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Abstract:In this paper, we use the homotopy perturbation sumudu transform method (HPSTM) to solve the Ramani
and the generalized nonlinear Hirota Satsuma coupled KdV equations. The proposed scheme finds the solution
without any discretization or restrictive assumptions and avoids the roundoff errors.
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1 Introduction ongoing research in this area. In this paper we use
) ) ) the HPSTM to solve the (1+1)-dimensional Ramani
The nonlinear coupled evolution equations have gquations and the (1+1)- dimensional generalized

many wide array of app_lications o_f many fields, ponlinear Hirota Satsuma coupled KdV equations
which described the motion of the isolated waves,

localized in a small part of space, in many fields
such as physics, mechanics, biology, hydrodynamics,
plasma physics, etc.. To further explain some physical
phenomena, searching for exact solutions of nonlinear
partial differential equations is very important. Up to (1)
now, many researches in mathematical physics have

paid attention to these topics, and a lot of powerful and the (1+1)- dimensional generalized nonlinear Hi-
methods have been presented such as the modifiedrota Satsuma coupled KdV equations [13]

extended tanh-function method [8], generalized F-

expansion method [1,25], homotopy analysis method

the (1+1)-dimensional Ramani equations [29]

Uge + 1DULz U3, + 1DUL UL, + 45uium —
5(u3xt + 3ugrur + 3u:puxt) — duy + 18v, = Oa
Vg — V3g — 3VpUy — VUL, = 0,

[3], varational iteration method[10,14,23], extended
and modified extended tanh method [2,7,8], the
tanh-hyperbolic function method [20-21]. References
[9,12,22] developed the homotopy perturbation
method (HPM) by merging the standard homotopy
and perturbation for solving various physical prob-
lems. It is worth mentioning that the HPM is applied

without any discretization, restrictive assumption or
transformation and is free from round off errors.The
homotopy pertrbation sumudu transform method(
HPSTM) [24] provides the solution in a rapid con-

vergent series which may lead to the solution in a
closed form. It is worth mentioning that HPSTM

is an elegant combination of the sumudu transform
method, the homotopy perturbation method and
Hes polynomials. The advantage of this method is
its capability of combining two powerful methods

for obtaining exact and approximate solutions for
nonlinear equations. Inspired and motivated by the
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ut — 5Uaza + 3uuy, — 3(vw), = 0,
V¢ + Vg — UV, = 0,
W + Waze — Suw, = 0,

2)
In early 90s, Watugala (1998) [26] introduced a new
integral transform, named the sumudu transform
and applied it to the solution of ordinary differential
equation in control engineering problems. The
sumudu transform is defined over the set of functions
A = {f(t)| = M? T1,T2 > 07
1f(1)] < M el ift € (—=1)7 x [0,00)}.

by the following formula

Flu) = S[F(t)] = /OOO Flut)etdt,u € (=71, 7).
(3)
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For further detail and properties of this transform, see
[15,26-28] Some of the properties were established by
Weerakoon in Kilicman et al. [27] and Weerakoon
[28]. In Asiru [4-5], further fundamental properties
of this transform were also established. Similarly, this
transform was applied to the one-dimensional neutron
transport equation in Kadem [16]. In fact it was shown
that there is strong relationship between Sumudu and
other integral transform (see Kilicman and Eltayeb
[18]. In particular the relation between Sumudu trans-
form and Laplace transforms was proved in Kilic-
man and Eltayeb. Further, in Eltayeb et al. [19], the
Sumudu transform was extended to the distributions
and some of their properties were also studied in Kil-
icman et al. (2010). Recently, this transform is ap-
plied to solve the system of differential equations (see
Kilicman et al. [17]. Note that a very interesting fact
about Sumudu transform is that the original function
and its Sumudu transform have the same Taylor co-
efficients except the factor n (see Zhang [30]). Thus
if f(t) = Yi2pant” thenF'(u) = Y72, nla,u™ see
Kilicman and Eltayeb. Similarly, the Sumudu trans-
form sends combinations, C(m, n), into permutations,
P(m,n) and hence it will be useful in the discrete sys-
tems.

2 Homotopy perturbation sumudu
transform method

In this section the basic idea of the homotopy pertur-
bation sumudu transform method (HPSTM) [24] is in-
troduced. To show this basic idea, let us consider the
following nonlinear partial differential equation in a
general form

DU (z,t) + RU(x,t) + NU(z,t) = g(x, 1),
U(z,0) = h(z),U(z,0) = f(z), (4)

where D is the second order linear differential oper-

ator(f?—i2 , R is the linear differential operator of less
order than D, N represents the general nonlinear dif-
ferential operator and g( x,t)is the source term. Taking
the sumudu transform on both sides of Equation (2),
we get

S[DU (z,t)] + S[RU (z,t)] + S[NU(z,1)]

Sly(z,1)]. (5)

Using the differentiation property of the sumudu
transform and above initial conditions, we have

S[U(x,t)] = u®S[g(z,t)] + h(z) + uf(x) —
u?S[RU (x,t) + NU (z,1)]. (6)
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Now, applying the inverse sumudu transform on both
sides of equation (6), we get

S[U(x,t)] = G(z,t)—S  [u S[RU (z,t) + NU (z,1)]].
(7)
where G(x , t) represents the term arising from the
source term and the prescribed initial conditions.
Now, we apply the homotopy perturbation method

Uz,t) = > p"Unlx,t) = Up+pUs+p*Us+p°Us+....
n=0
(8)

and the nonlinear term can be decomposed as

NU(z,t) = Zp”Hn(U). 9)
n=0

where H/s are the so-called He's polynomials
[9,12,22 ], which can be calculated by using the for-
mula

19" 2L,
N(ZP Ui) }p=0,

i=0
(10)

Hn<U0,U1,... —ﬁaipn

,Un)
n=0,1,2,..

Substituting Equations (9) and (10) in Equation (7),
we get

iann(Ivt) = G(z,1) -
n=0

(S ESIRS p U (e t) + 3 " Ha (U)]] L)

which is the coupling of the sumudu transform and the
homotopy perturbation method using He’s polynomi-
als. By comparing the coefficient of like powers of p,

the following approximations are obtained

p’ 2 Up(x,t) = G(z, 1),

Pt Up(x,t) = =S Hu?S[RUy(x,t) + Ho(U)]],
P?: Uy(z,t) = =S Hu?S[RU (z,t) + H (U)]],
p® Us(z,t) = =S u?S[RUy(x,t) + Ho(U)]],

12)

3 Applications

The homotopy perturbation sumudu transform
method is used to solve the (1+1)-dimensional
Ramani equations, and the (1+1)-dimensional gen-
eralized nonlinear Hirota Satsuma coupled KdV
equations.
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3.1 Solving the (1+1)-dimensional Ramani
equations using HPSTM

In this subsection, we find the solutiori$(x,t)
andV (z,t) satisfying the coupled nonlinear Ramani
equations (1) with the following initial conditions
[29]:

U(z,0) = ap + 2a coth(ax),

Ui(x,0) = 2Ba%cscht (ax),
4 1

V(z,0) = —5pat - Zaf

2,2 _
27+ﬁ

5 .3

5*45(/34‘

16 al fﬂzaz)cothz(aaf). (13)

These initial conditions follow by setting= 0 in the
following exact solutions of Egs. (1):

U(z,t) = ap + 2a coth(a(),
4 1
Vx,t) = —fﬂo/1 6 ab +

27"
16 X

ﬁ22

25+ (Bt al = 2 5Pa?) coth(ag), (14)

where( = (z — ft), ao, § anda are arbitrary con-
stants . Let us now solve the initial value problem
(1) with the initial conditions (13) using the HPSTM.
Taking the sumudu transform on both sides of equa-
tion (1) subject to the initial condition [13], we have

5S[U(x,t)] = ag + 2a coth(ax) + 2tBa’cscht (ax)
+u?S[Usy + 15Uz uze + 15Uuag + 45U2U,, —
5(Usat + 3UmUt + 38U, Uye) + 18V )

_ 4 _E 6 252,2 9 3
St = - dgat - a0 Bgrar - Sy
( ﬁ —1—16 6_ BQaQ)cothQ(ax)—
uS[ Vfgx—BVxe—?)VUm], (15)

The inverse of sumudu transform implies that

5U(z,t) = ag + 2a coth(ax) + 2tfa’
cscht (ax) + S u?S[Us, +

15U 03, + 15U 40 + 45U U,
—5(Uspt + SUMUt + 30, Umt) + 18V4]],

_ 4.4 16 ab 125202 9 3
V(x t) = ﬂ 77 6 54ﬂ +
(2ot + 16 a® — 2 %0?) coth? () -
S [uS[—ng—avax—?,VUm]], (16)

Now, applying the homotopy perturbation method,
we get
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o
5 Z p"Up, = ag + 2a coth(azx) + 280t csch (azx) +
n=0

psil [U2S[(i ann)Gm + 15(i ann)xm(i ann)Sm

n=0 n=0 n=0

+1503 P "Un)2(D_ p"Un)ax + 45(D_ p"Un)?
X(Z P"Un)aa 5[(2 ann)(Sm)t +
n=0 n=0

3(2 ann)m(Z ann)t +
n=0 n=0

303 0"Un)a(D_0"Un)at] + 180 0" Va)all, (A7)
n=0 n=0 n=0

Oon__% 4_&6?22_33

Zp Vn = —ghe = grai gt =t +

20 16

pS SIS P Vadae 4303 9 Vade(S " Un)a +
n=0 n=0 =

6 _ 262042) coth?(azx) —

3(2 ann)(Z P"Un)aall, (18)
n=0 n=0

using egs. (17) and (18) to compare the coefficient of
like powers ofp then we have

p° : Up(a, 2060’t csclt (ax),

P U 1) = 57 S [E [(U)sa + 15(Un)ea U)o +

15(U0)(Uo)az + 45(U0)2 (Uo)az — 5{(U0) (32
3(U0)z2(Uo)t + 3(Uo)x (Uo)xt}+18(Vo) ]H,

p*: Us(w,t) = S~ [u? S[g[(Ul)G:c + 15{(U0) 22 (U1) 32 +

(U1)22(U0)3z} + 15{(U0)2(U1)4z + (U1)2(Uo )z } +
45{(U0)3(U1)az + 2(U1)2(Uo)(Uo)aa } —

5{(U1) 32yt + 3{(U0)az(U1)t + (U1)za(Uo)e } +
3{(U0)2(U1)at + (U1)z(Uo)at }} + 18(V1)al],

t) = ap + 2« coth(ax) —

(19)
pO:‘/O(x t):—gﬂaA‘ ;g 6+ 52 2 %ﬁg"i_
( ﬂ + = 16 ab — ﬁzaz)cothz(ax),
pt .Vl(x,t)—S 1[uS[(Vo)3m+
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P Va(z,t) = S7 uS[(Vi)se + 3{(V0)=(U1)s +
(VD)2 (U0)a} + 3{Vo(U1)zz + Vi(Uo)az }],
(20)

the other components can be found similarly. After
some reduction, we have

Uo(z,t) = ag + 2 coth(ax) + 2tBa’cscht (ax),
Ui(z,t) = —2a33%t% coth(az)csch (ax)

Us(x,t) = §a463t3{2 coth? (azx)csch (o) +
cscH (ax)}, (21)

4 16 ) )
Valz ) = — 280t — 2246 4 25242 _ 2 33
0(@,t) = —gfa’ - ma” + % — 7 +
2 1
(—Oﬂo/1 + —6046 - §ﬁ2a2) coth?(az),
9 9 9
20 16
Vi(x,t) = 2taﬁ(§ﬁa4 + 5046 -
gﬁQQQ) coth(az)csch (ax),
2 1
Vala, 1) = — (g fa + o — 2 5%a?)

xt2{2a%(? coth?(ax)csch (az) 4 cscH (ax)}.
(22)

Therefore, using the egs.(21),(22) then approximate
solutions of the system of equations of eqs. (1) take
the following forms:

Ul(z,t) = ag + 2 coth(ax) + 2tBa’cscht (azx) —
2
207 5%t% coth(ax)cscht (ax) + §a463t3

{2 coth?(ax)csch (ax) + csch (az)} + ...,(23)
16 6 5 9 9 9 3
?761 +§ﬁ o — 5745 +
gﬁ2a2){coth2(a:ﬂ) +

V(z,t) = —g&f -
(%ﬁo/1 + %oﬁ -
2ta3 coth(ax)csch (ax) — 2t2a%3? coth? (ax)

xcsclt (ax) — t?csch (az)} + ... (24)

The accuracy of the homotopy sumudu perturbation
method for the egs. (1) under conditions (13) is con-
trollable and the absolute errors are very small with
the present choice af,t. These results are listed in

Tables 1, 2 and Figures 1-4. It is also clear that when
more terms for HPSTM are computed, the numerical

Hanan M. Abed Rahman

€z Ezact Unpsru |UEwuut — UHPSTM|
-50 0.956868 0.956869 1.27251607E-6
-40 0.947597 0.9476 2.48972102E-6
-30 0.931774 0.93178 5.90319012E-6
-20 0.899647 0.899667 1.98912333E-5
-10 0.803242 0.8034 1.58430305E-4
10 1.20473 1.20457 1.58430305E-4
20 1.10233 1.10231 2.00989070E-5
30 1.06909 1.06908  5.94270457E-6
40 1.05288 1.05287 2.50222741E-6
50 1.04343 1.04343 1.27764171E-6

Figure 1: The exact solution of U(x,t) for the equa-

tions (1) ifag = 1, 8 =a = .01.

Figure 2: The approximate solution of U(x,t) for the

results are much more closer to the corresponding ex- first three approximation of the equations (1)if =

act solution.

Table 1. The HPSTM results @f (z,t) for the first
three approximation in comparison with the exact so-
lution if ag = 1, 8 = a = .01,andt = 20 for the solu-
tion of the system (1) with the initial conditions(13).
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1,8=a=.01.
Table 2. The HPSTM results df (z,t) for the

first three approximation in comparison with the ana-
Iytical solution ifag = 1, 6 = a = .01,andt = 20
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for the solution of the system (1) with the initial con-

ditions(13).

L VEJ‘ VHPS |VE’I' — VHPS|

-50 -1.1204856E-7 -1.12232E-7 1.853690E-7
-40 -1.2401512E-7 -1.24375E-7 1.855450E-7
-30 -1.4991042E-7 -1.50764E-7 1.860388E-7
-20 -2.2395349E-7 -2.26833E-7 1.880649E-7
-10 -6.2401173E-7 -6.46982E-7 2.081564E-7
10 -6.2401173E-7 -6.00746E-7 1.619202E-7
20 -2.2395349E-7 -2.21054E-7 1.822860E-7
30 -1.4991042E-7 -1.49052E-7 1.843273E-7
40 -1.2401512E-7 -1.23653E-7 1.848238E-7
50 -1.1204856E-7 -1.11863E-7 1.850006E-7

Figure 3: The exact solution of V(x,t) for the equa-

tions (1) ifag = 1, 8 =a = .01.

Figure 4. The approximate solution of V(x,t) for the
first three approximation for the equations (14f=

1,B=a=.0l.
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3.2 Onsolving the generalized nonlinear Hi-
rota Satsuma coupled KdV equations by
HPSTM

In this subsection, we find the solutiobqz,¢) and
V(z,t), W(x,t) satisfying the generalized nonlinear
Hirota Satsuma coupled KdV system of equations (2)
with the following initial conditions [13]:

U(x,0) = 2 (8 — 2k2) + 2k2 tanh? (ka),

3
4k%co(B + k) 4K*(B+ K?)
vV = — tanh(k
(]7,0) 36% 301 al ( $),
W (z,0) = ¢y + ¢ tanh(kx), (25)

wherek, 3, co ande; are arbitrary constants.
Taking the sumudu transform on both sides of equa-
tion (2) subject to the initial condition (25), we have

S[U(2,8)] = 2 (8 — 2k2) + 22 tanh? (kz) —

3
1
uS[—§Uxm +3UU, — 3VIWV,],
4k260<ﬁ + k‘2)
SV ()] = ==
2 2
4’“(36;’“) tanh(kz) — uS[Vyes — 3UV],
1
4k%co(B + k) 4K*(B+ K?)
SW (z,t)] = 302 30, tanh(kz) —
The inverse of sumudu transform implies that
1
Ulz,t) = (6~ 2k?) + 2k* tanh?(kx) —
1
S‘l[uS[—§Umm +3UU, — 3(VW),.]],
2 2 2 2
V(z,t) = Ak Co(ﬂ;_ W) B+ E) tanh(kz) —
3ct 3¢y
ST HuS Vg — 3U V],
2 2 2 2
W(zx,t) = Ak CO(BQ+ I Ul tanh(kz) —
361 30]_
ST uS[Wpe — 3UW,]], (27)

applying the homotopy perturbation method, we get

> 1
> P Un(a,t) = g(ﬁ — 2k%) 4 2k* tanh? (k) —
n=0

_ 1= n
pS l[uS[—i(Zp Un)ozz +

n=0
3(2 ann)(Z P"Un)a — 3(2 P"Va Z P"Wh)zll,
n=0 n=0 n=0 n=0
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4k2cy  4k2
n 2 0
h
Zp Volz,t) = (B+ k%) (— 307 + — 30 tanh(kz))
—pS*l[uS[(Z P"Vi)azz — 3 Z p”Un(Z P"V)all,
n=0 =0
> 4k o 4k2
"Wz, t) = k2 — tanh(k
n;p Wh(z,t) = (8 +k°)( 502 + 3¢, tAn (kx)) —
pSTHuS[(D | p"Wa)waw — 3 Z P UL p"Wa)all,
n=0 n=0 n=0

(28)

using egs. (28)to compare the coefficient of like pow-

ers ofp then we have
P’ Up(z,t) = %(ﬁ — 2k?) + 2k? tanh? (kx)
1
pl : Ul({L',t> = —Sil[US[—§(UO)xacm +

3(Uo)(Uo)z — 3(VoWo)]l,

p2 : UQ(.%',f) = —S_l[us[_%(Ul)wﬂc +
3((U1)(Uo)e + (Uo)(Ur) e —
26 2
Vo(z, 1) = (B+ k2)(—4§C%0 + Z;thanh(kx))
Vi(z,t) = _S [US[(%)M:E — 3Uo(Vo)a]]
P’ VQ( 1) =— [us[(vl)a:m —3(Uo(V1)s +
U1(Vo)a)]l; (30)
pO . WO(xvt) — W +
‘1
W tanh(kx)
pl Wi, t) = _Sil[us[(WO)xm — 3Uo(Wo)a]],
p2 : WQ(.’L‘, t) = —S_I[US[(Wl)xmx — 3(U1 (WO)ac +
Uo(W1)2)]], (31)

Hanan M. Abed Rahman

4k? + k2
Vige ) = -2t
M tanh(kz),
361
Vi(x,t) = %ﬂtk?’(ﬂ + k?)sech (kz),
1
Va(a, ) = —%ﬂQk‘*tQ(ﬁ + K?)sech{ka) tanh(kz),
1
Vs(z,t) = %5%%3(5 + k*)sech (kx)
1
{—2+ cosh(2kx)}, (33)
Wo(z,t) = co + 1 tanh(kx),
Wi(z,t) = citkfsech (kz),
Wa(z,t) = —ﬂ%lk%zsecﬁ( x) tanh(kx),
Wiz, t) = - Bk t3sect (kx){—2 + cosh(2kz)}.
(34)

Therefore, the approximate series solution is given by

1
Uz, t) = g(ﬂ — 2k?) + 2k? tanh? (kx) +

48tk3sech (kx) tanh(kz) +
262 k*t?sech (kx){2 — cosh(2kxz)} +

§B3k5t3secﬁ(k:c){—11 sinh(kz) + sinh(3kxz)} + ...(35)

2 2
V(x,t) _ _4]€ Co(,@-i-k ) +

3c2
(B+ k%)
361

4
g521#752(5 + k?)sect{kz) tanh(kz) +
1

(4k? tanh(kz) + 43tk*secH (kx)) —

%53,65753(& + k?)sect (kx){—2 + cosh(2kz)} + ..., (36)
1

W (z,t) = co + c1 tanh(kz) + cithkBsech (kx) — B%cik?
1
t’sech(kx) tanh(kz) + §ﬂ3clk3t3secﬁ(kx)

x{—2+ cosh(2kx)} + ... (37)

With reference to [13], the exact solutiondz,t),
The other components can be found similarly. Conse- V(z,t) and W (x,t) of the system of equations (2)

guently, we have

S

1
z,t) = g(ﬁ — 2k?) 4 2k? tanh?(kz),

(z,1)
(z,t) = 4B3tk>sech (kz) tanh(kz),
(z,t) =
(z,t) =

Ui
Us 252k4t25ecﬁ(kx){2 — cosh(2kx)},
§5 3kPt3sech (kx)

x{—11sinh(kz) + sinh(3kz)}

7

&

x,

(32)
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take the following forms

B — 2k2
3
4k200(ﬂ + k2)

Vieg,t) = ————5—>+
3c3

Ulx,t) = + 2k? tanh?[k(z + Bt)],

2 2
‘W tanh[k(z + 1),

W (z,t) = co + 1 tanh[k(x + Gt)]. (38)
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Both the exact results and the approximate solu- T Upsour Uspsrar Ussaer — Unpsral
tions are plotted in (Figures 5-10). The numerical re- -50 0.51333  0.51333  1.2301271E-13
sults are much more closer to the corresponding ex- -40 0.513306 0.513306 9.0127905E-13
act solutions with the initial condition. The compari- -30 0.51313 051313  6.2057026E-12
son between the exact solutions (38) and the approxi- -20 0.511879 0511879 2.4218294E-11
mate solutions (35), (36) and (37) are shown in tables -10  0.504741 0.504741  2.3615165E-10
3.3, 3.4, 3.5 whemy = 1.5, ¢; = .1,3 = 1.5 and 00 0.493338 0.493338 6.7491395E-10

10 0.505124 0.505124 2.3270352E-10
20 0.511961 0.511961 2.4189539E-11
30 0.513142 0.513142 6.1378679E-12
40 0.513307 0.513307 8.9084295E-13
50 0.51333 0.51333 1.2179146E-13

k = 0.1. It seems that the errors are very small.

Figure 5: The approximate solution fof(z, t) in EQ.
(35)if s =1.5andk = 0.1.

Figure 7: The approximate solution fof(z, ) in EQ.
(36)ifcog =1.5, ¢; = .1, = 1.5 andk = 0.1.

Figure 6: The exact solution f@f(z, t) in Eq. (36) if
6 =15andk = 0.1.
Figure 8: The exact solutions féf(z, ¢) in Eq. (38)

if co=1.5, c; =.1,8=1.5andk = 0.1.
Table 3.3. The HPSTM results @f (x,t) for

the first four approximation in comparison with the Table 3.4. The MVIM results of/(z,t) for the
exact solution ifd = 1.5, k = .1 and¢ = .1 for the first three approximation in comparison with the exact
solution of the system of equations (2) with the initial  solution if¢g = 1.5, ¢; = .1, 8 = 1.5, k = .1 and
conditions (25). t = .1 for the solution of the system of equations (1)

with the initial conditions (25).
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L VEmact VHPST]W |VEzaC.t — VHPSTIW'
-50 -3.22131 -3.22131 8.2854612E-11
-40 -3.22119 -3.22119 6.1079052E-10
-30 -3.22031 -3.22031 4.4357273E-9
-20 -3.21387 -3.21387 2.8796159E-8
-10 -3.17205 -3.17205 7.0109642E-8
00 -3.01698 -3.01698 2.2647961E-7
10 -2.86541 -2.86541 7.0674640E-8
20 -2.8257 -2.8257  2.8431448E-8
30 -2.81963 -2.81963 4.3709915E-9
40 -2.8188 -2.8188 6.017208E-10
50 -2.81868 -2.81868 8.162182E-11

Figure 9: The approximate solution fdr (z, ¢) in EQ.
(37)ifcg =15, ¢c; =.1,8=1.5andk = 0.1.
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Figure 10: The exact solution fé¥ (x, t) in Eq. (38)
if co=1.5, ¢, =.1,8=15andk =0.1.

Table 3.5. The HPSTM results &F (x, t) for the
first three approximation in comparison with the exact
solution ifcg = 1.5, c; = .1, =15,k =.1and
t = .1 for the solution of the system of equations (2)
with the initial conditions (25).
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x WEzact W“PI”' |WEuract — Wappr|
-50 1.40001 1.40001 4.11530809E-11
-40 1.40007 1.40007 3.03372660E-10
-30 1.40051 1.40051 2.203175641E-9
-20 1.4037 1.4037 1.430272833E-8
-10 1.42448 1.42448 3.482267030E-8
00 1.5015 1.5015 1.124898760E-7
10 157678 1.57678 3.510329849E-8
20 159651 1.59651 1.412158034E-8
30 1.59952 1.59952 2.171022472E-9
40 1.59993 1.59993 2.988682634E-10
50 1.59999 1.59999 4.054068192E-11

4 Conclusion

In the present paper, the homotopy perturbation
sumudu transform method is used to find the solutions
of the nonlinear coupled equations in the mathemati-
cal physics via the (1+1)-dimensional Ramani equa-
tions and the (1+1)-dimensional generalized nonlin-
ear Hirota Satsuma coupled KdV equations together
with the initial conditions. It can be concluded that
the HPSTM is very powerful and efficient in finding
the exact solutions for wide classes of problems. It
is worth pointing out that the HPSTM presents rapid
convergence solutions.
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