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Abstract: By reviewing Fichera-Oleinik theory, the portion of the boundary on which we should give the bound-
ary value is determined, the corresponding initial-boundary value problem of the strongly degenerate parabolic

equation
0
ai: = AA(u) +div(b(u, z, 1)), (z,t) € Qx (0,T),
is considered. By introducing a new kind of entropy solution, we are able to get the existence and the stability of

the solutions.
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1 Introduction Sy = {x € 00 : a"*ngn, > 0}. (3)

Then, to ensure the posedness of equation (1),
Fichera-Oleinik theory tells us that the suitable bound-

It is well-known that Tricomi [1] elicited interest in R
ary condition is

the general study of elliptic equations degenerating

on the boundary of the domain firstly. Then Keldys U‘Z Us, = g(z). (4)
[2] made a great progress in developing the theory, he 2 3
brought to light the fact that in the case of elliptic e- In particular, if the matrix (a”*) is positive definite, (4)
quations degenerating on the boundary, under definite is just the usual Dirichlet boundary condition.
assumptions, a portion of the boundary may be free In our paper, we shall use Fichera-Oleinik theory
from the prescription of boundary conditions. Later, to consider equation of the form
Fichera [3-4] and Oleinik [5-6] developed and perfect- ou
ed the general theory of second order equation with — = AA(u) + div(b(u, z,t)), (z,t) € Qr, (5)
nonnegative characteristic form, which, in particular ot
contains those degenerating on the boundary. We can where 0 ¢ RY is an open bounded domain and the
call the theory as Fichera-Oleinik theory in what fol- boundary 02 = ¥ is appropriately smooth, Q7 =
lows. In details, if one wants to consider the boundary Q x (0,7), and
value problem of a linear degenerate elliptic equation, u
N+1 N1 A(u) = /0 a(s)ds, a(s) = 0,
a"¥(x b ( x)u
Zl 8*”“’7"3“"8 Z er et a(0) = 0. (6)
~ N+l If we want to consider the initial-boundary value prob-
= f(z),z€ QCR (1) lem of (5), the initial value condition is always neces-
it needs and only needs to give partial boundary con- sary
dition. Let us give a briefly explanation. Let {ns} be u(z,0) = up(z), z € Q. (7)
the unit inner normal vector of J¢2 and denote that But whether can we require the Dirichlet homoge-
Sy = {z € a0 a"*nn, = 0, (b — "), < 0}, neous boundary condition
(2) u(z,t) =0, (z,t) € 02 % (0,T) =X x(0,T), (8)
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as usual?
For example, let us consider a simple equation

(9)

with the existence of A~!. In other words, equation
(9) is weakly degenerate, let v = A(u),u = A~ (v).
Then

ug = AA(u(z, b)), (z,t) € Q x (0,T),

Av— (A7 w)); = 0. (10)

According to Fichera-Oleinik theory, we know that we
can give the Dirichlet homogeneous boundary condi-
tion (8). But, if equation (9) is strongly degenerate,
then A~! is not existential, we can not deal with it as
equation (10).

For another example, let us consider the following
equation

2

w Wy, — wy — nUwe + Awy, + Bw = 0,

& n,7)eQx(0,T), (11)

which arises in the boundary layer theory of Prandtl
system, where A, B are two known functions, one can
refer to [7] for details. Clearly, this is a strongly de-
generate parabolic equation, we also can not give the
boundary condition (8) generally. In fact,Oleinik con-
sidered the domain Q@ = {0 < 7 < 7,0 < £ <
X,0 < n < 1}, then she compared equation (11) with
equation (1), and quoted the partial boundary condi-
tion of equation (11) as following

w‘TiO - wO(fv 77)7 w"r]il = 07

(rwwy, — vow + ¢(7,&))|p=0 = 0, (12)

where v is the viscous coefficient, vg and ¢(7,&) are
known functions.
Now, we can rewrite equation (5) as

ou ou
77 A / 2 / e
5 a(u)Au + a'(u)|Vul* + b;(u, x, t) oz,
ob;(u,x,t) .
+PD Gy o, (13)

where b (u,z,t) = i) - Noticing that the do-

main is a cylinder Q x (0,7, if we let t = xn41
and regard the strongly degenerate parabolic equa-
tion (13) as the form of a "linear” degenerate ellip-
tic equation as follows: when 7,5 = 1,2,--- N,
a’(z,t) = a(u(z,t)), a”(z,t) = 0,i # j, then
-~ av 0
(ars)(N+1)><(N+1) = < 0 0 ) .
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If a(0) = 0, then equation (13) is not only strongly
degenerate in the interior of {2, but also on the bound-
ary 0. Now, ) 5 is an empty set. Whereas

ES(.%,t) _ { b;(u,x,t) + a,(u)%, 1<s<N,
-1, s=N+1,

Under this observation, according to Fichera-
Oleinik theory, the initial value (7) is always needed,
but on the lateral boundary 952 x (0,7"), by a(0) = 0,
the part of boundary on which we should impose the
boundary value is

¥, = {z € 00 : (b;(0,x,t)

ou ou
+a/(0)%|x689 — a/(o)%bea&))ni <0}

= {z € 0Q : b}(0,z,t)n; < 0}. (14)

where {n;} be the unit inner normal vector of 9.
However, the above calculations is just in form.
Due to the strongly degenerate property of a, (13) gen-
erally only has a weak solution. In our paper, we con-
sider the solution of (13) in BV sense, which is a kind
of weak solution, and we can not define the trace of

8%‘ on 0f2, it means that we can not define
J— . / 12 au
Ty = {z € 00 (5(0,2,1) + a'(0) 7 |acon
T
ou
—a/(o)%beag)m < 0},

too. Fortunately, only if b;(s, z, t) is derivable, then

¥y, ={z €0 : ¥ (0,z,t)n; <0}  (15)
has a definite sense. We will show that, to assure the
posedness of the solutions to the strongly degenerate
parabolic equation (5), only a partial boundary con-
dition is needed, and actually, we will show that 3,
defined in (15) is just the portion can be imposed the
boundary value condition in some weak sense. This is
the most contribution of our paper.

2 The definition of the entropy solu-
tion

The paper is to investigate the solvability of equation
(5)(equivalently, (13)) in BV (Qr). The definition of
BV function and its properties are to be specified in
the next section. It is well known that the BV func-
tions are the weakest functions which have the traces.
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The existence of the solution will be obtained as a lim-
it point of the family {u.} of solutions of regularized
problem

ou
i AA(u) + eAu+

ob;(u, x,t)

81‘1’ s in QT, (16)

with initial-boundary value conditions (7)-(8).
Since for the lir 11m1t function w of certain subse-
quence of {uc}, ( ) generally can not define the

trace v(a ( )2 o L) on Z we have to make a detour to

avoid y(a ( ) 5 Ou ) in defining the solution of equation

(5), where a( ) is the composite means function of B-
V function a(u), its definition is to be put forward in
the next section

Let Sy(s) = [, hyn(7)d7 for small n > 0. Here

hy(s) = %(1 — by, Obv10us1yh (s) € C(R), and
hy(s) 20, [ shy(s) [< 1, [ Sy(s) [< 15
. o . / _
71;13%)5”(8) = sgns, 71]1_1r>%38n(s) =0. (17)
For any 1 > 0, any given ¢t € (0,7, let

L = {z € 3, Sy (k)[b;(0,2,t)

—bi(k,z,t)n;(z) > 0}, (18)
22771@ = {{L‘ €, Sn(k)[bl(o,l‘,t)
—bi(k,x,t)]ni(z) < 0}, (19)

here and in what follows, {n;}, is the inner normal
vector of €. Clearly, ¥ = 1,5 |J Xy Let

Y = U S k- (20)
Vn>0,VkeR

Instead of the usual Dirichlet homogeneous
boundary value condition (8), the homogeneous
boundary condition we use in what follows is

YU |5, x(0,7)= 0. (21)
In fact, by the definition of X1, we know that
0 < Sy(k)[bi(0,z,t) — bi(k, z,t)|ni(x) =

where ¢ € (k,0). If we let 7 — 0. Then

b;(g x, t)n,($) < 0.
Let £ — 0. We know that

(0, z,t)n;(z) < 0, (22)
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which is in accordance with that (14).

At the same time, if the equation (5) is completely
degenerate, A(u) = 0, then it becomes the conserva-
tion law equation, and it is well known that only under
the suitable entropy condition, the uniqueness of the
solutions is true. By this fact, combining some ideas
of references [8-9], we give the following definition
of the entropy solution.

Definition 1 A function u is said to be the entropy
solution of equation (5) with the initial value (7) and
the homogeneous boundary condition (21), if

1. u satisfies that

u € BV (Q7)NL™®(Qr), % /Ou Va(s)ds € L*(Qr).

2. Forany g1, go € C*(@Qp), p1 > 0,
Ver Is= 0, v1 lsaxjp= ¥2 leax,ry and
supppa, suppp1 C Q x (0,T), for any k € R, for
any small n > 0, u satisfies

// [Iﬂ(u_k)()olt_BZ]<u7xvt7k)gplwi"i_An(u; k)A(Pl
T

—Sy(u—k) | V/u Va(s)ds |* o1]dxdt
// [upar — (bi(u, z,t) — b (0, 2,t)) P2z,

6b (0,z,t)
_— A(u)A
8$z w2 + A(u)Aps|dxdt
T
k)/ / [6i(0, z,t)—b;(k, x,t)|nip1dtdo > 0.
Elnk
(23)
3. In the sense of the trace,
YU |53, x (0,7)= 0- (24)

4. The initial condition is satisfied as follows
hm/ Lz, t) —uo(x) | do = 0. (25)

Here the pairs of equal indices imply a summation
from 1 up to N, and

Bf?(u,x,t, k) :/k bi(s,x,t)Sy(s—k)ds, Ay,(u,k)
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To explain the reasonableness of Definition 1, in
one way, if equation (5) has a classical solution w.
Multiplying (5) by ¢15,(u — k) and integrating over
Qr, we are able to show that u satisfies Definition 1.
In another way, let 7 — 0 in (23). One has

/f =g

—sgn(u — k)(bi(u, z,t) — bi(k, x,t)) 1,
+sgn(u — k)(A(u) — A(k))Ap;|dzdt

+sgn(k / / (ugpay —
Qr

abi(O, xZ, t)
+78 ©2
T

b'(O, Zz, t))SOQIi

bi(u, x,t) —

+ A(u)Agy)dzdt

T
k)/ / [(b;(0, z,t)—b;(k, x,t)|nip1dtdo > 0.
Y1kn

and let 2 = 0 and so ¢1 |x= 0.

/] o

—sgn(u — k)(b;(u, z,t) — bi(k,x,t)) 1z,

tsgn(u — k)(A(u) — A(k))Api]dzdt > 0. (26)

Thus if w is the entropy solution in Definition 1, then
u is a entropy solution defined in [10],[11], [12] et al.
In fact, the author has been interested in the posedness
of the solutions to the strong degenerate parabolic e-
quations for a long time, one can refer to [22-28].

Certainly, we have also noticed that Kobayasi and
Ohwa [13] studied the well-posedness for anisotrop-
ic degenerate parabolic equations (1) with inhomoge-
neous boundary condition on a bounded rectangle by
using the kinetic formulation which was introduced in
[14]. Li and Wang [15] considered the entropy so-
lutions of the homogeneous Dirichlet boundary value
problem of (23) in an arbitrary bounded domain. S-
ince the entropy solutions defined in [13], [15] are on-
ly in L®® space, the existence of the traditional trace
(see Remark 8 in what follows), which was called the
strong trace in [15], on the boundary is not guaran-
teed, the appropriate definition of entropy solutions
are quoted, and the trace of the solution on the bound-
ary is defined in an integral formula sense, which was
called the weak trace in [17]. So, not only Definition
1 is different from the definitions of entropy solutions
in [13], [15], but also the trace of the solution in our
paper is in the traditional way.

The main results of our paper are the following
theorems.
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Theorem 2 Suppose that A(s) and b;(s,z,t) are s-
mooth enough, and uy(z) € L*(N2), and suppose
that

A'(0)

Then equation (5) with the initial-boundary value con-
ditions (7)(21) has a entropy solution in the sense of
Definition 1.

Theorem 3 Suppose that A(s), b;(s, x,t) is smooth e-
nough. If X1 # () is a subset of &5, let u, v be solutions
of equation (1) with the different initial values uo(z),
vo(x) € L>®(Q) respectively. Suppose that

7u($7t) = f(.%',

and in particular,

=a(0) = 0.

t) e ¥x(0,7),
(27)

t)a Y= g(.%',t), (ZL‘,

yu=yv=0, x € X. (28)

Suppose that the distance function d(x) =
dist(z,X) < X satisfies that

|Ad] < e,z e Q\ Qy, (29)

where X\ is a small enough constant, and Q) = {z €
Q,d(x,0Q) > A\}. Then

/]uxt ) —v(z,t) ]dz:</]u0v0dx

[f(z,t) = g(z, 1), (30)

+ess sup

(2,t)€S2 % (0,T)

where (CE, t) € R]\H—l’ €SS SUD(z t)eXo % (0,T) ‘f(x? t) -
g(x,t)| is in the sense of N—dimensonal Hausdorff
measure.

3 BY function

Let us first introduce the concept of BV function ac-
cording to ref. [16].

Definition 4 Ler 2 C R™ be an open set and let f €
LY(Q). Define

[ 1ps1 = supt [ gaivgis

g=1(91,92, ,9n) € Co({R™), [g(2)| < 1,z € O},

where divg = 1" gg?.
Definition 5 A function of f € L*(Q) is said to have
bounded variation in S if

[ 1psi <.
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We define BV (Q)) as the space of all functions in
L(Q) with bounded variation.

This is equivalent to that the generalized deriva-
tives of every function in BV ({2) are regular measures
on 2. Under the norm

1Flev = £l + /Q Dy,

BV (Q) is a Banach space.

Proposition 6 (Semicontinuity) Let 2 C R™ be an
open set and { f;} a sequence of functions in BV (Q)
which converge in L. () to a function f. Then

loc

[ 101 < tim int [ (D)
Q J—oo Q
Proposition 7 (Integration by part) Let

Ch =2(0,R) x (0,R) = Br x (0,R)

and f € BV (C},). Then there exists a function f €
LY(#R) such that for H,_1-almost all y € B,

p—0

lim o / £(2) = FH()ldz = 0.
Ci (y)

Moreover, if Cr = Br X (—R, R), then for every

g € C5(Cr; R™),

faivgis =~ | (g.00)+ [ 1*gaH, .

ch ch Br
where 8, = {x € R™;| z |< p}.

Remark 8 The function [ is called the trace of f on
Br and obviously

1
= lim ————
p=0 |CF ()| Jok )

) (2)dz.

In our paper, we consider the solution of equation
(5)in BV (Qr), where Q7 = Q x (0,7), €2 is bound-
ed domain, and the dimension of Qp ism = N + 1.

Let ', be the set of all jump points of u €
BV (Qr),v the normal of T, at X = (z,t), u™(X)
and u~ (X) the approximate limits of u at X € T,
with respect to (v,Y — X) > 0and (v,Y — X) <0
respectively. For continuous function p(u,x,t) and
u € BV (Qr), define

1
plu) = /0 p(rut 4+ (1 — 7)u")dr, (31)

which is called the composite mean value of p. For a
given ¢, we denote I'!,, H' (v!, ---,vl) and vl
as all jump points of wu(-,¢), Housdorff measure of
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I't, the unit normal vector of I, and the asymptot-
ic limit of (-, t) respectively. Moreover, if f(s) €
CYR), u € BV(Qr), then f(u) € BV(Qr) and

ag(u) O 10, NN+, (32)
Zg

= P i

where x4 =t as usual.

To obtain the uniqueness of the solutions, we need
the following lemma.
Lemma 9 Let u be a solution of (5). Then

a(s) =0, s € I(u* (x,t),u"(2,8)),  (33)

a.e. on Ty, where I(a, 3) denote the closed interval
with endpoints « and 3, and (33) is in the sense of
Hausdorff measure Hy (I'y,).

We can prove this lemma as that of Lemma 2 in
[8], we omit the details here.

4 The existence of the solution

Lemma 1009 Ler Q ¢ RN be an open bounded set
and let fi, f € LYQ), as k — oo, fr, — f weakly in
L1(02),1 < g < 0. Then

Jim inf ] fi (7o) 2l f 170 - (34)

Consider the following regularized problem

0b;(u, x,t)

(QU
(u) g u ; 9

5 = inQr, (35)
with the initial-boundary value conditions (7)-(8).
It is well known that there are classical solutions
u. € C*(Qr) (N C3(Qr) of this problem provided
that A, b; satisfy the assumptions in Theorem 2, one
can refer to the reference [20] or the eighth chapter of
[21] for this fact.

Firstly, since ug(x) € L>(2), by the maximum
principle, we have

| ue [<[| uo [|L< M. (36)

Secondly, let’s make the BV estimates of u.. To the
end, we begin with the local coordinates of the bound-
ary 2.

Let §p > 0 be small enough that

E% — {x € Q;dist(z,%) < dg} C U Vz,

T=1
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where V is aregion, on which one can introduce local
coordinates
Yk :Ff(l')(k: L,2,--- 7N)7yN |E: 0,

with F* appropriately smooth and FN = FlN , such
that the yy —axes coincides with the inner normal vec-
tor.

Lemma 1129 Let u. be the solution of (35) with (7),
(8). If A(s),bi

i(s,z,t) and ug are as in Theorem 2,
then

9
5/ 1% o < 1 +exl|gradu 3 gy \ )

» n
(37)

with constants c;,1 = 1,2 independent of e.

We have the following important estimates of the
solutions u. of (35) with the initial boundary condi-
tions (7), (8) .

Theorem 12 Let u. be the solution of (35) with (7),
(8). If A(s), bi

i(s,x,t) and ug are as in Theorem 2,
then

|graduc|p1(q) < c. (38)

where |gradu|® =
dent of ¢.

Proof Differentiate (35) with respect to =g, s =
1,2,-,N,N + 1, xy4+1 = t, and sum up for s after

multiplying the resulting relation by usxs%.

In what follows, we simply denote u. by u. Integrat-
ing over {2 yields

ZZ 1 |3x1 |2 + | |2 c is indepen-

Ouy,
o Ot

|gradu|
- L

here and in what follows, pairs of the indices of s im-
ply a summation from 1 to IV + 1, pairs of the indices
of 4, j imply a summation from 1 to N, {n;}}¥ is the
inner normal vector of {2 as before.

/ Ala(u)ug, )ug,

' U)Uzz U, +a(U) Uz, [ U,

Sy(Jgradul)
|gradu|

d
T)drdx = /In(|gradu|dm,
dat Jg

Sy(|gradul)
|gradu|

Sy (lgradul)
|gradu|

o Ox; la

Sy(|gradul)
|gradu

' U)uxz Ug, ) U,

o

Sy (|gradul)

dz,  (39)

uxlm) Ug

8@ |gradu
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0 S
(gradu])
|gradu|

) Dy Sy(eradu]
_Z/ani(a (u)umz)uxs [oradyl dx

0
!/
+ /Q a'(u)ug, pr I,(|gradu|)dz

_ 88 (a/ (w)uz, | gradu] S, (|gradul )da
Xg

a' (u)ug,nil,(|gradul)do

i
0
i CIOLE

)l gradul Sy (|gradul) —

Q
.
- [ Diadul) (@ (s o
A

_ / o (w)ug,mil, (|eradul)do,  (40)
b
Sy (|gradul)
Umm ) Uy
8% 7 |gradul
)iI (|gradul)dz
ax, oy ¢

= a(U)Usp; 0,1 7 I radu|)do
/E (W)t mi eI radu)

_/ a(u) 821n(\gradu\)
Q

Uz, Uz par; AT, 41
008 ‘ (1)

where £ = ug,.

d
8, (Jgradul)

/ Aug Uy,

_ —5/ 8In(]gradu|)nidg
5 ox;

|gradu|

9?1, d
—5/ —n(\gra u’)uxsxiu%midx. (42)
Q

dzx

;08
- | S, (eradul)
/Q oz, [b; (u, z, t) Uy, + big, (u,m,t)]uxsw
_/ O(bj(u, @, t)ug,) S, (|gradul)
N Q 0x; Has |gradu|

Obiz, (u,z,t)  Sy(|gradul)
+Z / ox; Yas |gradu| du

Volume 16, 2017
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where b, (u, 7,t) = %‘rfﬂ_

/8(b§(u,x,t)uxs)u Sy (|gradul)

0 O, “ | gradul

— [ . 0)leradul, fradu

r
—I—Z/ b (u, x,t) l?gx?du‘) x
/ s (u,x,t))
[gradUIS (lgradul) — I,,(|gradul)] dz

- / Vi, 7, 6) T, (Jgradul ngdo. (43)
b))

From (39)-(43), a(0) = 0, we have

d

7 Q.7,7(|gradu|d:1:

ax, ) [radulS, (gradul) -

0?1, (|gradu))
_/Qa(“) 0606, "

. / 0°1,(|gradu])
Q agsagp

+/ 8(
o Ox;

- [|gradu|.S,, (|gradul)
9%b; (u,z,t)
+Z:/ 0x;0xs Yas

_[/2 a'(0)ug;n;I,(|gradu|)do

zsx; Uzpx; dz

Uz sz, Urpx; dx

i(uvx’t))
— I, (|gradul)] do

Sy (|gradul)
|gradu|

+ / D.(0, 2, )T, (|gradul)nido
>

+5/ 01, (|gradul)
b

0, n;do|.

(44)

Observing that on 3.,

_bfi(ua €, t)aj

u=0, (45)

then the surface integrals in (44) can be rewritten as

S = [/ b;(0, z, )1, (|gradu|)n;do

E-ISSN: 2224-2880
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I,
+€/ 01, (|gradul) nedo
b 81:1

+ / o/ (0)uuz, s T, (| gradul o
>

—/bixi(OaI'?t)(’gar:dUD o
by on
_8/’6? n(lgradu)) Au%ﬂfmwb
b 81'1 a—g
—/a(O) Ol (Jgradul) Aufn(\ggdeI) o
= Oz; on

d
:/bixi(oaxvt)(’garaw g
= on

1, 1
—5/ 9 "(’gradu‘)ni—Au n(lgradul) |
> Ow; gu

Since that

Uz N 11 ’2 = ut|2 =0,

ou
bi.r' 07 7t a.
[ b1 0., 500 Ot

Oou
_g/ESgn(%)(umjnjni — Au)do.

Using the local coordinates on V., 7 =1,2,--- ,n:

lim S =

n—0 )dO’

(46)

By elementary computations (refer to [20]), we obtain

on X\ V,,

Z“ywkuNFk + Z “yNkuNFk

uxixj

+uy,, F

TiTj

Zk luyNkuNFk FNFéV

i T

|grad 'V |2

umixjnjni =

FNFN

m
uymFxli Tt Ty

|grad FV |2

+ Z “yNkukFN

in which Fk
mal vector is

FF. By the fact of that the inner nor-

oFN OFN
N — st :—radFN,
" ( 8%1 (91']\7 ) £
then
Fm FNFN
Uy 5T — Au = Uy, <W o Fé’fl’l) ’
477 Volume 16, 2017
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Since bjz,(0,z,t) is bounded, by (46) and Lem-
ma 11, we see that lim, ,o.S can be estimated by
lgradu|r,, ()

Thus, noticing that

lim [|gradul S, |gradul) — I, (|gradul)] =
n—0
we have
d

— [ |gradu|dx < ¢; + c2 | |gradu|dz,

and by Gronwall Lemma,
/ |gradu|dxdt < c. (47)
Q

By (35), (47), we have
// (a(us) +¢€) | Vue |? dedt < C (48)

Then there is a subsequence {u.,} of u. and a
function v € BV (Qr) NL*°(Qr) such that u., — u

a.e. on Q.
We now prove that u is a generalized solution of

(5)-(7)-(21). For any ¢(z,t) € C}(Qr),

//QT[a(Z"z’ /oug Va(s)d

- / / T[/Ouf Vals)ds— /Ou Va(s)ds]gg, (z,t)dzdt

By a limiting process, we know the above equality is
also true for any op(z,t) € L?(Qr). By Holder in-
equality, from (48), we have

a u
B, /0 \/@ds weakly in
L2(Qr),i=1,2,--- , N. This implies that

/\/ (s)ds € L*(Qr),i=1,2,--- , N.

Thus u satisfies (1) in Definition 1.

Let o € C*(Qr), ¢1 = 0, suppyp C 2 x (0,7),
V1 |o= 0 and {n;} be the inner normal vector of
2. Multiplying (35) by ¢1 5, (u- — k), and integrating
over (), we obtain

/ / Qe Sy (e — K)dadt
T

_ / AA(uz)o1 Sy (ue — k)dudt
Qr

o(z, t)dxdt

8:51-

ox;
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—|—€/ Aucp1Sy(ue — k)dxdt
Qr

/ / Oue 1Sy (ue — k)drdt
Qr

N
Ob;(ug, x,t
+> / / %)wlsn(ug — k)dadt. (49)
i=1 T i

Let’s calculate every term in (49) by the part integral
method.

// ) k)piidxdt. (50)

6/ Aucp1Sy(ue — k)dxdt

Qr
T

= —¢ / / Ve - T 19y (ue — k)dtdo
0 J¥

—5/ Ve (Sy(ue — k)Vr
Qr

+015) (ue — k)Vue)dzdt

T
=S, (k) / / Ve - T pydtdo
o Jx

—5/ VueSy(ue — k)Vrdadt
Qr

—e // | Ve 2 Sy (ue — k)p1dzdt, (51)
T

/ AA(us)p1Sy(ue — k)dzdt
Qr

T
= S, (k) / / VA(u:) - T prdtdo
o Jx

- / [ Ay~ K Ve

+015, (ue — k)Vue)dadt

T
= S, (k) / / VA(u.) - @ prdtdo
o Jx

—/ VA(ue)Sy(us — k)Vrdzdt

Qr

~ [ atw) | Vue P i - Rordat,
T

—/ VA(ug)Sy(ue — k)Vprdedt
Qr
—// Ay (ue, k) ANprdxdt
T

Volume 16, 2017
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T
+ / / Vi - T Ay(ue, k)dtdo,
0 J¥
0b;(ue, x,t)

I,
__/T/ bs(ute, 3, £) — bk, 2, )]

N1y (ue — k)dtdo

//T (e, z,t) — bi(k, x,t)]

1
3| s Sy(ue — k)

015y (ue — k)dxdt

Ou,
8:1:1-

T
k) /0 /Z 1[B5(0, 2., £) — bi(k, . 1)

-nidadt

— // Bfl(us, z,t, k)1, drdt.
T
From (49)-(54), we have

e

+/ Ay (ue, k) Aprdedt
Qr

+ 4,015;7(% —k)

|dxdt

(54)

— k)predxdt

+/ ny(ug, x,t, k) o1z, dedt
Qr

—s/ Ve - Vi Sy (ue — k)dxdt
Qr

—€ // | Vu, |2 Sy (ue — k)prdadt
T
— // a(us) | Vue 2 Sy (ue — kepydadt
T

T
+e8, (k) / / V. - W pidtdo
o Jx

15, (k) / ! / VA(u) - 7rdtdo

For Vi, |Z: 0, ¢1 |22kn:
from (55)-(57), we have

[l e

Huashui Zhan

Taking o € C?(Q7),

©1 loaxjo.r1= ¥2 laax(o,1):

suppp2 C Q2 x (0,7),

S, (k) / ' / VA(u) - Tordtdo

+e5y( / / Vug - ngpldtda
=],
—/ VA(ug) - Vpodxdt
Qr
+// 0b;(0,x,t)
Qr O
D2
[ ety 0.2, 1) 52
/ / e Wd dt],
T

/ VA(u) - Vpadzdtdzdt

)

- / A(ue ) Apadzdt
Qr

= —// A(ue) Agpodadt,
T

0, and a(0)

Oue 8902

dxdt
ox; 0x;

podxdt

dxdt

(56)
n;dtdo

(57)

0,

<p1tdxdt+// Ay (ue, k) ANprdadt
T

+// Bé(ue,az,t, k)pi1z,dxdt
Qr

Oue Opo
+S,(k / / Vi - Ay (0, k)dtdo k) {—E / / B, Ox, dxdt + / o A(ue) Apadrdt
D2
/ / (0,2, 1) — b (k, z, t))ngprdtde +Sy(k)[— (bi(ue, x,t) — b (0,2, 1)) 8$.dxdt
Zlnk T (3
0b; (Ov z, t) 6902
. ———— L podxdt ——dxdt
/ / i(0,x,t) — bi(k, z,t))n;pr1dtdo +//T oz, padx +//QTUa o ]
=0. (55) - / o Ve - Vi Sy (ue — k)dxdt
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T
- / / a(us) | Ve [* S)(ue — k)prdedt S, (D)[(Bi(0, 5, 7) — bi(L, 7)) / / ornidrdo
QT 0 Elln
T
abl 07 )
0 [ [ 100.2.0) = bk +5,0) [ Togar =ty hom+ 02T
0 E17]}@ T 8yl
nipidtdo > 0. (58) +A(v)Aypoldydr > 0, (61)
By Lemma 10, Especially, if ¢1 € C2(Qr), p2 = 0, we have
.. y Ou, Ou, i
llgl_gglf o Sy (ue — k)a(ug)a—mi oz, prdzdt //QT [y (u—k)pre— By (u, 2, t, k) o1, + Ay (u, k) Ay
> //Q Sy(u—k) | V/O Va(s)ds |* pidadt. —Sy(u—Fk) | V/ Va(s)ds |? o1]dzdt > 0, (62)
T 0
(59)
Let ¢ — 0 in (58). By (59), we get (23) and (24) is
naturally concealed in the limiting process. // (I (v—=1)p1r —B%(v, Y, T, D)1y, +Ap (v, 1) Ay
The proof of (25) is similar to that in [8], [9], we T

omit the details here.

S|V / Ja(s)ds |2 pildydr > 0. (63)

Let ¢($, t,y ) QS(.T, t)jh(x -y, t— T)‘ Here

5 The uniqueness of the solutions b(z.1) > 0, ¢( 1) € C2*(Or), and

Proof of Theorem 3 Let u, v be two entropy solutions dn(@ =y, t =) = wp(t =TI wn (@i — 2), (64)
of equation (5) with the different initial values 1 s
wh(s) = w(7),w(s) € C5°(R), w(s) >0, (65)
u(z,0) = up(z), v(z,0) = vo(z). h™"h
o
respectively, and with the homogeneous boundary val- w(s)=0if [s|>1, / w(s)ds =1.  (66)
e u(z,t) = v(z,t) = 0, (x,t) € L1 x (0,7). -
By Definition 1, for any ¢1, p2 € C%(Q71), 1 > We choose k = v(y,7), | = u(z,t), ¢1 =

0, 1 laaxp,11= ¥2 \anx[o,T], suppye, suppp; C W(x,t,y, ) in (62) (63), integrate over Qr, to get

0% (0,T),n > 0, k,1 € R, we have
J[L = oypr = Bt Ry, I, L, = o)

7(BZ](U7 x, t7 U)¢xl + B:;(Ua Y, T, u)d}yl)

+ A, (u, k) A1 —S) (u—k) | V / Va(s)ds |* o1]dzdt +Ap(u, 0)Agt) + Ap(v,u) Ay ]
syt (19, [ Valias P+19, [ VaGas )
—Sy(k)[bi(0,2,t) — bi(k, x, )] / / p1n;dtdo 0 0
L dxdtdydr. (67)
k) // [USOQt—bi(U,JS,t)(szi-i—(WSOQ Clearly,
T 7
Ojn  Ojn 9jn  Ojn .
> ZJhy 2 = =1..-. .
+A(u)Agpa]dxdt > 0, (60) py + 5y 0, 9z, + ;i 0,i=1,---,N;
%Jraﬂ) 3¢]h oY n N 3925.
// [I"(v o l)gpl‘r - B%(’Ua Y, 7, Z)Solyi ot a7 ot O Ay 83:1
T

Noticing that

+A4,(v, 1) Ap1 =S, (v=1) | V/ Va(s)ds |* 1]dydr lirr(l)B%(u,x,t,v) = sgn(u—v)(b;(u, z,t)—b;(v, z,t)),
0 n—
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and

hmB%(”U, Y, T, 'LL) = Sgl’l(’U—U)(bi(U, Y, T)_bi(ua Y, T))7
n—0

as n — 0, we have,

Huashui Zhan

%1_1}1(1)//QT//TBZumtvlbxl—i-B(vy,Tu)z/zyl]

-dxdtdydr

//@T//QT (Bl (w2, t,0)5, 4Bl (v, y, 7, w)ihy, | dadtdydr _//Q // sen(u — v)[bi(w, 2, 1) — bi(v, . 7)]

. /T//ngn(u — ) [biu, 7, ) — bi(v, 2, 1)]

Yy, dxdtdydr

_|_//QT //ngn(v—u)[bi(v,y,T) — bi(u,y, )]

Yy, dxdtdydr.

and the right hand side of this formula can be dealt
with as

//T//ngn(u_v)[bi(u’%t)—bi(v,x,t)]

Vg, dadtdydT

_ //T//ngn(u—v)[bi(u,:n,t) — bi(v, 2, 1)]

qul]h + ¢]hx )d-rdtdydT

//T//ngn u —v)[bi(u, z,t) — bi(v,y, )]

(¢, Tn + Gjha, )drxdtdydr

//T//TSg““—v (0, Y, T) = bi(v, 2, )]

(B Jin + Gjne, )dadtdydr.

//T//ng“(“‘“)[bi@vym)

(w,y, 7)]tby, dedtdydr

//T//ngn”_“ i(v, Y, 7) = bi(u, y, 7)]

Gy, ddtdydr

_//T//ngn(v —w)[bi(v,y, 7) — bi(u, 7, 1)]
B inys drdtdydr

_//QT //QT sgn(v — u)[bs(u, . £) — bi(u, y, 7)]
& ny, dvdtdydr.

E-ISSN: 2224-2880
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¢y, JndxdtdydT

+//QT //QT sgn(u — v)[bi (v, 7) — bs(v, 2, 1)]

Gz, Jndxdtdydr.

As h — 0, we have

lim 1 B _

+B17:7(v7 y? T7 U)"lbyl]dxdtdydr

_ / / sen(u — v)[bi (1, 2, 1) — bi(v, 7, £)] b, dadl.

(68)
For the third term in (67), we have

// (A, (u, v)Agth + Ay (v, u) Ay dedtdydr

_ / / T / [ A9 (10) (B + 200, + )

+ A, (v, u) Ay jp, }dadtdydr

~ [ ][ w06+ Ay 0o
T Qr
+Ay(v,u)Pa; Jhy, Fdadtdydr

o B s

[ a o(5)5y(s - o) 2

where definition (31) and formula (32) are used, i.e.

)PJha, ydxdtdydT, (69)

o —

a(u)Sy(u =)

1
:/o a(sut+(1—s)u")S,(sut+(1—s)u™ —v)ds,

a(0)Sy(o—sut—(1—s)u~)dods.

1 prv
B ~/O /su++(1s)u—
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//T/QTS;(U—U)

(19 [ VaGias P19, [ vatias )

pdxdtdydr

://T/QTSW_U)

(19 [ Vatias =19, [ vata 1)2

pdxdtdydr

+2//T/QTS,’7(U ’U)Vm/ou\/@ds
v /O ' Va(s)dspdzdtdydr, (70)

and by Lemma 9

I, Jf, 5o v | v

-8y (0 — 6)doddrpdadtdydr

//QT//QT//V“ (sut + (1 —s)u~)

Va(ovt + (1 —o)v-
><S7'7[cm}+ +(1—=0o)v” —sut — (1 - s)u|dsdo
V. uVyvdrdtdydr

ﬂJﬂ//S

[ovT + (1 —o)w™ —su® — (1 —s)u"|dsdo

\/a( JUu\/a )V yvdzdtdydr

M

Va /u Va(s)dsVy /U Va(s)dsdxdtdydr. (71)
0 0

/5 Va(o)S, (o — 8)doddypdrdtdydr

[ I, [ v

E-ISSN: 2224-2880
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></ \/G(J)S%(U—Su+—(1—S)U_)d0'd8
sut+(1—s)u—
Ou s dwdtdyd (72)

we have

[ S, stz

/ a(s)S;, (s —u)ds 38 )Jha; ddxdtdydr

+2//T/QTS’ v)vm/o Va(s)ds

-V, / Va(s)dsypdxdtdydr

Sl S

Sp(su™ + (1 — s)u™ —v)ds

/ /su*—i— 1-s)
v

+2 /0 Va(sut + (1= s)u-) / a(o)

sut4(1—s)u—™

0)S,(0—su T—(1—s)u”)dods

Sy (o — sut — (1 — s)u™)dods] g—uj;mi pdxdtdydr
T

R -

[Va(o) = Va(su® + (1 - s)u”)]

ou
xSy (o —sut —(1-s)u )do*ds8 Jha; pdxdtdydr,
(73)
which tend to 0 as n — 0.
Since
lim A, (u,v) = lim A, (v, u) = sgn(u—v)[A(u)—A(v)],
n—0 n—0
we have

B A, (0, 0) b, + Ayt )6y ] = 0. (74)

Combing (68)-(74), and letting n — 0, h — 0 in (68),

we get
// u(z,t) —v(x,t) | ¢
—sgn(u - U)(bl(uv z, t) - bi(va z, t))¢$z
HA() — A()|Adldxdt > 0. (75)
482 Volume 16, 2017
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Let wy(z) € C2(N) be defined as follows: for
any given small enough 0 < \,0 < wy < 1,wlgg =0
and

wy(z) = 1,if d(z) = dist(xz,00) > A.
when 0 < d(z) < A,

(d(x) — )

rlde)) =1 - S0

Especially, we can choose ¢ in (75) by
P(z,t) = wxe(x)n(1),
where 1(t) € C§°(0,7),
Wxe = wy * 0=(d),

is the mollified function of wy. Then

(= [ Wh(d — 5)5-(5)ds
{|s|<e} N{0<d—s<A}

- _ M(g s)ds
/{s|<e}ﬂ{0<d—s<)\} A2 «(5)
Whe(d)] < 5.
“ = —3 s)as
el =" /{|8|<a} N{0<d—s<)} Oe(s)d
Now,
Ag = n(t) A(wxe(d(x)))
=1(t)V(wj:(d)Vd)
= U(t)[wxg(d)wdﬁ + wi(d)Ad]
2 !/
SOl [ s 0

using the conditions (29), and using the fact of that
|Vd| = 1, from (75), we have

/ iz, t) — v(z, )| dydadt

te / / £)|he(d

where Q) = {(z € Q : d(z) < A}. According to the
definition of the trace of BV functions (see [16]), by
(27),(28), when x € Y1, yu = v, let A — 0 in (76).
We have

i
/\IL% | / / ’w)\e

E-ISSN: 2224-2880
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)| | u—v| dzdt|
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< clim

r o1
t)— —v | dedt
tm [ [ 1ol

T T
= c/ n(t)|u — v|padt = c/ n(t)|u — v|padt
0 0

<cess sup |f(z,t)—g(z,t)l,
ZQX(O,T)
and so
cess sup |f(z,t) — g(z,t)]
EQX(O,T)

+/ | u(z,t) — v(x,t) | nydxdt > 0. (77)
T

Let0<s<7<T,and

=/

Here a.(t) is the kernel of mollifier with () = 0
fort ¢ (—¢,¢). Then

az(0)do, ¢ < min{r,T — s}.

cess sup |f(x,t) — g(z,t)]

22 X (O,T)

T
—i—/ [ac(t = 8) — ac(t — 7)] |u — v[p1(qydt > 0,
0
Lete — 0. Then
lu(x, 7) —v(z, 7)) < lu(z,s) —v(z,s)|@)

|f(z,1)

+cess  sup
Yo X (O,T)

—g(z,1)]

and the desired result follows by letting s — 0.
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