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Abstract: Finding the universal morphisms for a given category is considered as comprehensive study of the
principal properties that this category can achieved. In this work, we build a category of fuzzy topological spaces
with respect to Lowen’s definition of Fuzzy TOPological space [3], that we denoted LF-TOP. Firstly, we collected
universal morphisms of TOP category, listed by Sander Mac Lane [7]. Second, we studied universal morphisms of
LF-TOP. We found through this study that the properties of this category are a generalization to the TOP category
properties and TOP’s universal morphisms are projections of LF-TOP’s ones. This shows the power of Lowen’s
fuzziness effect on the ordinary topological space.
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1 Introduction

In the early 1940’s, Samuel Eilenberg and Saunders
Mac Lane invented Category theory [10], with the aim
of bridging what may appears to be two quite differ-
ent fields: Topology and Algebra. Later, it was propa-
gated by Alexander Grothendieck in the 1960’s. From
another side, L.A. Zadeh [1] introduced the fuzzy set
in 1965, since then many researchers used this tool to
generalize different concepts of Mathematics. Fuzzy
theory has many applications in mathematics and also
in other fields such as information [4] and control
[14].
Chang [4] was the first one who introduced the no-
tion of fuzzy topology as an application of fuzzy sets.
Later in 1976, Lowen [3] changed the definition of
Chang because some intuitive and well known results
in ordinary topology are not satisfied in the case of
Chang’s definition. For example, some constant func-
tions fail to be continuous from one Chang topolog-
ical space to another. After that, many researchers
have given new other definitions of fuzzy topological
space, as in [11,12].
Regarding the importance of fuzzy applications and
category theory, it seems more interesting to join both
together. This leads us to speak about the applications
of the universal morphisms of the fuzzy category.
The present work is organized as follows: in the
next section, we recall some of the basic definitions
(fuzzy set and operations on it, fuzzy topological

space, fuzzy continuous application, universal mor-
phisms,...). Then, we collect the universal morphisms
of TOPological spaces category (TOP).
In the 3rd section, we study the universal morphisms
of fuzzy topological spaces category (LF-TOP). And
finally, we give a summary of the research and its re-
sults.

2 Preliminary Notions RELIMINARY NOTIONS

Let X be a non empty set. A fuzzy set on X is a
function A from X to [0,1]. The image A(x) of the
element x ∈ X is called a degree of membership of x
in A.

Definition 1 [4] Let A and B be fuzzy sets on X .
Then ∀x ∈X

1. A = B ⇐⇒ A(x) = B(x) .

2. A ⊂ B ⇐⇒ A(x) ≤ B(x) .

3. C = A⋁B ⇐⇒ C(x) =max{A(x),B(x)}.

4. D = A⋀B ⇐⇒D(x) =min{A(x),B(x)} .

5. A = B ⇐⇒ A(x) = 1 −B(x) .

More generally, for a family of fuzzy sets,A = {Ai, i ∈
I}, the union, C = ⋁I Ai, and the intersection
D = ⋀I Ai, are defined by:

C(x) = supI{Ai(x)} for all x ∈X.
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D(x) = infI{Ai(x)} for all x ∈X.
The symbol ∅ will be used to denote an empty fuzzy
set (∅(x) = 0 for all x ∈X).
ForX , we have by definitionX(x) = 1, for all x ∈X .

Definition 2 [3] A Lowen fuzzy topology, or simply
(F-TOP) is a family τ of fuzzy sets on X which satis-
fies the following conditions:

1. τ contains all constant fuzzy sets on X .

2. If A, B ∈ τ , then A⋀B ∈ τ .

3. If Ai ∈ τ four all i ∈ I , then ⋁I Ai ∈ τ .

Definition 3 [4,8] Let f be a function fromX to Y ,
B is a fuzzy set on Y . Then the inverse image of B,
written as f−1(B), is a fuzzy set on X defined by:

f−1(B)(x) = B(f(x)) for all x ∈X.

Definition 4 [5,16] Let (X,τ) be a F-TOP. We de-
fine the topological space (X, ι(τ)) such that: For
A ∈ τ :

ι(A) = {α(A), α ∈ [0,1)}, α(A) = {x ∈X ∶ A(x) > α}

And ι(τ) = {ι(A), A ∈ τ}.

Definition 5 [4,13,15] (definition of continuity)
A function f from a F-TOP (X,T ) to a F-TOP (Y,U)
is fuzzy continuous (F-continuous) iff the inverse of
each U -open fuzzy set is T -open.

Definition 6 [3](Lowen’s definition of continuity)
Let f be a function from an F-TOP (X,T ) to an F-
TOP (Y,S). Then, f is Lowen fuzzy continuous, (in
short LF-continuous) iff f ∶ (X, ι(T )) Ð→ (Y, ι(S))
is continuous. 1

Theorem 7 [3]
Let (X,δ) be an ordinary topological space. The fol-
lowing collection is an F-TOP:

ω(A) = {A ∈ IX ∶ α(A) ∈ δ, ∀α ∈ [0,1[}

Definition 8 [2,8]

(a) Let τ be a F-TOP. A subfamily T of τ is a base
for τ iff each member of τ can be expressed as
the union of some members of T .

(b) A subfamily S of T is a subbase for τ iff the fam-
ily of finite intersections of members of S forms
a base for τ .

1we use definition(5) instead this definition [see 9].

(c) A subbase for the product fuzzy topology on
(X,T ) = (∏i∈I Xi,∏i∈I τi) is given by
S = {π−1i θi; θi ∈ τi, i ∈ I} ( πi the projection
from X onto Xi ) so that a base can be taken
to be B = {⋀n

j=1 π
−1
ij
θij ; θij ∈ τij , ij ∈ I, j =

1...n, n ∈ N}.

Proposition 9 [7] (THE UNIVERSAL MORPHISMS
OF TOP)
TOP is the category of all topological spaces and con-
tinuous maps.

(a) The element of Co-product of (X,τX) and
(Y, τY ) in TOP is their disjoint union.

(b) The element of Co-equalizer of
f, g ∶ (X,τX) Ð→ (Y, τY ) in TOP is the topo-
logical space (Y / ∼, τY /∼), where ∼ is the least
equivalence relation which contains all pairs
< f(x), g(x) >, for x ∈X .

(c) The element of Push-out of f ∶ (X,τX) Ð→
(Y, τY ), g ∶ (X,τX) Ð→ (Z, τZ) in TOP is the
disjoint union (Y ⊍ Z, τY ⊍Z) with the elements
f(x) and g(x) identified for each x ∈X .

(d) The element of Product of (X,τX), (Y, τY ) in
TOP is their cartesian product.

(e) The element of Co-equalizer of
f, g ∶ (X,τX) Ð→ (Y, τY ) in TOP is the topo-
logical space (D,τD), where
D = {x ∈X,f(x) = g(x)} .

(f) The element of Pull-back of f ∶ (X,τX) Ð→
(Z, τZ), g ∶ (Y, τY ) Ð→ (Z, τZ) in TOP is the
topological space (C, τC), where
C = {(x, y) ∈X × Y, f(x) = g(y)}.

3 Main results

The fuzzy topological spaces F-TOP and fuzzy con-
tinuous mappings (F-continuous) form a category
which we denote by LF-TOP. Now, we investigate
the morphism of this category.

3.1 Co-product

Definition 10 Let (X1, τ1), (X2, τ2) be two
fuzzy topological spaces. The disjoint union of
(X1, τ1), (X2, τ2) is defined as:

(X1, τ1) ⊍ (X2, τ2) = (X1 ⊍X2, τX1⊍X2)

where

X1 ⊍X2 = {X1 × {1}} ∪ {X2 × {2}};
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τX1⊍X2 = {θ, θ is a fuzzy set on X1 ⊍X2, ϕ
−1
1 (θ) ∈

τ1 and ϕ−12 (θ) ∈ τ2}

ϕ1 ∶ (X1, τ1) Ð→ (X1 ⊍X2, τX1⊍X2)
xz→ ϕ1(x) = (x,1)

and

ϕ2 ∶ (X2, τ2) Ð→ (X1 ⊍X2, τX1⊍X2)
xz→ ϕ2(x) = (x,2)

Proposition 11 The disjoint union (X1⊍X2, τX1⊍X2)
is a fuzzy topological space.

Proof: Let C ∈ [0,1]X1⊍X2 be any constant fuzzy
set, by definition(3), ϕ−11 (C) is a fuzzy set on X1 and
ϕ−11 (C)(x) = C(ϕ1(x)) = C((x,1)) = C, but
(X1, τ1) is a fuzzy topological space so ϕ−11 (C) ∈ τ1.
And using the same method we find ϕ−12 (C) ∈ τ2,
so C ∈ τX1⊍X2 . Now, let θ1, θ2 ∈ τX1⊍X2 , then
θ1 ∧ θ2 is a fuzzy set on X1 ⊍X2 and ϕ−11 (θ1 ∧ θ2) =
ϕ−11 (θ1) ∧ ϕ−11 (θ2) ∈ τ1
(ϕ−12 (θ1 ∧ θ2) = ϕ−12 (θ1) ∧ ϕ−11 (θ2) ∈ τ2). Hence
θ1 ∧ θ2 ∈ τX1⊍X2 .
Finally, if θi ∈ τX1⊍X2 , ∀i ∈ I , then ∨i∈Iθi
is a fuzzy set on X1 ⊍ X2, and ϕ−11 (∨i∈Iθi), and
ϕ−11 (∨i∈Iθi) = ∨i∈Iϕ−11 (θi) ∈ τ1
( ϕ−12 (∨i∈Iθi) = ∨i∈Iϕ−12 (θi) ∈ τ2), so ∨i∈Iθi ∈
τX1⊍X2 .
Hence τX1⊍X2 is a topological space on X1 ⊍X2.

Proposition 12 The applications ϕ1, ϕ2 are F-
continuous.

Proof: Clear (by definition of τX1⊍X2).

Theorem 13 Let h be a function from a fuzzy topo-
logical space (X1 ⊍ X2, τX1⊍X2) into a (C, τC).
Then: (h○ϕ1) and (h○ϕ2) are F-continuous Ô⇒
h is F-continuous

Proof: Let θ ∈ τC . As h ○ ϕ1 and h ○ ϕ2

are F-continuous, then (h ○ ϕ1)−1(θ) ∈ τ1 and
(h ○ ϕ2)−1(θ) ∈ τ2, then ϕ−11 (h−1(θ)) ∈ τ1 and
ϕ−12 (h−1(θ))) ∈ τ2.
So h−1(θ) ∈ τX1⊍X2 . Hence h is F-continuous.

Corollary 14 The element of Co-product of
(X1, τ1), (X2, τ2) ∈ LF-TOP is a topological
space (X1, τ1) ⊍ (X2, τ2) (defined above).

Proof: By proposition (11), (X1 ⊍ X2, τX1⊍X2) ∈
LF-TOP. Also by proposition (12) ϕ1, ϕ2 are F-
continuous.
Let f ∶ (X1, τ1) Ð→ (C, τC), g ∶ (X2, τ2) Ð→

(C, τC) be F-continuous applications, then there ex-
ists a unique F-continuous application h defined by:

h ∶ (X1 ⊍X2, τX1⊍X2) Ð→ (C, τC)

(x, k) z→ h(x, k) = { f(x) if k = 1.
g(x) if k = 2.

It is clear that: f = h ○ ϕ1, g = h ○ ϕ2.
By theorem (13), h is F-continuous .
Proof of the unicity of h:
Let h′ ∶ (X1 ⊍ X2, τX1⊍X2) Ð→ (C, τC) be another
F-continuous application, where f = h′ ○ ϕ1 and
g = h′ ○ ϕ2. We have:

(h′ ○ ϕ1)(x) = h′(ϕ1(x)) = h′(x,1) = f(x).
and

(h′ ○ ϕ2)(x) = h′(ϕ2(x)) = h′(x,2) = g(x).
therefore h is unique.

3.2 Co-Equalizer

Definition 15 Let (A, τA) be a fuzzy topological
space, ∼ is the equivalence relation on A and P ∶
A Ð→ A/ ∼ is the natural projection map, we define
τA/∼ by:

τA/∼ = {θ , θ is a fuzzy set on A/ ∼, where P −1(θ) ∈ τA}.

Proposition 16 (A/ ∼, τA/∼) is a fuzzy topological
space.

Proof: Let C ∈ [0,1]A/∼ be any constant fuzzy
set, by definition (3), P −1(C) is a fuzzy set on A and
P −1(C)(x) = C(P (x)) = C(x) = C, but (A, τA)
is a fuzzy topological space, so P −1(C) ∈ τA, then
C ∈ τA/∼.
Now, let θ1, θ2 ∈ τA/∼, then θ1 ∧ θ2 is a fuzzy set on
A/ ∼, and
P −1(θ1 ∧ θ2) = P −1(θ1) ∧ P −1(θ2) ∈ τA. Hence,
θ1 ∧ θ2 ∈ τA/∼ .
Finally, if θi ∈ τA/∼, ∀i ∈ I , then ∨i∈Iθi
is a fuzzy set on A/ ∼, and
P −1(∨i∈Iθi) = ∨i∈IP −1(θi) ∈ τA, so ∨i∈Iθi ∈ τA/∼,
and hence τA/∼ is a topological space on A/ ∼.

Proposition 17 P is F-continuous.

Proof: evident (by definition of τA/∼).

Theorem 18 Let (A, τA), (B, τB) ∈ F − TOP , ∼ is
the equivalence relation of A and P ∶ A Ð→ A/ ∼ is
the associated projection. If h ∶ (A, τA) Ð→ (B, τB)
is the F-continuous application compatible with ∼,
then there exists a unique F-continuous application
h′, where h = h′ ○ P . In addition:

h is F-continuousÔ⇒ h′ is F-continuous.
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Proof: Let’s define h′ by :

h′ ∶ (A/ ∼, τA/∼) Ð→ (B, τB)
xz→ h′(x) = h(x)

It is clear that h′ is unique and h = h′ ○ P .
Let θ ∈ τB , (h′ ○ P ) is F-continuous, then
(h′ ○P )−1(θ) ∈ τA, so P −1(h′−1(θ)) ∈ τA. Therefore
h′−1(θ) ∈ τA/∼ and h′ is F-continuous.

Corollary 19 The element of Co-equalizer of f, g ∶
(B, τB) Ð→ (A, τA) in LF-TOP is the topological
space (A/ ∼, τA/∼), where ∼ is the least equivalence
relation which contains all pairs < f(x), g(x) >, such
that x ∈ B.

Proof: Let h ∶ (A, τA) Ð→ (C, τC) be an F-
continuous application where h ○ f = h ○ g. For the
existence of a unique h′, by theorem (18) it is suffi-
cient to prove that h is compatible with ∼:
Let x1, x2 ∈ A, x1 ∼ x2 ⇐⇒ ∃b ∈ B, x1 = f(b) ∧
x2 = g(b). And
h(x1) = h(f(b)) = (h ○ f)(b) = (h ○ g)(b) =
h(g(b)) = h(x2), so h is compatible with ∼.

3.3 Push-out

Definition 20 Let (A, τA), (B, τB) ∈ F − TOP , ∼
equivalence relation on A⊍B, note X0 = (A⊍B)/ ∼,
we define τX0 by: τX0 = {θ , θ is a fuzzy set on X0,
ϕ−11 (P −1(θ)) ∈ τA and ϕ−12 (P −1(θ)) ∈ τB}. where

P ∶ A ⊍B Ð→X0

(x, k) z→ P (x, k) = (x, k)

ϕ1 ∶ (A, τA) Ð→ (A ⊍B, τA⊍B)
xz→ ϕ1(x) = (x,1)

and

ϕ2 ∶ (B, τB) Ð→ (A ⊍B, τA⊍B)
xz→ ϕ2(x) = (x,2)

Proposition 21 The space (X0, τX0) is a fuzzy topo-
logical space.

Proof: The proof is based on the proofs of propo-
sition (11) and proposition (16).

Proposition 22 The following applications:

N ∶ (A, τA) Ð→ (X0, τX0)
xz→ N(x) = (x,1)

M ∶ (B, τB) Ð→ (X0, τX0)
xz→M(x) = (x,2)

are F-continuous.

Proof: First, let’s prove that N is F-continuous.
Let θ ∈ τX0 , then ϕ−11 (P −1(θ)) ∈ τA. So,
(P ○ ϕ1)−1(θ) ∈ τA. But:
(P ○ ϕ1)(x) = P (ϕ1(x)) = P ((x,1)) = (x,1) =
N(x), ∀x ∈ A. Therefore N−1(θ) ∈ τA.
Using the same method, we prove that M
is F-continuous.

Theorem 23 Let (A, τA), (B, τB) and (C, τC) be F-
TOP and f ∶ (C, τC) Ð→ (A, τA), g ∶ (C, τC) Ð→
(B, τB) be two F-continuous applications. The ele-
ment of Push-out of < f, g > is (X0, τX0), where
X0 = (A ⊍B)/ ∼ and ∼ is the least equivalence rela-
tion which contains all pairs
< (ϕ1 ○ f)(c), (ϕ2 ○ g)(c) >, such that c ∈ C.

Proof: By proposition (21), (X0, τX0) ∈ F-TOP. Also,
by proposition (22), {N, M} are F-continuous.
Let (D,τD) ∈ F-TOP, and U ∶ (A, τA) Ð→ (D,τD),
V ∶ (B, τB) Ð→ (D,τD) are two F-continuous appli-
cations, where V ○ g = U ○ f .
The proof of the existence of a unique F-continuous
application h ∶ (X0, τX0) Ð→ (D,τD) where
U = h ○N, V = h ○M requires the following steps:

Step 1: We know that the Co-product of
(A, τA), (B, τB) is a disjoint union
(A ⊍ B, τA⊍B), then for {N, M} there ex-
ists an F-continuous application
π ∶ (A ⊍ B, τA⊍B) Ð→ (X0, τX0),
whereN = π ○ ϕ1 and M = π ○ ϕ2.

Step 2: Let’s define the new application U ⊍ V by:

U ⊍ V ∶ (A ⊍B, τA⊍B) Ð→ (D,τD)

(x, k) z→ (U ⊍ V )(x, k) = { U(x) ifk = 1.
V (x) ifk = 2.

If U ⊍V is compatible with ∼, then there exists a
unique F-continuous application
h ∶ (X0, τX0) Ð→ (D,τD), where
U ⊍ V = h ○ π (theorem (18)).
Let (x, k), (x′, k′) ∈ A ⊍B, then:
(x, k) ∼ (x′, k′) Ô⇒ ∃c ∈ C,
(x, k) = (ϕ1 ○ g)(c) and (x′, k′) = (ϕ2 ○ f)(c).
(U ⊍ V )(x, k) = (U ⊍ V )(ϕ1 ○ f)(a) =
(U ⊍ V )(f(c),1) = U(f(c)) = (U ○ f)(c).
(U ⊍ V )(x′, k′) = (U ⊍ V )(ϕ2 ○ g)(c) =
(U ⊍ V )(g(c),2) = V (g(c)) = (V ○ g)(c).
But V ○g = U ○f , then U ⊍V is compatible with
∼.

Step 3: Prove that U = h ○N,V = h ○M .
(h○N)(x) = (h○(π ○ϕ1))(x) = (h○π)(x,1) =
(U ⊍ V )(x,1) = U(x),∀x ∈ A.
(h○M)(x) = (h○(π○ϕ2))(x) = (h○π)(x,2) =
(U ⊍ V )(x,2) = V (x),∀x ∈ B.
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3.4 Product

Definition 24 Let (A, τA), (B, τB) be two F-TOP.
We define τA×B by:
τA×B = {θ, θ is a fuzzy set on A × B where θ =
⋁i∈I Ai ×Bi , Ai ∈ τA, Bi ∈ τB, ∀i ∈ I}

Proposition 25 It is clear that (A × B, τA×B) is a
fuzzy topological space.

Proposition 26 The projections P1, P2 are F-
continuous, where :

P1 ∶ (A ×B, τA×B) Ð→ (A, τA)
(x, y) z→ P1(x, y) = x

P2 ∶ (A ×B, τA×B) Ð→ (B, τB)
(x, y) z→ P2(x, y) = y

Proof: Let’s prove that P1 is F-continuous.
If θ ∈ δ1, for (x, y) ∈ A ×B, then
P −1
1 (θ)(x, y) = θ(P1(x, y)) = θ(x)

=min{θ(x), 1(y)}
= (θ × 1)(y)

This implies that P −1
1 (θ) ∈ τA×B , so P1

is F-continuous.
The same method, we prove that P2 is F-continuous.

Theorem 27 Let (C, τC) be a F-TOP and
f1 ∶ (C, τC) Ð→ (A, τA), f2 ∶ (B, τB) Ð→ (C, τC)
be two F-continuous applications. If f is a function
from C to A × B defined by f(x) = (f1(x), f2(x)),
then:

f1, f2 are F-continuousÔ⇒ f is F-continuous

Proof: Let θ ∈ τA×B , then θ = ⋁i∈I Ai × Bi, where
Ai ∈ τA and Bi ∈ τB ,
as f−1(θ) = f−1(⋁i∈I Ai ×Bi) = ⋁i∈I f−1(Ai ×Bi).
But: f−1(Ai ×Bi) is a fuzzy set on C, let x ∈ C, then
f−1(Ai ×Bi)(x) = (Ai ×Bi)(f(x))

= (Ai ×Bi)(f1(x), f2(x)
=min{Ai(f1(x), Bi(f2(x)}
= (f−11 (Ai) ∧ f−12 (Bi))(x) ∈ τC .

So f−1(Ai × Bi) ∈ τC and f−1(θ) ∈ τC . Hence f is
F-continuous.

Corollary 28 Let (A, τA), (B, τB) ∈ LF-TOP. The
element of product of (A, τA), (B, τB) is the topolog-
ical space (A ×B, τA×B) (defined above).

Proof:

If f1 ∶ (C, τC) Ð→ (A, τA), f2 ∶ (C, τC) Ð→
(B, τB) be two F-continuous applications, then there
exists a unique F-continuous application defined by:

f ∶ (C, τC) Ð→ (A ×B, τA×B)
xz→ h(x) = (f1(x), f2(x))

Clearly, f1 = P1 ○ f and f2 = P2 ○ f .
By theorem (27), f is F-continuous.

Proof of the unity of f . Let f ′ be another F-continuous
application where
f ′ ∶ (C, δ) Ð→ (A × B, τA×B) and f1 = P1 ○ f ′,
f2 = P2 ○ f ′.
We suppose that: f ′(x) = (a, b).
a = P1(a, b) = (P1 ○ f ′)(x) = f1(x), b = P2(a, b) =
(P2 ○ f ′)(x) = f2(x).
Then f ′(x) = (f1(x), f2(x)) = h(x), so f is unique.

3.5 Equalizer

Definition 29 Let f, g ∶ (B, τB) Ð→ (A, τA) be two
F-continuous applications. D is a subset of B de-
fined by D = {x ∈ B, f(x) = g(x)}, we define τD by
τD = {θ , θ = F (D)⋀Bi is a fuzzy set on D, Bi ∈
τB and F (D) is a fuzzy set onB,where
F (D)(x) = χD(x)}

Proposition 30 It is clear that (D,τD) is a fuzzy
topological space.

Proposition 31 e is F-continuous, where:

e ∶ (D,τD) Ð→ (B, τB)
xz→ e(x) = x

Proof: Let θ ∈ τB , and let x ∈D,
e−1(θ)(x) = θ(e(x)) = θ(x), we put θ = θ ∧ F (D).
Hence e−1(θ) ∈ τD, then e is F-continuous.

Corollary 32 The element of Equalizer of f, g ∶
(B, τB) Ð→ (A, τA) in LF-TOP is the topological
space (D,τD) (defined above).

Proof: Let (C, τC) ∈ F-TOP, for h ∶ (C, τC) Ð→
(B, τB) the F-continuous application, where
f ○ h = g ○ h, then there exists a unique F-continuous
application h′ defined by:

h′ ∶ (C, τC) Ð→ (D,τD)
xz→ h′(x) = h(x)

h′ is F-continuous since h is F-continuous.
Let x ∈ C: (e ○h′)(x) = e(h′(x)) = e(h(x)) = h(x)
then e ○ h′ = h.
Proof of the unity of h′, let h′′ ∶ (C, τC) Ð→ (D,τD)
be another F-continuous application, where e○h′′ = h,
then
(e ○ h′′)(x) = (e ○ h′)(x) Ô⇒ e(h′′(x)) =
e(h′(x)) Ô⇒ h′′(x) = h′(x), ∀x ∈ C.
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3.6 Pull-back

Definition 33 Let f ∶ (B, τB) Ð→ (A, τA),
g ∶ (D,τD) Ð→ (A, τA) be two F-continuous
applications. C is a subset of B × D defined by:
C = {(x, y) ∈ B ×D, f(x) = g(y)} ⊆ B ×D. We
define τC by:
τC = {θ, θ = F (C) ∩ θ′is a fuzzy set on C,
θ′ ∈ τB×D and F (C) is a fuzzy set onB ×
D, where F (C)(x, y) = χC(x, y)}.

Proposition 34 It is clear that (C, τC) is a fuzzy
topological space.

Proposition 35 The projections p, q are F-
continuous, where

p ∶ (C, τC) Ð→ (B, τB)
(x, y) z→ p(x, y) = x

q ∶ (C, τC) Ð→ (D,τD)
(x, y) z→ q(x, y) = y

Proof: We prove that p is F-continuous, let Bi ∈ τB ,
and as p−1(Bi) = Bi.
We put p−1(Bi) = (Bi × D)⋀F (C), then p
is F-continuous.
Using the same method, we prove that q
is F-continuous.

Theorem 36 Let f ∶ (B, τB) Ð→ (A, τA), g ∶
(D,τD) Ð→ (A, τA) are two F-continuous applica-
tions and (E, τE) a fuzzy topological space.
If h ∶ (E, τE) Ð→ (B, τB), k ∶ (E, τE) Ð→ (D,τD)
be two F-continuous applications where f ○ h = g ○ k
and r defined by:

r ∶ (E, τE) Ð→ (C, τC) (1)
x z→ r(x) = (h(x), k(x)).

then: h, k are F-continuous Ô⇒ r is F-continuous.

Proof: Let θ ∈ τE , but:
r−1(θ) = r−1(F (C)⋀(⋁i∈I Bi ×Di)

= r−1(F (C))⋀ r−1(⋁i∈I Bi ×Di)
= r−1(F (C))⋀⋁i∈I(h−1(Bi)⋀k−1(Di)) ∈ τE .

As (h, k are F-continuous and r−1(F (C)) = E) .

Corollary 37 Let f ∶ (B, τB) Ð→ (A, τA), g ∶
(D,τD) Ð→ (A, τA) in LF-TOP.
The element of Pull-Back of ⟨f, g⟩ is a topological
space (C, τC) (defined above).

Proof: First, by definition of C, it is clear that
f ○ p = g ○ q.
Second, by theorem (36), if h ∶ (E, τE) Ð→ (B, τB),

k ∶ (E, τE) Ð→ (D,τD) are two F-continuous ap-
plications where f ○ h = g ○ k, then there exists a F-
continuous application r defined by (1).
It is clear that k = q ○ r and h = p ○ r.
Proof of the unicity of r: let r′ be another F-
continuous application, where
r′ ∶ (E, τE) Ð→ (C, τC) and k = q ○ r′ , h = p ○ r′.
We suppose that r′(x) = (a, b), therefore
a = p(a, b) = (p ○ r′)(x) = h(x) and
b = q(a, b) = (q ○ r′)(x) = k(x). So r = r′.

4 Conclusion
The main aim of the new Lowen’s definition of fuzzy
topological space, proposed in 1976, is the adding of
the properties that can not be verified by Chang’s def-
inition [4]. This research showed that:

1. All the theorems and propositions used in this
work, are a generalization of that used in finding
the universal morphisms in the TOP’s category,
as fundamental property of the topology product
and fundamental property of the topology quo-
tient .

2. TOP’s universal morphisms are projections of
LF-TOP’s ones.

3. Lowen’s fuzziness of the ordinary topological
space is strong because it generalized the theo-
rems and the propositions of fuzzy topological
space. In addition, it is possible to extract from
each ordinary space a fuzzy topological space
[theorem 7].

4. If we consider the Lowen’s definition of conti-
nuity (definition (6)), the most fundamental the-
orems become wrong (ex. theorem (13)), be-
cause each a function f from a F-TOP (X,T )
to a F-TOP (Y,U) is F-continuous implied f is
LF-continuous and the inverse is wrong.
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