)
and

O
(
h−2nx−ρ+λ+2nM−n−1

)
follow from the

estimates (34) and (33) in [2], respectively, where M
> 2ρ.

We notice that the sets C4
p,τ,λ and Sp,τ,λ−ρ+λ are re-

sponsible for achieving the error term O
(
x

2ρ n+ρ−1
n+2ρ−1

)
in (2).
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Namely, O
(
h2ρ
)
, O
(
x−ρ+λMn−1

)
and

O
(
h−2nx−ρ+λ+2nM−n−1

)
all become

O
(
x

2ρ n+ρ−1
n+2ρ−1

)
for the choice h = x

n+ρ−1
n+2ρ−1 , M =

x
ρ

n+2ρ−1 . This actually means that once, the esti-
mates (32) and (35) in [2] are established, and the
corresponding error term is determined, the aforemen-
tioned sets may be defined. Note that the lower bound
of the interval in [2, (32)] does not have to be explic-
itly known immediately (it is known after the error
term is known). This fact, however, does not prevent
us from establishing this relation. It is enough to tem-
porarily replace the set C4

p,τ,λ with some set

Oε2ρ =
{
sp,τ,λ ∈ Sp,τ,λR | 2ρ− ε < sp,τ,λ ≤ 2ρ

}
,

where ε > 0 is fixed and small.
The corresponding relation in the case at hand is

the following.

∑
z∈Oε2ρ

h−2n∆+
2ncz (p, τ, λ) =

∑
z∈Oε2ρ

xz

z
+O

(
h2ρ
)
.

The goal of this paper is to derive a formula anal-
ogous to the formula (3) by moving from the level
ψ2n (x) to the level ψ1 (x). The method described in
this section will be followed and adapted when nec-
essary. In particular, the operator h−2n∆+

2n will be
replaced by h−(2n−1)∆+

2n−1.

3 Main Result
The following theorem is the main result of this paper.

Theorem 1. (Weighted Generalized Prime Geodesic
Theorem) Let Y be as above. Then,

∑
γ∈Γh,N(γ)≤x

Λ0 (γ)

(
1− N (γ)

x

)

=

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+1) n+ρ−1
n+2ρ−1

−1,2ρ
]

xs
p,τ,λ

sp,τ,λ (sp,τ,λ + 1)
+

O
(
x

2ρ n+ρ−1
n+2ρ−1

− ρ
n+2ρ−1

)
as x → +∞, where sp,τ,λ is a singularity of the Sel-
berg zeta function ZS (s+ ρ− λ, τ).

Proof. If f is at least 2n−1 times differentiable func-
tion, then

∆+
2n−1f (x)

=

x+h∫
x

t2n−1+h∫
t2n−1

...

t2+h∫
t2

f (2n−1) (t1)×

× dt1...dt2n−1.

(4)

Hence, by the mean value theorem

∆+
2n−1f (x)

= h

x+h∫
x

t2n−1+h∫
t2n−1

...

t3+h∫
t3

f (2n−1) (t2 + α1)×

× dt2...dt2n−1

= ...

= h2n−1f (2n−1) (x+ α2n−1) ,

where αi ∈ [0, ih]. Put x̃ = x+ α2n−1. We conclude,

∆+
2n−1f (x) = h2n−1f (2n−1) (x̃) , (5)

where x̃ ∈ [x, x+ (2n− 1)h].
Consider the set

Oε2ρ =
{
sp,τ,λ ∈ Sp,τ,λR | 2ρ− ε < sp,τ,λ ≤ 2ρ

}
,

where ε > 0 is fixed and small. Let sp,τ,λ ∈ Oε2ρ. By
(5),

h−(2n−1)∆+
2n−1csp,τ,λ (p, τ, λ)

= op,τ,λ
sp,τ,λ

x̃s
p,τ,λ+1
sp,τ,λ

sp,τ,λ (sp,τ,λ + 1)

for some x̃sp,τ,λ ∈ [x, x+ (2n− 1)h]. Now, reason-
ing as in [13, p. 246] or [12, p. 101], one obtains

∑
sp,τ,λ∈Oε2ρ

h−(2n−1)∆+
2n−1csp,τ,λ (p, τ, λ)

=
∑

sp,τ,λ∈Oε2ρ

xs
p,τ,λ+1

sp,τ,λ (sp,τ,λ + 1)
+O

(
h2ρ+1

)
.

(6)
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Consider the set Sp,τ,λ−ρ+λ = Sp,τ,λ\Sp,τ,λR . Let z ∈
Sp,τ,λ−ρ+λ.

Since,

∆+
2n−1f (x)

=
2n−1∑
i=0

(−1)i
(

2n− 1

i

)
×

× f (x+ (2n− 1− i)h) ,

we have that

h−(2n−1)∆+
2n−1cz (p, τ, λ)

= h−(2n−1) op,τ,λz

z (z + 1) ... (z + 2n)
×

×
2n−1∑
i=0

(−1)i
(

2n− 1

i

)
×

× (x+ (2n− 1− i)h)z+2n

= O
(
h−(2n−1) |z|−2n−1 x−ρ+λ+2n

)
= O

(
h−(2n−1) |z|−2n−1 xρ+2n

)
.

(7)

On the other side, by (4)

h−(2n−1)∆+
2n−1cz (p, τ, λ)

= h−(2n−1) op,τ,λz

z (z + 1)
×

×
x+h∫
x

t2n−1+h∫
t2n−1

...

t2+h∫
t2

tz+1
1 dt1...dt2n−1.

Hence,∣∣∣h−(2n−1)∆+
2n−1cz (p, τ, λ)

∣∣∣
≤ h−(2n−1)

∣∣∣op,τ,λz

∣∣∣ |z|−1 |z + 1|−1×

×
x+h∫
x

t2n−1+h∫
t2n−1

...

t2+h∫
t2

t−ρ+λ+1
1 dt1...dt2n−1.

Applying the mean value theorem as well as the fact
that h ≤ x

2 , we obtain

h−(2n−1)∆+
2n−1cz (p, τ, λ)

= O
(
|z|−2 x−ρ+λ+1

)
= O

(
|z|−2 xρ+1

)
.

(8)

Let M > 2ρ. Now, using (7) and (8), we deduce

∑
z∈Sp,τ,λ−ρ+λ

h−(2n−1)∆+
2n−1cz (p, τ, λ)

=
∑

z∈Sp,τ,λ−ρ+λ
|−ρ+λ|<|z|≤M

h−(2n−1)∆+
2n−1cz (p, τ, λ) +

∑
z∈Sp,τ,λ−ρ+λ
|z|>M

h−(2n−1)∆+
2n−1cz (p, τ, λ)

= O

xρ+1
∑

z∈Sp,τ,λ−ρ+λ
|−ρ+λ|<|z|≤M

|z|−2

+

O

h−(2n−1)xρ+2n
∑

z∈Sp,τ,λ−ρ+λ
|z|>M

|z|−2n−1


= O

xρ+1

M∫
|−ρ+λ|

t−2dNp,τ,λ (t)

+

O

h−(2n−1)xρ+2n

+∞∫
M

t−2n−1dNp,τ,λ (t)


= O

(
xρ+1Mn−2

)
+

O
(
h−(2n−1)xρ+2nM−n−1

)
,

(9)

where Np,τ,λ (t) is the number of singularities of
ZS (s+ ρ− λ, τ) on the interval −ρ + λ + ix, 0 <
x ≤ t.

Notice that Np,τ,λ (t) = Atn +

O
(
tn−1 (log t)−1

)
for some explicitly known con-

stant A (see, e.g., [5, p. 89, Th. 9.1.]). However,
the estimate Np,τ,λ (t) = O (tn) is sufficient for our
needs.

The error terms O
(
h2ρ+1

)
, O
(
xρ+1Mn−2

)
and

O
(
h−(2n−1)xρ+2nM−n−1

)
that appear in (6) and (9)

all become O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
for the choice h =

x
n+ρ−1
n+2ρ−1 , M = x

ρ
n+2ρ−1 .

Thus, we are able to introduce the sets Bp,τ,λ,
B
′
p,τ,λ, Cip,τ,λ, i ∈ {1, 2, 3, 4}.

We define,
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Bp,τ,λ

=
{
− j ∈ I−2n | c−j (p, τ, λ) =

O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)}
,

B
′
p,τ,λ = I−2n\Bp,τ,λ.

Obviously, c−2n (p, τ, λ) is O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
. Note

that 2n = 2k, 4m, 8l, 32 and 2ρ + 1 = k, 2m + 1, 4l
+ 3, 23 for X = HRk, HCm, HHl, HCa2, respec-
tively. Hence, 2n > 2ρ+ 1 and n+ρ−1

n+2ρ−1 < 1 yield that

c0 (p, τ, λ) is not O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
. In this way, the

definition of the set Bp,τ,λ is justified. The set Bp,τ,λ
determines the set B

′
p,τ,λ automatically.

We introduce the set

C1
p,τ,λ =

{
sp,τ,λ ∈ Sp,τ,λR | sp,τ,λ ≤ −2n− 1

}
in the same way as in the previous section. Namely,
the sum that corresponds to this set in ψ2n (x) is
O
(
x−1

)
(see, [2, p. 345, (17)]). This is satisfactory

since the new error term O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
is not

smaller than the old one O
(
x

2ρ n+ρ−1
n+2ρ−1

)
.

We adapt the set

C2
p,τ,λ

=
{
sp,τ,λ ∈ Sp,τ,λR | −2n− 1 < sp,τ,λ ≤

− 2n+ (2ρ+ 1)
n+ ρ− 1

n+ 2ρ− 1

}
,

to the new error term.
In the previous section we introduced the set

C3
p,τ,λ to be in accordance with csp,τ,λ (p, τ, λ),

sp,τ,λ ∈ Sp,τ,λ and (c). Now, we adapt C3
p,τ,λ to be in

line with (5).

C3
p,τ,λ

=
{
sp,τ,λ ∈ Sp,τ,λR | −2n+ (2ρ+ 1)

n+ ρ− 1

n+ 2ρ− 1
<

sp,τ,λ ≤ −1 + (2ρ+ 1)
n+ ρ− 1

n+ 2ρ− 1

}
.

The definition of the adapted set C4
p,τ,λ follows

automatically.

C4
p,τ,λ

=
{
sp,τ,λ ∈ Sp,τ,λR | −1 + (2ρ+ 1)

n+ ρ− 1

n+ 2ρ− 1
<

sp,τ,λ ≤ 2ρ
}
.

Note that,

−1 + (2ρ+ 1)
n+ ρ− 1

n+ 2ρ− 1
< 2ρ

holds obviously true.
Now, reasoning in exactly the same way as in [2,

p. 315], we deduce that∑
z∈C1

p,τ,λ

cz (p, τ, λ) = O
(
x−1

)
.

(10)

By the very definition of the set Bp,τ,λ,

∑
z∈Bp,τ,λ

cz (p, τ, λ) = O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
. (11)

Finally, by the definition of C2
p,τ,λ,

∑
z∈C2

p,τ,λ

cz (p, τ, λ) = O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
. (12)

Combining (10)-(12), we obtain

ψ2n (x)

=
n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈B′p,τ,λ

1×

× cz (p, τ, λ) +

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈C3

p,τ,λ

1×

× cz (p, τ, λ) +

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈C4

p,τ,λ

1×

× cz (p, τ, λ) +

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈Sp,τ,λ−ρ+λ

1×

(13)

WSEAS TRANSACTIONS on MATHEMATICS Dzenan Gusic

E-ISSN: 2224-2880 243 Volume 17, 2018



× cz (p, τ, λ) +

O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

Substituting C4
p,τ,λ into (6), we get

∑
z∈C4

p,τ,λ

h−(2n−1)∆+
2n−1cz (p, τ, λ)

=
∑

sp,τ,λ∈
(

(2ρ+1) n+ρ−1
n+2ρ−1

−1,2ρ
] 1×

× xs
p,τ,λ+1

sp,τ,λ (sp,τ,λ + 1)
+O

(
h2ρ+1

)
.

(14)

Now, by (13), (14) and (9)

h−(2n−1)∆+
2n−1ψ2n (x)

=
n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈B′p,τ,λ

1×

× h−(2n−1)∆+
2n−1cz (p, τ, λ) +

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈C3

p,τ,λ

1×

× h−(2n−1)∆+
2n−1cz (p, τ, λ) +

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+1) n+ρ−1
n+2ρ−1

−1,2ρ
] 1×

× xs
p,τ,λ+1

sp,τ,λ (sp,τ,λ + 1)
+O

(
h2ρ+1

)
+

O
(
xρ+1Mn−2

)
+

O
(
h−(2n−1)xρ+2nM−n−1

)
+

O
(
h−(2n−1)x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

(15)

Recall the following formulas:

(xn log x)(n) = n! log x+ n!

n∑
l=1

1

l
,

(xn)(n) = n!,(
xk log x

)(n)
= k! (−1)n−k−1 (n− k − 1)!

xn−k
,

0 ≤ k < n,

(
xk
)(n)

= 0, 0 ≤ k < n,

(xn log x)(k) =
n!

(n− k)!
xn−k log x+

n!

(n− k)!
xn−k

n∑
l=n−k+1

1

l
,

1 ≤ k < n,

(xn)(k) =
n!

(n− k)!
xn−k, 1 ≤ k < n.

Consider the sum over B
′
p,τ,λ on the right hand

side of (15).
Let z ∈ B′p,τ,λ, z = 0.
Suppose that 0 ∈ Ip,τ,λ. Now,

c0 (p, τ, λ) =
op,τ,λ0

(2n)!
x2n log x

+
op,τ,λ0

(2n)!

(
−

2n∑
l=1

1

l
+ ap,τ,λ1,0

)
x2n.

Applying the aforementioned formulas and (5),
we deduce

h−(2n−1)∆+
2n−1c0 (p, τ, λ)

= h−(2n−1) o
p,τ,λ
0

(2n)!
∆+

2n−1

(
x2n log x

)
+

h−(2n−1) o
p,τ,λ
0

(2n)!

(
−

2n∑
l=1

1

l
+ ap,τ,λ1,0

)
∆+

2n−1

(
x2n
)

=
op,τ,λ0

(2n)!

(
x̃2n

1 log x̃1

)(2n−1)
+

op,τ,λ0

(2n)!

(
−

2n∑
l=1

1

l
+ ap,τ,λ1,0

)(
x̃2n

2

)(2n−1)

= op,τ,λ0

(
x̃1 log x̃1 + x̃1

2n∑
l=2

1

l

)
+

op,τ,λ0

(
−

2n∑
l=1

1

l
+ ap,τ,λ1,0

)
x̃2

for some x̃1, x̃2 ∈ [x, x+ (2n− 1)h]. Hence, the fact
that h ≤ x

2 yields

h−(2n−1)∆+
2n−1c0 (p, τ, λ) = O (x log x) . (16)
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Now, suppose that 0 ∈ I ′p,τ,λ. We have,

c0 (p, τ, λ) =
Z
′
S (ρ− λ, τ)

ZS (ρ− λ, τ)

x2n

(2n)!
.

Therefore,

h−(2n−1)∆+
2n−1c0 (p, τ, λ)

= h−(2n−1)Z
′
S (ρ− λ, τ)

ZS (ρ− λ, τ)

1

(2n)!
∆+

2n−1

(
x2n
)

=
Z
′
S (ρ− λ, τ)

ZS (ρ− λ, τ)

1

(2n)!

(
x̃2n

3

)(2n−1)

=
Z
′
S (ρ− λ, τ)

ZS (ρ− λ, τ)
x̃3

for some x̃3 ∈ [x, x+ (2n− 1)h]. Since h ≤ x
2 , we

obtain

h−(2n−1)∆+
2n−1c0 (p, τ, λ) = O (x) . (17)

Let z ∈ B′p,τ,λ, z = −1.
Suppose that −1 ∈ Ip,τ,λ. Now,

c−1 (p, τ, λ)

=
op,τ,λ−1

2n∏
l=0
l 6=1

(−1 + l)

x2n−1 log x+

op,τ,λ−1

2n∏
l=0
l 6=1

(−1 + l)

− 2n∑
l=0
l 6=1

1

−1 + l
+ ap,τ,λ1,−1

x2n−1.

We deduce,

h−(2n−1)∆+
2n−1c−1 (p, τ, λ)

= h−(2n−1) op,τ,λ−1

2n∏
l=0
l 6=1

(−1 + l)

∆+
2n−1

(
x2n−1 log x

)
+

h−(2n−1) op,τ,λ−1

2n∏
l=0
l 6=1

(−1 + l)

×

×

− 2n∑
l=0
l 6=1

1

−1 + l
+ ap,τ,λ1,−1

∆+
2n−1

(
x2n−1

)

=
op,τ,λ−1

2n∏
l=0
l 6=1

(−1 + l)

(
x̃2n−1

4 log x̃4

)(2n−1)
+

op,τ,λ−1

2n∏
l=0
l 6=1

(−1 + l)

− 2n∑
l=0
l 6=1

1

−1 + l
+ ap,τ,λ1,−1

×

×
(
x̃2n−1

5

)(2n−1)

=
op,τ,λ−1

− (2n− 1)!

(
x̃2n−1

4 log x̃4

)(2n−1)
+

op,τ,λ−1

− (2n− 1)!

− 2n∑
l=0
l 6=1

1

−1 + l
+ ap,τ,λ1,−1

×
×
(
x̃2n−1

5

)(2n−1)

= −op,τ,λ−1

(
log x̃4 +

2n−1∑
l=1

1

l

)
−

op,τ,λ−1

− 2n∑
l=0
l 6=1

1

−1 + l
+ ap,τ,λ1,−1

 ,

where x̃4 ∈ [x, x+ (2n− 1)h]. Now, h ≤ x
2 yields

h−(2n−1)∆+
2n−1c−1 (p, τ, λ) = O (log x) . (18)

Let −1 ∈ I ′p,τ,λ. We have,

c−1 (p, τ, λ) =
Z
′
S (−1 + ρ− λ, τ)

ZS (−1 + ρ− λ, τ)

x2n−1

2n∏
l=0
l 6=1

(−1 + l)

.

Hence,

h−(2n−1)∆+
2n−1c−1 (p, τ, λ)

= h−(2n−1)Z
′
S (−1 + ρ− λ, τ)

ZS (−1 + ρ− λ, τ)

1

− (2n− 1)!
×

×∆+
2n−1

(
x2n−1

)
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=
Z
′
S (−1 + ρ− λ, τ)

ZS (−1 + ρ− λ, τ)

1

− (2n− 1)!

(
x̃2n−1

5

)(2n−1)

= −
Z
′
S (−1 + ρ− λ, τ)

ZS (−1 + ρ− λ, τ)
,

for x̃5 ∈ [x, x+ (2n− 1)h]. We conclude,

h−(2n−1)∆+
2n−1c−1 (p, τ, λ)

= −
Z
′
S (−1 + ρ− λ, τ)

ZS (−1 + ρ− λ, τ)
.

(19)

Finally, let z ∈ B′p,τ,λ, z = −j ≤ −2.
Assume that −j ∈ Ip,τ,λ. We deduce,

h−(2n−1)∆+
2n−1c−j (p, τ, λ)

= h−(2n−1)
op,τ,λ−j

2n∏
l=0
l 6=j

(−j + l)

∆+
2n−1

(
x−j+2n log x

)
+

h−(2n−1)
op,τ,λ−j

2n∏
l=0
l 6=j

(−j + l)

×

×

− 2n∑
l=0
l 6=j

1

−j + l
+ ap,τ,λ1,−j

∆+
2n−1

(
x−j+2n

)

=
op,τ,λ−j

2n∏
l=0
l 6=j

(−j + l)

(
x̃−j+2n

6 log x̃6

)(2n−1)
+

op,τ,λ−j
2n∏
l=0
l 6=j

(−j + l)

− 2n∑
l=0
l 6=j

1

−j + l
+ ap,τ,λ1,−j

×
(
x̃−j+2n

7

)(2n−1)

=
op,τ,λ−j

(2n− j)! (−1)j j!
(2n− j)! (−1)j−2 (j − 2)!

x̃j−1
6

+

op,τ,λ−j
2n∏
l=0
l 6=j

(−j + l)

− 2n∑
l=0
l 6=j

1

−j + l
+ ap,τ,λ1,−j

 · 0

=
op,τ,λ−j

j (j − 1)

1

x̃j−1
6

for some x̃6, x̃7 ∈ [x, x+ (2n− 1)h]. Since x̃6 ≥ x
and j ≥ 2, we conclude that

h−(2n−1)∆+
2n−1c−j (p, τ, λ) = O

(
x−1

)
. (20)

Let −j ∈ I ′p,τ,λ. Then,

h−(2n−1)∆+
2n−1c−j (p, τ, λ)

= h−(2n−1)Z
′
S (−j + ρ− λ, τ)

ZS (−j + ρ− λ, τ)

1
2n∏
l=0
l 6=j

(−j + l)

×

×∆+
2n−1

(
x−j+2n

)
=
Z
′
S (−j + ρ− λ, τ)

ZS (−j + ρ− λ, τ)

1

(2n− j)! (−1)j j!
×

×
(
x̃−j+2n

8

)(2n−1)

=
Z
′
S (−j + ρ− λ, τ)

ZS (−j + ρ− λ, τ)

1

(2n− j)! (−1)j j!
· 0 = 0

for some x̃8 ∈ [x, x+ (2n− 1)h]. Hence,

h−(2n−1)∆+
2n−1c−j (p, τ, λ) = 0. (21)

Taking into account (16)-(21) as well as the fact
that the set B

′
p,τ,λ is finite one, we obtain

∑
z∈B′p,τ,λ

h−(2n−1)∆+
2n−1cz (p, τ, λ)

= O (x log x) .

(22)

Finally, consider the sum over C3
p,τ,λ on the right

hand side of (15). Let z ∈ C3
p,τ,λ. By the definition of

C3
p,τ,λ,

∣∣∣h−(2n−1)∆+
2n−1cz (p, τ, λ)

∣∣∣
=
∣∣∣h−(2n−1)op,τ,λz

1

z (z + 1) ... (z + 2n)
×

×∆+
2n−1

(
xz+2n

) ∣∣∣
=

∣∣∣∣op,τ,λz

1

z (z + 1) ... (z + 2n)

(
x̃z+2n

9

)(2n−1)
∣∣∣∣

=

∣∣∣∣op,τ,λz

1

z (z + 1)
x̃z+1

9

∣∣∣∣ =
∣∣∣op,τ,λz

∣∣∣ 1

|z| |z + 1|
x̃z+1

9

≤
∣∣∣op,τ,λz

∣∣∣ 1

|z| |z + 1|
x̃

(2ρ+1) n+ρ−1
n+2ρ−1

9 ,
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where x̃9 ∈ [x, x+ (2n− 1)h]. Hence, h ≤ x
2 yields

h−(2n−1)∆+
2n−1cz (p, τ, λ) = O

(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

We have,

∑
z∈C3

p,τ,λ

h−(2n−1)∆+
2n−1cz (p, τ, λ)

= O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

(23)

Combining (15), (22) and (23), we obtain

h−(2n−1)∆+
2n−1ψ2n (x)

=
n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+1) n+ρ−1
n+2ρ−1

−1,2ρ
] 1×

× xs
p,τ,λ+1

sp,τ,λ (sp,τ,λ + 1)
+O

(
h2ρ+1

)
+

O
(
xρ+1Mn−2

)
+

O
(
h−(2n−1)xρ+2nM−n−1

)
+

O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

(24)

Substituting h = x
n+ρ−1
n+2ρ−1 , M = x

ρ
n+2ρ−1 into

(24) and taking into account that ψ1 (x) ≤
h−(2n−1)∆+

2n−1ψ2n (x), we conclude

ψ1 (x)

≤
n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+1) n+ρ−1
n+2ρ−1

−1,2ρ
] 1×

× xs
p,τ,λ+1

sp,τ,λ (sp,τ,λ + 1)
+

O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

(25)

Analogously (see, e.g., [12]),

ψ1 (x) ≥ (26)

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+1) n+ρ−1
n+2ρ−1

−1,2ρ
] 1×

× xs
p,τ,λ+1

sp,τ,λ (sp,τ,λ + 1)
+

O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

Now, combining (25) and (26), we end up with

ψ1 (x)

=

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+1) n+ρ−1
n+2ρ−1

−1,2ρ
] 1×

× xs
p,τ,λ+1

sp,τ,λ (sp,τ,λ + 1)
+

O
(
x

(2ρ+1) n+ρ−1
n+2ρ−1

)
.

(27)

The assertion of the theorem follows from (27)
and the fact that

ψ1 (x)

x
=

∑
γ∈Γh,N(γ)≤x

Λ0 (γ)

(
1− N (γ)

x

)
.

This completes the proof.

4 Final remarks

We deal with weighted generalized prime geodesic
theorem for compact, even-dimensional, locally sym-
metric Riemannian manifolds of strictly negative sec-
tional curvature, which is given in terms of order one
counting function ψ1(x)

x (see, Theorem 1).
However, the following theorem holds also true.

Theorem 2. Let Y be as above. Then,
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1

2

∑
γ∈Γh,N(γ)≤x

Λ0 (γ)

(
1− N (γ)

x

)2

=
n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

×

×
∑

sp,τ,λ∈
(

(2ρ+2) n+ρ−1
n+2ρ−1

−2,2ρ
] 1×

× xs
p,τ,λ

sp,τ,λ (sp,τ,λ + 1) (sp,τ,λ + 2)

+O
(
x

2ρ n+ρ−1
n+2ρ−1

−2 ρ
n+2ρ−1

)
as x → +∞, where sp,τ,λ is a singularity of the Sel-
berg zeta function ZS (s+ ρ− λ, τ).

Proof. It is enough to consider the counting function
ψ2(x)
x2 instead of ψ1(x)

x , and to follow the lines of the
proof of Theorem 1.

In this case, (4) and (5) read as:

∆+
2n−2f (x)

=

x+h∫
x

t2n−2+h∫
t2n−2

...

t2+h∫
t2

f (2n−2) (t1) dt1...dt2n−2

and

∆+
2n−2f (x) = h2n−2f (2n−2) (x̃) ,

where x̃ ∈ [x, x+ (2n− 2)h], and f is at least 2n −
2 times differentiable function.

Moreover,

∆+
2n−2f (x)

=

2n−2∑
i=0

(−1)i
(

2n− 2

i

)
f (x+ (2n− 2− i)h) .

Now,

∑
sp,τ,λ∈Oε2ρ

h−(2n−2)∆+
2n−2csp,τ,λ (p, τ, λ)

=
∑

sp,τ,λ∈Oε2ρ

xs
p,τ,λ+2

sp,τ,λ (sp,τ,λ + 1) (sp,τ,λ + 2)

+O
(
h2ρ+2

)
.

(28)

If z ∈ Sp,τ,λ−ρ+λ, then

h−(2n−2)∆+
2n−2cz (p, τ, λ)

= O
(
h−(2n−2) |z|−2n−1 xρ+2n

)
,

h−(2n−2)∆+
2n−2cz (p, τ, λ)

= O
(
|z|−3 xρ+2

)
.

Hence, for M > 2ρ,

∑
z∈Sp,τ,λ−ρ+λ

h−(2n−2)∆+
2n−2cz (p, τ, λ)

=
∑

z∈Sp,τ,λ−ρ+λ
|−ρ+λ|<|z|≤M

h−(2n−2)∆+
2n−2cz (p, τ, λ) +

∑
z∈Sp,τ,λ−ρ+λ
|z|>M

h−(2n−2)∆+
2n−2cz (p, τ, λ)

= O

xρ+2

M∫
|−ρ+λ|

t−3dNp,τ,λ (t)

+

O

(
h−(2n−2)xρ+2n×

×
+∞∫
M

t−2n−1dNp,τ,λ (t)

)
= O

(
xρ+2Mn−3

)
+

O
(
h−(2n−2)xρ+2nM−n−1

)
.

(29)

The error terms O
(
h2ρ+2

)
, O
(
xρ+2Mn−3

)
and

O
(
h−(2n−2)xρ+2nM−n−1

)
that appear in (28) and

(29) all become O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
for the choice h

= x
n+ρ−1
n+2ρ−1 , M = x

ρ
n+2ρ−1 .

Consequently, we define the following sets:

Bp,τ,λ

=
{
− j ∈ I−2n | c−j (p, τ, λ) =

O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)}
,

B
′
p,τ,λ = I−2n\Bp,τ,λ,
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C2
p,τ,λ

=
{
sp,τ,λ ∈ Sp,τ,λR | −2n− 1 < sp,τ,λ ≤

− 2n+ (2ρ+ 2)
n+ ρ− 1

n+ 2ρ− 1

}
,

C3
p,τ,λ

=
{
sp,τ,λ ∈ Sp,τ,λR | −2n+ (2ρ+ 2)

n+ ρ− 1

n+ 2ρ− 1

< sp,τ,λ ≤ −2 + (2ρ+ 2)
n+ ρ− 1

n+ 2ρ− 1

}
,

C4
p,τ,λ

=
{
sp,τ,λ ∈ Sp,τ,λR | −2 + (2ρ+ 2)

n+ ρ− 1

n+ 2ρ− 1

< sp,τ,λ ≤ 2ρ
}
.

We leave the setC1
p,τ,λ in the same form as before.

Hence, (10) remains valid.
The following estimates hold obviously true:

∑
z∈Bp,τ,λ

cz (p, τ, λ) = O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
,

∑
z∈C2

p,τ,λ

cz (p, τ, λ) = O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
.

The definition of the set C4
p,τ,λ and the relation

(28) give us∑
z∈C4

p,τ,λ

h−(2n−2)∆+
2n−2cz (p, τ, λ)

=
∑

sp,τ,λ∈
(

(2ρ+2) n+ρ−1
n+2ρ−1

−2,2ρ
] 1×

× xs
p,τ,λ+2

sp,τ,λ (sp,τ,λ + 1) (sp,τ,λ + 2)
+O

(
h2ρ+2

)
.

Hence, the relation that corresponds to (13)
comes with O

(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
now.

Furthermore, (15) reads as

h−(2n−2)∆+
2n−2ψ2n (x)

=

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈B′p,τ,λ

1×

× h−(2n−2)∆+
2n−2cz (p, τ, λ) +

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

∑
z∈C3

p,τ,λ

1×

(30)

× h−(2n−2)∆+
2n−2cz (p, τ, λ) +

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+2) n+ρ−1
n+2ρ−1

−2,2ρ
] 1×

× xs
p,τ,λ+2

sp,τ,λ (sp,τ,λ + 1) (sp,τ,λ + 2)
+

O
(
h2ρ+2

)
+

O
(
xρ+2Mn−3

)
+

O
(
h−(2n−2)xρ+2nM−n−1

)
+

O
(
h−(2n−2)x

(2ρ+2) n+ρ−1
n+2ρ−1

)
.

Reasoning as earlier, we obtain that:

h−(2n−2)∆+
2n−2c0 (p, τ, λ) = O

(
x2 log x

)
,

h−(2n−2)∆+
2n−2c−1 (p, τ, λ) = O (x log x) ,

h−(2n−2)∆+
2n−2c−2 (p, τ, λ) = O (log x) ,

h−(2n−2)∆+
2n−2c−j (p, τ, λ) = O

(
x−1

)
for 3 ≤ j ≤ 2n.

Therefore,

∑
z∈B′p,τ,λ

h−(2n−2)∆+
2n−2cz (p, τ, λ) = O

(
x2 log x

)
.

Finally, we find that

∑
z∈C3

p,τ,λ

h−(2n−2)∆+
2n−2cz (p, τ, λ)

= O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
.

Consequently, (30) become

h−(2n−2)∆+
2n−2ψ2n (x)

=
n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+2) n+ρ−1
n+2ρ−1

−2,2ρ
] 1×
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× xs
p,τ,λ+2

sp,τ,λ (sp,τ,λ + 1) (sp,τ,λ + 2)
+

O
(
h2ρ+2

)
+

O
(
xρ+2Mn−3

)
+O

(
h−(2n−2)xρ+2nM−n−1

)
+

O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
.

Substituting h = x
n+ρ−1
n+2ρ−1 , M =

x
ρ

n+2ρ−1 , and bearing in mind that ψ2 (x) ≤
h−(2n−2)∆+

2n−2ψ2n (x), we obtain

ψ2 (x)

≤
n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+2) n+ρ−1
n+2ρ−1

−2,2ρ
] 1×

× xs
p,τ,λ+2

sp,τ,λ (sp,τ,λ + 1) (sp,τ,λ + 2)
+

O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
.

Since the opposite inequality holds also true, we
end up with

ψ2 (x)

=

n−1∑
p=0

(−1)p+1
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

(2ρ+2) n+ρ−1
n+2ρ−1

−2,2ρ
] 1×

× xs
p,τ,λ+2

sp,τ,λ (sp,τ,λ + 1) (sp,τ,λ + 2)
+

O
(
x

(2ρ+2) n+ρ−1
n+2ρ−1

)
.

Therefore, the claim of the theorem follows from
the fact that

ψ2 (x)

x2
=

1

2

∑
γ∈Γh,N(γ)≤x

Λ0 (γ)

(
1− N (γ)

x

)2

.

This completes the proof.

According to Theorem 2, the error term in the
prime geodesic theorem (3) can be even further im-
proved (in a weighted sense).

It would be worth to follow the method described
in this paper in order to obtain an analogous result for
a higher order counting function

ψj (x)

xj
=

1

j!

∑
γ∈Γh,N(γ)≤x

Λ0 (γ)

(
1− N (γ)

x

)j
,

j > 2, and to possibly determine the optimal size of
the error term.

We highlight the following contribution of the
used literature to the results derived in this paper.

Our main result is a generalization of the corre-
sponding, classical result [11, Th. 30.] to the case
of compact, even-dimensional, locally symmetric Rie-
mannian manifolds of strictly negative sectional cur-
vature. In the case of the Riemann zeta function ζ (s),
the corresponding prime number theorem states that

ψ0 (x) = x+O
(
xθ log2 x

)
,

where 1
2 ≤ θ ≤ 1 denotes the upper bound of the

real parts of the zeros of ζ (s). At the same time, a
weighted form of the prime number theorem yields a
better result

ψ1 (x)

x
=

1

2
x+O

(
xθ
)
.

The references [2] and [8] represent a suitable
starting point for our current research since they pro-
vide proofs of the prime geodesic theorem in the case
at hand. [2], however, is founded on Randol’s ap-
proach [13] in the case of compact Riemann surfaces.
On the other side, [8] follows Park’s approach [12] in
the case of real hyperbolic manifolds with cusps.

Note that [1] improves Park’s result [12].
In general, prime geodesic theorems [2], [8], [13],

[12] and [1] stem from the use of properties of the cor-
responding Ruelle zeta function and the use of appro-
priately chosen higher order counting function.

In particular, [2] and [8] improve DeGeorge’s re-
sult [4].

Some of the results derived in [6] are applied in
[8], [12] and [1]. These results are related to the be-
haviour of the logarithmic derivative of a meromor-
phic function of order not larger than n along arbitrar-
ily large circles in the complex plane.

Our preliminary material is almost completely
based on the book of Bunke and Olbrich [3]. There,
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the authors offered a complete investigation of the
theta functions and the Selberg zeta functions asso-
ciated with locally homogeneous vector bundles over
compact locally symmetric space of rank one. Hence,
as a reference, [3] plays the key role in our work.

Some of the necessary results on the Weyl’s
asymptotic law (in our setting) are adopted from [5].

Similarly, some of the results on classification of
locally symmetric spaces are adopted from [10].

The reference [7] is valuable one since it provides
a more detailed insight into some aspects of the Lie al-
gebras theory than [3]. Additionally, it gives a prime
geodesic theorem (in our setting) based on an applica-
tion of the corresponding Selberg zeta function.

Gangolli’s result [7] is weaker than Degeorge’s
[4], however.

Hejhal [9], also offers a prime geodesic theorem
based on an application of the corresponding Selberg
zeta function. In particular, he extensively studies the
Selberg zeta function over a hyperbolic Riemannian
surface Y , i.e., when Γ is a co-finite discrete subgroup
of G = PSL (2,R). The contribution of the reference
[9] to our work lies in the fact that it offers a very
efficient method for residues calculating.

Acknowledgment. The author would like to thank
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improved the presentation.
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