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Abstract— Motivated by the success of Shanno’s memoryless Conjugate Gradient (CG) methods [28,29], this paper derives three new
scaled quasi-Newton like CG algorithm that utilize an update formula that is invariant to a scaling of the objective function. The computation of
the search directions, at each iteration, is done in two steps. The aim of developing such self scaling Variable Metric CG methods is to improve
the quality of the generated search direction vectors. The computations involved are rather cheap as they merely involve a number of inner
products and require just extra O(n) storage requirements. The extra requirements are shown to pay off when the algorithm is numerically

compared to that developed by Shanno.
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1 Introduction

Conjugate Gradient (CG) methods were initially developed by
Fletcher and Reeves [12] and were used to solve general
unconstrained minimization problems. Those methods are still
favored to the more rapidly convergent Quasi-Newton
methods (QN) for big problems due to their low storage
requirements (O(n)), instead of O(n?), as is the case with QN
methods. This constitutes enough justification for constantly
attempting to improve these methods. In this work the focus is
rather on methods which combine the merits of both the CG
and QN methods, as was done earlier by Perry [23] and
Shanno [28,29]. Our derivation exploits the success of the
multi-step QN methods [18,19] to derive a CG algorithm that
utilizes data available from recent iterations so that
convergence is numerically accelerated further. Section 2 of
this paper briefly introduces the CG methods and variants.
Section 3 presents the idea of memoryless self scaling
Variable-Metric CG methods. Section 4 focuses on the
derivation of the new algorithms. Then, the numerical results
are discussed in Section 4.

2 Memoryless Self-Scaling

Variable-Metric Conjugate Gradient
Methods

For a symmetric positive definite matrix A, the finite set of
non-null linearly independent vectors dy, d, ds ... d¢ is said to
be conjugate if

di Ad;=0, viz. (1)
CG- methods are iterative and generate a sequence of
approximations to the minimum x* of a scalar function f (x) in
order to solve
minmize f(x),x € R",where f:R" = R.
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The sequence X; is defined by the following recurrence

-0, for i=0,

- 2
-9 +p;,diy, forizl, 2

where g; is the gradient of f (x;), B; is a positive scalar chosen
to minimize f(x) along the search direction d;, and the standard
definition of ; is given by

_ Y
ﬁi_ d;ryil’ (3)
for
Yi=G1" O )

The definition of f; in (3) is the one given in Hestenes and
Stiefel [17] and is a modification to the original CG method
derived by Polak and Ribiére [24] and Polyak [25].

This choice for the scalar g; is such that to make the search
vectors dy and dy+; conjugate when the line searches are exact
(ELS). However, since in practice line searches are not exact,
Perry [23] rewrote (2) under the assumption of inexact line
searches (ILS) as folTows

VT gl
dpy=[1- 7 +77 1g,,, (5)
=Qis19is1 ©

for
Si=Xj+1 = Xi. (7

The matrix Q;,; satisfies a relation similar to the Secant
relation, namely

Qi+1Tyi:Si- (8)
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Perry's method [23] performance is only slightly better than
the standard CG-method. Besides, the matrix Q;,; is not
necessarily symmetric or positive definite so that the direction
vector in (7) may not be a descent direction.
Shanno [28] derived a similar algorithm that satisfies the
Secant relation

Hist 'Y, =Si, ©)
where H,;,; is an approximation to the inverse Hessian.
Shanno proposed

_ syl yly; 1 sist
Qui=1- s +/1+E] T (10)
Update formula (10) is actually the BFGS update formula with

the update applied to the identity matrix at each iteration.

In fact, a similar dual relationship to (9)-(10) can be exhibited
for any member of Broyden's 6-class update [5,8,20].

The CG-method for which the search direction is computed
using
di+1='Qi+1Tgi+1 (11)

is referred to as a memoryless BFGS method.

The idea of self-scaling was originally developed by Oren [21]
and Oren & Spedicato [22]. Oren modified in [21] the
Broyden 9-class of updates as follows

HiyiyiTHi SiSiT
H. =|H ————"+9rr |y +—-——
i+1 [ i yl‘THiyi ULz yiTSi
where
_ T i iJi
n= (W HyiGre = )
' L yiTSi YiTHiYi

and the specific value chosen for ¥; results in different update
formula that belong to the Broyden family. For example, the
BFGS update corresponds to 9; = 1. The scaler ; is defined
by (see [21])

T
— JdiSi
Hi= vyl Hyi
Shanno [28] used this formula for H;,, to derive a modified
CG-method with H; replaced by the identity matrix to
eliminate the need for storing any matrices. This resulted in
the following memoryless search direction formula

T
i _9z+1yi>

T
9i+1Si

T, )Si— ]

Yi Vi

Eooyly, Tt
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This choice is equivalent to scaling the memoryless BFGS by
by p;.

The results given by this modified CG-method in [27] were
rather disappointing.

Another memoryless Variable Metric (VM) method can be

obtained by scaling, at each iteration, the update

Hyy! H;
v H;y;

by a positive scalar o given by [27]

T
5;S;

l
T )
i Si

Hiy = |H; — +Omr | +

g; = —.

Hi

The parameter g; has the advantage of making the sequence of
iterates invariant under multiplication of the objective function
by a constant scalar. This results in the following memoryless
VM search direction

T T T
diy1 = —Giv1— [<2yl;i;fil;zlsl - g;?g‘) s+
For exact line search, we have g/, s; = 0 and hence d; 4
becomes

T

9i+15i]
T

Vi Si

Vi (12)

T
9i+1)i
dity1 = =91+ __’)l/TS ~d,,

[Ad

which is the standard Hestenes & Stiefel CG-method [17] and
therefore has n-step convergence to the minimum of a
quadratic function. Thus the CG-method is defined precisely
by this new VM update (12), where the approximation to the
inverse Hessian is reset to the identity matrix at every step.

The CG-algorithm defined by (2)-(4) exhibit a linear rate of
convergence unless the method is restarted (generally every n
steps) with direction d=-g;, (see Powell [26], Biggs [3,4]).
Powell suggests a restart every n steps or whenever

|gi+1Tgi|ZO'2|gi+1Tgi+1|'

Since the step taken in the direction of the negative gradient
frequently results in a considerably small reduction in the
objective function, Beale [2] derived a restart criterion
intended to improve convergence rate. The restart step was
taken to be the computed direction d, rather than —g,.
Subsequent non-restart steps are defined by (t being the index
of the latest restart step):

di,y =-0;, +Bd; +1d,,

where

:Bi = (yiTgm )/ (diTyi)

and
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T T
7i:(yt gi+1)/(dt yt) )

for i=t+1, t+2,

Shanno [28], inspired by Beale’s approach [2], proposed

dlyt

_ diy]
Gy =-{1- 5+ 28

T (13)

] g|+l

where y; is given in (4), s; is as in (7) and t is the index of the
last restart. The update matrix uses information from two prior
points, namely x; and x; where the information gathered at x, is
critical and must be exploited. Shanno [28] defined, for k > t,
the following double update scheme

Ty ol
o Sty HYiSt y sist

H —I' t It t 14

t ytht [ Sl]yTSt ( )

and
T T
_ siyj HetHuy;si yTHY;
Hi+1=Hy- I yTs; I +[1+ Iy I] (15)
I I I

The search direction at iteration i is computed usmg

dir1=-Hi+19;,,-

d

il = |+1g|+1

tyi)siTgM AL

9is
> t 1)Si
| yl Sk yk

hg. 48 g.tlH (@ T
Si Y

The vector H g, , and p y are defined by

H ng ng t g|+l +((1+ yt yt) t gH—l yt gH—l)V
C Y, VYO VY VY,
and
T T
1 1 V I 1
Hyy, -y - Yty (@I S Yy
Vt t t yt Vt yt V yt

In implementing this algorithm additional storage is required
to store vectors X1, Xi, Oi+1, Qi di, 0, and y; (a total storage
still of order n).

Another far more successful search direction, proposed by

Shanno, is generated by using update (15) in the computation

of the search direction. This yield for i>t

VtVtT
—.

Vi Vi

ViVl +yv T
ARA

L yt
V "y,

*

V,

H' =[1 - M.

"y,
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Shanno therefore suggested scaling the matrix H’; with

n = (ViT Yi )/(ytTyt)

but not the matrix H;.;. In this case the two additional vectors
are defined by

' + 2V + ! i+
H t gi+l 77t9|+1 t gl ! y‘ ( gl L — yt '|'gI 1 )
t t V yl yt yt
and
, 2v,'y.
H' yi=mny - tyly‘"( ;yl - A yl)
Yi Vi Vi i yt Yi

However, he also tested the application of the Flecher [15]
scaling in his numerical trials. In consequence he proposed
using only the scaled H’; at restart steps, and at each non-
restart step to scale according to the following Flecher scaling
criterion:

=[2(f.,— f.)/di" g,,]d

The vectors that require retention in storage for this method
are Xi+1, Xi, Gi+1, Gi, di, dy, and yr.

i+1 i+

3 A new Memoryless Variable
Metric CG Algorithm

In this derivation, we start by presenting a new variable metric
(VM) update formula that will be used in the derivation of the
new memoryless VM CG method. The notion of self-scaling
quasi-Newton algorithms was first proposed by Oren [21], and
Oren & Spedicato [22]. The update formula used in this paper
is a generalization of Oren’s update [21], modified to satisfy

Hi s u=0oiv;, (16)
for o;= "i?r , for some vectors(%?)and v;
The resulting update formula is given by
Hisg=Hiot 0 . it (17)

The parameter g; is introduced to make the method invariant
under multiplication of the objective function by a constant. It
is worth mentioning that the standard CG-method can be
obtained from (17) if the approximation to the inverse Hessian
H; is taken to be the identity matrix and the vectors u; and v;
are chosen to be y; and s;, respectively. Like in (14), the
matrix H; is this given as
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nwu +u

u

T
ZVEVE_

VtutTﬂlt VlT

ul v

(18)

Consequently,

2u] Hyu ST siuf Hi+Has]
T 2 V1% s
4 Sj i

Hin=Hot (19)

The search direction, in this case, is defined by:

di+1=-Hi+10;,,

211}|—Htui—u}rngi+1

ll;r 14

T
+ 4 gi+1
T
lli 14

=Hg

Hyui- (20)

i+1 i
where the two additional vectors that need to be stored to
implement this method are defined by

_ St Gis CARICER
Htgi+1_gi+1 t;rslyt tJt ly;rsll t lS (21)
and
aly+dy; Wy
Hy; y,-y Yt Cor? % (22)

The following theorem reveals that the search direction (20) is
a special case of the Beale’s 3-term CG method, given as

diy=-0, +Bd; +7d,, (23)
where
:Bi :(yiTng)/(diTyi)
and
7=y g/ (dy)
for i= t+1, t+2, t+n-1.

Theorem 1: If f(x) is quadratic and the vectors u; and v; are
chosen to be y; and s;, respectively, the search direction given
by (20) is equivalent to the 3-term search directions generated
by Beale’s method [2] when the line searches are exact.

Proof. From (20), and since an exact line search is used gives

s1g;,,=0, we obtain

T

_ Yi HiOi41

di__Htgi+1+ ﬁsi.
i

We also note that for a quadratic function
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Ok+1 = AXgar +b = AlXepg + ZVI)+b Ot+1+ ZAV,
i=t+1 i=t+1

Hence, for ELS and quadratic functions

s{As, =0, for i=t+1,....,i.

Thus,
Now from (21), using (24), we have
ATV AL IRPAARYA 8 (25)
Substituting (25) in (23) we get
T T
d|+1 — _gi+1 yt g|+1 S + y| g|+l S — (yt Tgi+l)(¥ri St) :
S V'Y (s yi)(s V)
(26)
By the conjugacy condition we have
T
Yi S = 0.
Thus, (26) reduces to
di+1 :_gi+1+ yt g|+l t y| g|+1 |' (27)
S Vi S 2

The search direction (27) is identical to the search direction of
Beale’s method (23) (see [2]) and hence the proof is complete.

Usually, conjugate gradient algorithms are periodically
restarted. Powell’s restarting procedure [26], used in this
algorithm, is for testing whether there is very little
orthogonality left between the current gradient and the
previous one. At step r when

I

2
19719, 120-2lg, ., [I"

the algorithm may be restarted using (18) with H, set to I. For
i = r +1, (20) is employed in the computation of the search
direction.

4 Choosing the vectors uj and vj

One obvious choice for the vectors is

u; = y; and v; = s;. This choice defines our first algorithm
and for which a variant of the standard Secant equation is
satisfied, namely

Hi,yi=ais;, (MNEWHI)
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for
T

i H;y,

l s{ Vi
The other choice is inspired by the approach of Wei et al. [30].
Assuming that the objective function is smooth, then using the
Taylor series for f(x) at the point x;,; gives

FO) = fior + 9l (6 — x,40)
+ > (¢ = %i41) " Gry1 (x = x;41),

where G;,, denotes the Hessian of f(x) at the point x;_ ;.
It follows that

~ T 1.7
fi & fis1 = Si Gin 35S Giy1S; -

Thus,

s{ Biy1si = 2(fi = fix) + 5] (g + gis1) + 5 i
However, if the following special case Taylor series for f(x) is
used

1
fiGo) = f(x) + 5 (x = x)TA;(x = xy),
for A; being a symmetric positive definite matrix, and using

the relationship obtained for s! B; s, , then the following

modified version of the Secant equation is obtained
Bii1si = Ji (28)
for
Vyi=yvi+

where p; = 2(f; = fi41) + (g: + gi+1)" st

pi
Pi_ o
llsill2 74

Adopting this choice in our derivation, we have from (16) and
(28)

HirVi=aisi,
for the choices u; = ¥; and v; = s;.

(MNEWH2)

The last choice is based on the modified secant equation
derived in [14,18,19]. The methods introduced by the authors
utilize the step wvectors s; and s;_4 (along with the
corresponding y; and y;_;) in the construction of a variant to
the standard quasi-Newton methods that are based on the
classical secant equation. The idea is that previous iteration
data is discarded after used once and that exploiting that data
in the construction of the Hessian (or its inverse)
approximation at each iteration pays off, as indicated by the
results presented for the multi-step methods. The inverse
Hessian approximation update generally satisfies:

Hip1 (7 — fic1Yic1) = Si — Hi—1Si—1 (MNEWH3)
or
v, = Hpqu;
where
5i2—1
M=o +1
and
5 sl
llsi-1ll

This expression for § may be generalized by introducing a
scaling factor, y =0 (see [18]) that provides a control
mechanism for convenient easy switching to the standard
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secant equation update method obtained by setting the scalar y
to zero. Therefore,
IIs; |l

”51‘—1”.

=Y

5 Numerical Results and Conclusion

For the above memoryless QN-algorithms it is necessary to
ensure that

u'v,>0 fori>0, (29)
so that the positive definiteness of the update matrix is
maintained to ensure that the computed search vector is
downhill. However, condition (29) is, in practice, replaced by
a stronger line search criteria as follows

|SiTgi+1 < o, |SiTgi | (30)

and

fu-fi<ps'g. 31
Conditions (30) and (31) are sufficient to ensure convergence
of any descent method [16]. Shanno used p;=0.1 and
p>=0.0001 and to test his double update algorithms and we use
those same choices for our methods.

In order to assess the performance of the new algorithms
(MNEWH1, MNEWH2, MNEWH3), those are benchmarked
against Shanno’s memoryless QN algorithm [28]. The
methods are tested on a collection of 30 varied dimensionality
test problems with dimensions ranging 2 < n < 1000. The test
functions can be found in [13,14,15,18]. A cubic fitting
technique line search strategy is used for all methods. The
algorithms terminate when the gradient vector magnitude is
less than 107°. All methods are restarted every n iterations or
whenever (12) is satisfied, with

d"d;

d.:.
Oi8isy

d'+l:
' Oivg

Performance of the algorithms is evaluated by considering
both the total number of function evaluations (NOF) and the

total number of iterations (NOI). The results are reported in

Table 1.

Analysis of this table shows that the three derived methods
have a clear advantage over Shanno's method. When it comes
to function/gradient evaluations, MNEWH3 seems to perform
best (as it saves an overall about 28.4% in NOF). However, it
only saves overall about 4.81% in NOI). When it comes to the
number of iterations (NOI), MNEWH2 is the winner (as it
saves an overall about 16.8% in NOF and saves overall about
8.6% in NOI).
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In conclusion, the new double update methods developed here
are promising especially when the number of function/gradient
evaluations is of significance. The number of extra vectors
required is O(n). Specifically, the number of vectors required
to keep in storage seems to be a reasonable tradeoff against the
numerical gains incurred.

TABLE 1. NUMERICAL COMPARISON OF THE ALGORITHMS
. <o | MSHAN | MNEWH | MNEWH | MNEWH
function o 1 2 3
(M |"NoI(NOF) | NOI(NOF) | NOI(NOF) | NOI(NOF)
ROSEN | 2 | 34(170) | 31(105) | 32(144) | 36(141)
CUBIC 2 | 19(128) | 17(0) | 21(111) | 20(112)
BEALE | 2 10(43) 10(27) 11(39) 12(41)
BOX 2 11(61) 11(57) 11(58) 11(57)
FREUD | 2 10(53) 10(29) 9(31) 11(29)
BIGGS 12(42) 17(60) 16(51) 17(54)
RECIPE | 3 5(21) 5(19) 4(20) 5(19)
HELICAL | 3 | 20(127) | 46(Q9) | 33(101) | 31(103)
POWL3 | 3 14(48) 16(37) 15(35) 15(36)
POWELL | 4 | 50(277) | 29(175) | 31(181) | 33(179)
wooD | 4 | 23@3) 23(51) 23(55) 24(51)
DIXON | 10 | 23(69) 23(49) 23(48) 23(48)
OREN | 10 | 14(52) 14(60) 14(58) 16(55)
omcLL | 20| 42074) | 40(109) | 41(104) | 39(106)
EX-WOOD | 20 | 25(103) | 26(57) 25(66) 26(57)
S%Nl\] 20 | 27(134) 24(56) 25(78) 27(51)
SB'X'F'{ 25 8(31) 8(38) 8(34) 9(30)
OREN | 30 | 25(76) 27(96) 26(80) 26(71)
TRI-DIGN | 30 | 31(91) 31(64) 30(61) 31(60)
SH’\*A';"O 40 8(31) 8(25) 7(23) 6(22)
FULL 40 | 46138 | 46(95) 44(94) 44(91)
OREN | 50 | 35(115) | 34(133) | 34(128) | 33(L11)
Rgé‘éN 60 | 29(136) 32(91) 30(95) 28(88)
EX-WOOD | 60 | 34(125) | 33(82) 33(82) 31(78)
WOLFE | 80 | 49(147) | 49(99) | 48(101) | 44(%0)
S%NI\] 90 | 27(155) | 24(58) | 27(149) 22(51)
Rg;(éN 100 | 20(128) | 30(174) | 30147) | 29(111)
oncLL | 100 | 46(201) | 41(131) | 44(176) | 41(119)
EX-WOOD | 100 | 36(140) | 39(191) | 37(180) | 33(130)
EXROSEN 180 30(127) | 33(152) | 34(151) | 29(116)
NB?(L%LF) 790(3222) | 777(2491) | 722(2681) | 752(2307)
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