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Abstract: - A network is often modeled by a graph G = (V,E) with the vertices representing nodes such as
processors or stations, and the edges representing links between the nodes. One fundamental consideration in
the design of networks is reliability. Let G be a connected graph and P be graph-theoretic property. The
conditional connectivity A(G,P) or x(G, P) is the minimum cardinality of a set of edges or vertices, if it

exists, whose deletion disconnects G and each remaining component has property P . Let F be a vertex set
or edge set of G and P be the property of G —F with at least r components. Then we have I -component

connectivity Cx,(G) and the r -component edge connectivity CA,(G). In this paper, we determine the r -

component edge connectivity of hypercubes and folded hypercubes.

Key-Words: - Reliability; Conditional connectivity; Cut; Networks; Component; Graph

1 Introduction

A network is often modeled by a graph G =(V,E)
with the wvertices representing nodes such as
processors or stations, and the edges representing
links between the nodes. One fundamental
consideration in the design of networks is reliability
[2,9]. Let G=(V,E) be a connected graph,

N (V) the neighbors of a vertex V in G (simply
N(v)), E(v) the edges incident to V. Moreover,
for SV, G[S] is the subgraph induced by S,
Ns(S)=U, s N(V)=S,N5[S]= N5 (S)uUS, and
G —S denotes the subgraph of G induced by the
vertex set of VN S. Ifu,veV, d(u,v) denotes
the length of a shortest (U,V) -path. For X,Y cV,
denote by [X,Y] the set of edges of G with one

end in X and the other in Y . For graph-theoretical
terminology and notation not defined here we
follow [1]. All graphs considered in this paper are
simple, finite and undirected.

A r -component cut of G is a set of vertices
whose deletion results in a graph with at least r

components. I -component connectivity Cx,(G) of
G is the size of the smallest r -component cut. The
I -component edge connectivity CA (G) can be
defined correspondingly. We that

can S€€
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cx,,,(G)=ck, (G) for each positive integer I .
The the
connectivity Cx,(G) . The r -component (edge)

connectivity was introduced in [3] and [11]
independently. Fabrega and Fiol introduced
extraconnectivity in [5]. Let F <V be a vertex set,
F is called extra-cut, if G — F is not connected and
each component of G — F has more than K vertices.

connectivity x(G) s 2-component

The extraconnectivity &, (G) is the cardinality of
the minimum extra-cuts.
The hypercube Q, =(V,E) with |V |=2" and

| E |=n2"" Every vertex can be represent by an n -

bit binary string. Two vertices are adjacent if and
only if their binary string representation differs in
only one bit position. The N -dimensional folded

hypercube FQ, is proposed by El-Amawy and

Latifi [4]. FQ, is obtained from Q, by adding 2"

edges, called complementary edges, each of them is
between vertices

X= (Xl’“"xn) and X = (Yla""fn)a
where X; =1—X;. Obviously, FQ, is obtained
from Q, by adding a perfect matching M where

M ={(x,X):xeV(Q,)}. Because Q, can be
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expressed as Q°, ©Q! |, where Q°, and Q! | are
two N —1-dimensional hypercubes with the prefix
0 and 1 of each vertex, respectively. Furthermore,

Q, can be viewed as G(Q',,Q} ,,M,), where
M, = {(0u,1u):0u eV (Q>,),lueV(Q. )} .Simil
arly, FQ, can be viewed asG(Q",,Q! ,M,+M),
where

M, = {(0u,1u):0u eV (Q),),lueV(Q. )}

and

M = {(0u,1T):0u eV (Q’,),1T eV(Q. ).

FQ, is (n+1) -regular and (n+1) -connected.

Moreover, FQ, is a Cayley graph. It has diameter

I_n/2_| , about a half of the diameter of Q, [4].
Thus, the folded hypercube FQ, is an enhancement

on the hypercube Q, .

The fault tolerance analysis of hypercubes and
folded hypercubes has recently attracted the
attention of many researchers [6,7,10,12,13,17,18,
20,21]. In [8], Hsu et al. determined the r -

component connectivity of the hypercube Q, for
r=2,3,---,n+1.In[19], Zhao et al. determined the
I -component connectivity of the hypercube Q, for
r=n+2,n+3,---,2n-4.

In this paper, we obtain that:

(1) cx,(FQ,)=x(FQ,)=n+1(n>4).

(2) e, (FQ,)=2n(n>4).

(3) cx,(FQ,)=3n-2(n=4).

4) cA4,(Q)=4(Q,)=n forn>2.

(5) c4,(Q,)=2n-1forn=2.

(6) c4,(Q,)=3n-2 for n>2.

(7) ¢4, (FQ,)=A(FQ,)=n+1 for n>3.

8) c4(FQ,)=2n+1 forn>3.

9) c4,(FQ,)=3n+1forn>3.

2 Main results
For the sake of convenience, we denote the
vertex whose 1 th coordinate of the binary string

representation different from V's by V;. Similarly,
V; 1s the vertex whose N -bit binary string which
differs in the ] th position with V, . Clearly,V;, =V.

Lemma 2.1 [18]
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Any two vertices of Q, have exactly two common

neighbors for N > 3 if they have any.

Lemma 2.2 [17]
Any two vertices of FQ, have exactly two common

neighbors for N > 4 if they have.

Corollary 2.3
For any two vertices X,yeV(Q,)(n=3) or

V(FQ)(n=4),
(1) if d(x,y)=2, then they have exactly two

common neighbors;
(2) if d(X,y)# 2, then they do not have common

neighbors.

Lemma 2.4
Let X and Y be any two vertices of V (Q,)(n > 3)
such that have two common neighbors.

() If xeV(QY,),yeV(Q!,) , then the one

0

common neighbor is in Q,_,, and the other one is in

Qui-
) If X,y eV (QY,) or V(QL,), then the two

1

. . 0
common neighbors are in Q, , or Q, ;.

Proof
(1) Let X=0u and y=1u,. Then $x,y$ have two
common neighbors 1U,0U; . According to Lemma

2.1, the result holds.
(2) Let X=0u and y=0v. Since they have two

common neighbors, we assume that they are
Ou;,0u; . And Ou; has two neighbors Ou;,0u; .

According to Lemma 2.1, y =0v =0u; .

Analogue to Lemma 2.4, we have

Lemma 2.5

For any two vertices X,yeV(FQ,)(n=4) ,
FQ,=G(Q",,Q!,,M,+M), and X and y have
two common neighbors.

() If xeV(QY,),yeV(QL,), then one of the

0

common neighbors is in Q, ,, and the other one is

in erm-
) If X,y eV(QY,) or V(Q!_,), then both of the

common neighbors are in Q7 or Q! .
The following results are about the extraconnectivit-
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y of FQ,, and we will use them in the following
proof.

Lemma 2.6
(1) x,(FQ,) =x(FQ,)=n+1(n>2).[4]

2) x,(FQ,)=2n(n>4),x,(FQ,)=3n-2(n>8) .

[12,17]

Lemma 2.7 [8] ck,,,(Q,)=kn—k(k+1)/2+1,
forn>2,1<k<n.

Lemma 2.8

(DLetueQ,(n23). x(Q,—N[u])=n-2.[16]

(2)Letu,veQ,(n23),uv e E. Then we have
x(Q,—N[u,v])=n-2[15]

Theorem 2.9
cx,(FQ,)=x(FQ,)=n+1(n=4).

Theorem 2.10 cx;(FQ,)=2n(n>4).
Proof We choose two nonadjacent vertices X, Y in a
cycle C,. Then FQ,—N({X,y}) has at least 3
connected components and | N({X,y})|=2n. That
is ¢, (FQ,) <2n.

We will show cx;(FQ,)=2n . It is easy to

check that it is true for N =4. So we suppose N>5.

By Let FcV(FQ,), with
|F|<2n-1 . And FQ,—F has at least 3
connected components, say, G,,G, and G,.

If FQ,—F has at least 2 isolated vertices, then

| F[>2n, a contradiction. Hence FQ, —F has at
most one isolated vertex.
If each component of FQ, —F has at least 2

contradiction.

vertices, then it contradicts to x,(FQ,)=2n .

Therefore, FQ, — F has only one isolated vertex X.

Because FQ, =G(Q",,Q!,,M,+M), we have

| F mV(Qr?_l) I<Kn-1 or |F mV(erl_l) I<n-1.
Without loss of generality, we set

IFAV(QY)Kn-1.

Case 1. Q) , —F is not connected.
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Firstly, we assume that Xe€V(Q.,) . Because
[FAVQL)En-LIN, (0]=x(Q)=n-1.
we have |F NV (QY,)|=n-1. By Lemma 2.8,

Q. —(FU{x}) is connected. Since | F [<2n-1,
the last one vertex Z in
N, [x]. For any ueV(Q),)-F, U has

we need delete
Qr11—1 -
at least one neighbor in Q. —(FuU{x}) or is
Q. —(Fui{x}) via NQ&1 (u)
according to Lemma 2.5. Then FQ, —F has only

connected to

two components, a contradiction.
Hence X EV(Qr?—l)' So QY , —F has only two
components. For any UeV(Q, )—F , u and X

have at most one common neighbor in Qr?_l by

0
n-1->

Lemma 2.5.But U has two neighbors in Q
furthermore U has at least one neighbor in

V(Q,)-F Then FQ,—F has only two

components, a contradiction.

Case2.Q, —F is connected.

Then X €V (Q,_,)—F . If there is a neighbor in
QY —F for any yeV(QL,)—(FuU{x}), then
FQ, — F has only two components, a contradiction.

We assume that there is a  vertex
yeV(Q!,)—(FuU{x}) such that there exits no

neighbor in Qr?_l —F . There must be a neighbor of
y in Q! ,—F because of |F[<2n—1 . Since
[Neg (X)|=n+1 and | NQE_I(y) |=2 , we need
delete at most N —4 vertices in
FQ, ~Neo, (0 —Ng, ().

Whether X and Y have common neighbors in Q)
y has at least Nn—4 neighbors
FQ, —Ngg (X)—N o, (y) . And these neighbors

or not, n
are in Q:H. Note that each vertex of Q:H has two
neighbors in Qr?—l . According to Pigeonhole
principle, Y is connected to Qr?_l —F . Hence

FQ, — F has only two components, a contradiction.

Lemma 2.11[12]
x(Q,)=2n-2(n>3).
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Lemma 2.12 [14]
Let FQ, be a folded hypercube with n>8, and

FcV(FQ,) with |F[<£3n-3, then there is a
connected component C in FQ,—F such that

IV(C)>2"-|F|-2.

Theorem 2.13

cx,(FQ,)=3n-2(n>4).

Proof

We choose a Q, and two 4-cycles, say C,,C,, of

Q, . Take two nonadjacent vertices X,y in C,, and

take avertex z in C, such that d(y,z)=2 (see
Fig.1).

000

101

=t

Fig.1

Then | N({X,Y,z})|=3n—2 and FQ,—N({X,
Yy, z}) has at least 4 components. Hence Cx,(FQ,)
<3n-2.

We will show Cx,(FQ,)=3n—-2. It is easy to
check that holds for n =4,5. So we suppose N> 6.

By Let FcV(FQ,), with
|F|<3n-3. If n>8, then by Lemma 2.12,

FQ, —F has at most 3 connected components, a

contradiction.

contradiction. We need show Cx,(FQ,)>3n-2
forn=6,7.

Suppose N =6, we will show cx,(FQ,)>16.
By contradiction. Let F <V (FQ,), with | F [<15.

Because FQ, =G(Q/,Qi,M,+M), we have
IFAV(QY)[£7 or |F NV (Q))[€ 7. Without
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loss of generality, we set | F "V (QJ)|< 7. And

FQ, — F has at most two isolated vertices.

Case 1. FQ, —F has two isolated vertices X,V .

Then at most one of X and VY isin Q;) .

Subcase 1.1. d(x,y) # 2.
Hence N(X)NN(y)=9, N(X)UN(Yy)c F
and [N(X)|+|N(y)|=14.
If X is in Qg , and y is in Q. , then
NQS(X)g F,|NQ50(X)|:5.Notethat
[Ng (014 Noy (1) =7
and

IFAV(Q 7.
Then F NV (QY) = NQ;J xX)u NQQ (Y). According
to Lemma 2.8, x(Q; — NQ§ (X)—X) =3, hence
Q50 —F — X is connected. Furthermore, for any
2eQ!—(FU{y}), z has at least one neighbor in

Q! —(F U{x}) by Lemma 2.5. Therefore,

FQ, — F has at most three connected components,

a contradiction.

If X and y arein Q., then
V(Q)HNF
[N Q) [+ N (V) =4,
V(@Q)NF 2
[Ny )1+ N () [=10.
Since Cx;(Q;) =8>5 by Lemma 2.7, Q) —F has
at most two components. For any Ze Qi —F , z

has at least one neighbor in Q50 —F by Lemma 2.5.

Then FQ,—F has at most three connected
components, a contradiction.

Subcase 1.2. d(x,y)=2.

It is similar to that of Subcase 1.1, for any
ZeQ.—F, z has at least one neighbor in Q) —F

or can be connected to Q;) —F by a path.

Case 2. FQ, — F has only one isolated vertex X.
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Subcase 2.1. X eV (QY).

Because | ng (X) =5,V (QY)NF [ 7 ,according
to Lemma 2.7, Qg —F has only two components.
At most one of vertex, say Y, of Qi —F does not
have neighbors in Q; —F . And Y has a neighbor
Z in QSl — F . There is at least one neighbor of z in

Q? —F by Lemma 2.5. Hence Y is connected to

Q50 -F Then FQ,—F has at most three
connected components, a contradiction.

Subcase 2.2. xeV (Q)).

Since «,(Q;) =8 by Lemma 2.11, we can obtain
that Q; — F is connected or Q; —F has an isolated
vertex Y and Y has neighbors in FQ, —F (that is,
y is the isolated vertex of QJ—F but not
FQ,—F).

We assume that Q) —F is connected. We will
show that for any ueQi—(FuU{x}), u is
connected to Q;) —F . By contradiction. There is a
vertex Ue Q) —(FU{X}), U is not connected to
Q! —F . Then NQ;) (u)c F . And U has a neighbor
v in Qi—F , v has non eighbors in Q) —F .
Hence N o V)cF.

If FQ([{u,v}] is a connected component of
FQ, —F , then

Ng, (10.v))  FL| Ny, (1,v}) =8,
[Ny (W)= Ny () =/ N ()= 2
and N o (u), N o (V),N o (X) are pairwise disjoint.
Note that | F [<15. For any
we Qs —F - N, ({u,v)—{u,v,x},
W has a neighbor in Q) —F . Then FQ, —F has

at most three connected components, a contradiction.

Suppose that U has another neighbor, say W,
different from Vv in Q.-F Because of

|IFAV(Q))[<7, W has a neighbor in Q) —F .
Then FQ,—F has at most three connected

E-ISSN: 2224-2880

335

Litao Guo

components, a contradiction. If V has another

neighbor, sayw', different from U in Q51 —F, then

1t is similar to the front of the above case. We have
a contradiction.

Now we assume that Q) — F has an isolated
vertex Y and Y has neighbors in Q; —F . And
Q;) —(F w{y}) is connected. Because
Ny, (O F, Ny, (Y) S F,
NG (D=5 Ny (1) =2,
|FAV(@Q))ILT.
For any wWeQ;—(FuU{X}) , as the above
discussion, W is connected to QJ—F . Then

FQ, — F has at most three connected components,
a contradiction.

Case 3. FQ, —F has no isolated vertices.

Since x,;(Q;)=8 by Lemma 2.1l1a nd

|IFAV(Q{)[<7, we can obtain that Q) —F is
connected or QS0 —F has an isolated vertex, say Y,
such that Yy has neighbors in Qsl —F (that is, Yy is
the isolated vertex of Qf —F but not FQ, — F ).

Subcase 3.1. Q! — F is connected.

We will show that for any UeQ;—F , U is
connected to Q; — F . By contradiction, we assume
that there is av ertex UeQ,—F , U is not
connected to Q) —F . Then N Q (WcF.Andu

has a neighbor V in Q —F , V has no neighbors in
Q! —F . Hence NQO(V)g F.
If FQ,[{u,v}] is a connected component of
FQ, —F , then
N, (fu,v}) < F,
[N (fu.v}) =8,
N ) NG D2,
and NQO (), NQO (V) are disjoint.
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Suppose that there is a vertex

weQ}—F =Ny, (fu,v) —{u,v},

W is not connected to Q; —F . Then N Qo w)ycF.
5

According to Lemma 2.5, U,V,W do not have

common neighbors in Q? . Because
[Ny (W[ +] Ny V) +| Ny (W) =6,

|[FAV(Q)£7,
and W has a neighbor W, in

QSI -F- NQ;({U,V})—{U,V} P
W, has a neighbor in Q; —F . Then FQ, —F has

at most three connected components, a contradiction.

Hence for any We Q! —F — NQl ({u,v})—{u,v},

W is connected to Q—F . We obtain a

contradiction.
Suppose that U has another neighbor W different

from V in Q. —F . Then NQ9(W)g F . And
[Ny )|+ Nog (V) |+ Ny () =6,
|IFAV(Q) 7.

For any ZEQSI—F—NQI({U,V,W})—{U,V,W}, z

is connected to Q) —F . We also obtain a

contradiction. If V has another neighbor W'

different from U in Q} — F , then it is similar to the
front of the above case. We have a contradiction.

Subcase 3.2. Q) —F has an isolated vertex y and
Yy has neighbors in Qs1 —F (that is, y is the
isolated vertex of Q) —F but not FQ, —F ).

The proof is similar to that of Subcase 2.2, we
get a contradiction.

For n=7, we can show Cx,(FQ,)=19 using
the similar method.

Theorem 2.14
cA4(Q,)=4(Q,)=nforn=>2.

Theorem 2.15

¢, (Q,)=2n-1 forn>2.
Proof

E-ISSN: 2224-2880

336

Litao Guo

Take an edge € = UV, then | E(U) UE(V)|=2n—-1.
And Q, —E(U)—E(V) has at least 3 connected
components. That isCA,(Q,) <2n-1.

Next we will show that €4 (Q,)=2n-1 by

induction. It is easy to check it is true for n=2,3,4 .

So we suppose N> 5and assume it is true for all
k < n.We will prove that is true for K =n.

Let F c E(Q,) with |[F|<2n—-2, and Q,-F
has at least 3¢ omponents. Now since
Q, =Q’,0Q,, we have | E(Q",)nF|<n-1
or [E(QQ_)NnF|gn-1,say| E(Q ,)NF|<n-1.

Since A(Q,_,) =n—1, we have two cases.
Case 1.Q, — F is not connected.

Then |E(Q) )NF|=n-1 and Q) ,—F has
only two components.

If Q. —F is not connected, then|E(Q. )NF|
=n-1. Thatis [Q) ,,Q. ,]J"F = . But each

vertex of Q! , —F is connected to one component
of Q' -F

components, a contradiction.

Hence Q,—F has only two

Note that |[Q;,,Q. 12" >n-1(n>5).If
Q,L1 —F is connected, then erH —F is connected

to one component of Q' —F . Hence Q, —F has
only two components, a contradiction.

Case2.Q), —F is connected.

If Q) —F is connected, then we are done. We
assume that Q) —F is not connected. And

erH_F has at most one isolated vertex since
|FI£2n-2.

If Q' —F has at least 3 components, from the
inductive hypothesis, then | E(Q} )N F [>2n-3.
Hence at most one of components of Q. —F is

not connected to Q) ,—F , Q —F has at most

two components, a contradiction.
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Therefore we assume that Q.  —F has only two

components. But 2" —(2n-2)>0(n>5)
Q,—F has at most two components, a
contradiction.

Theorem 2.16
c4,(Q,)=3n-2forn=2.

Proof
Take a path P, =uvw. Then

|E(U)UE(V)UE(W)|=3n-2.
And Q,-E(U)-E(v)-E(wW) has at least 4
connected components. That is €4,(Q,) <3n-2.
Next we will show that €4,(Q,)>3n-2 by

induction. It is easy to check it is true for n=2,3,4 .

So we suppose N> 5 and assume this is true for all
k < n.We will prove that is true for K =n.

Let F c E(Q,) with |F|<3n-3, and Q,-F
has at least 4c omponents.
Q,= Qr?—l O Qr11—1 , we have

| E(Qr?_l)m FI<[3n/2]-2

Now  since

or

|E(Q.)NF[<[3n/2]-2,
say, | E(QY )N F [<[3n/2]-2.
cA4(Q,,)=2n-3>[3n/2]-2(n=5) ,

QY —F has at most two components.

Since

Case 1. Q) , —F is connected.

If Q! , —F has at least 4 components, then

c4,(Q,_;) =3n—5 by the inductive hypothesis. We
need delete at most two edges again. Since each
vertex of Q! has a neighbor in Q°, and

I1QY,,QL,1F2"">2(n>5) , Q —F has at
most 3 components, a contradiction.
Suppose Q. ,—F has at most 3 components.

Because |[[QY,,Q! ,]1|=2""~(3n-3)>0(n>5),

Q, — F has at most 3 components, a contradiction.

Case 2.

components.

Q',—F has only two connected
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Then | E(Q )N F > 2(Q, ) =n~1 and
|E(Q, )NF[£2n-2. And c4(Q,,)=2n-3.

If Q,l]f1 —F has at least 3 components, then
IEQ.)NF[=2n-3 and |E(Q’,)nF<n .
But |[Q",,Q. , JnF <1 and 2" >1(n>5),
Q,—F has

contradiction.

at most two components, a

Hence Q. ,—F has at most two components.
We [Q),.Qs,1>3n-3(n>5) |

Q, — F has at most 3 components, a contradiction.

have and

And because the hypercube Q. is the subgraph of

n

the folded hypercube FQ,, we can apply the

similar method to FQ, . Hence we have the

following theorem.

Theorem 2.17
(1) ¢4 (FQ,) =A(FQ,)=n+1 for n>3.

(2) cA4(FQ,)=2n+1 for n>3.

(3) c4,(FQ,)=3n+1for n>3.
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