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Abstract: In this paper, we study the iterative algorithms for saddle point problems(SPP). We present a new
symmetric successive over-relaxation method with three parameters, which is the extension of the SSOR iteration
method. Under some suitable conditions, we give the convergence results. Numerical examples further confirm
the correctness of the theory and the effectiveness of the method.
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1 Introduction
We consider the iterative solutions of large sparse sad-
dle point problems of the form(

A B
BT 0

)(
x
y

)
=

(
p
q

)
(1)

where A ∈ Rm×m is a symmetric positive defi-
nite matrix, B ∈ Rm×n is a matrix of full colum-
n rank, p ∈ Rm and q ∈ Rn are two given vec-
tors, here m ≥ n. Denote by BT the transpose of the
matrixB. These assumptions guarantee the existence
and uniqueness of the solution of the linear system.

This system arises as the first-order optimali-
ty conditions for the following equality-constrained
quadratic programming problem:

min J(x) =
1

2
xTAx− pTx (2)

subject to Bx = q (3)

In this case the variable y represents the vector of
Lagrange multipliers. Any solution (x∗, y∗) of (1) is
a saddle point for the Lagrangian

L(x, y) =
1

2
xTAx− pTx+ (Bx− q)T y (4)

hence the name ”saddle point problem” given to (1).
Recall that a saddle point is a point (x∗, y∗) ∈
Rn+m that satisfies

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) (5)

for any x ∈ Rn and y ∈ Rm, or equivalently,

min
x

max
y
L(x, y) = L(x∗, y∗) = max

y
min
x
L(x, y) (6)

Systems of the form (1) also arise in nonlin-
early constrained optimization (sequential quadratic
programming and interior point methods), in fluid dy-
namics (’Stokes’ problem), incompressible elasticity,
circuit analysis, structural analysis, and so forth[1].

Since the above problem is large and sparse, it-
erative methods for solving equation (1) are effec-
tive because of storage requirements and preserva-
tion of sparsity. The well-known SOR method, which
is a simple iterative method that is popular in en-
gineering applications, cannot be applied directly to
system (1) because of the singularity of the block
diagonal part of the coefficient matrix. Recently,
more attention has been paid to a class of iterative
methods namely splitting methods. The best known
and the oldest methods is Uzawa and the precondi-
tioned Uzawa algorithms[2]. For solving augment-
ed systems (1) , Golub et al have presented sever-
al SOR-like algorithms and have considered the opti-
mum choice for the iterative parameter by using some
nonsingular preconditioning matrix Q instead of the
null block in the coefficient matrix (1) [3]. Bai
et al without extra cost per iteration step, develope-
d SOR-like method and presented the GSOR method,
parameterized Uzawa and the inexact parameterized
Uzawa methods for solving singular and nonsingu-
lar saddle point problems[4, 5, 6, 12]. Additional-
ly, these authors proved the convergence and semi-
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convergence of these methods under suitable condi-
tions. Furthermore, Bai, Golub and Ng discussed
the convergence and the preconditioning property of
the Hermitian and skew-Hermitian splitting (HSS) it-
eration method when it is used to solve the saddle
point problem[8]. Then, Bai et al. establish a class
of preconditioned Hermitian/skew-Hermitian splitting
(PHSS) iteration method for saddle point problems[9],
and Pan et al. further proposed its two-parameter
and four-parameter acceleration, called the general-
ized preconditioned Hermitian/skew-Hermitian split-
ting (GPHSS) iteration method, and studied the con-
vergence of this iterative scheme[10, 16]. Both theory
and experiments have shown that these methods are
very robust and efficient for solving the saddle-point
problems when they are used as either solvers or pre-
conditioners (for the Krylov subspace iteration meth-
ods). Li et al.[17], have considered the Chebyshev ac-
celeration of the SOR-like method by a proper choice
of the auxiliary matrix Q. On the other hand, Martins
et al.[18], presented a variant of the accelerated over-
relaxation iterative method. Others[7, 13, 14, 15],
have proposed SSOR-like models for this purpose.

Considering all above approaches, In this pa-
per, We present a new symmetric successive over-
relaxation method with three parameters. Under some
suitable conditions, we give the convergence results.
Numerical results show that the new methods are very
effective. The rest of the paper is organized as follows.
In Section 2, the outline of our SSOR-like method to
solve (1) is provided. In Section 3, we obtain the con-
vergence region for this method. In Section 4, some
numerical computations are presented. Finally, con-
clusions are made for this paper.

2 The Three-parameter SSOR-like
iteration methods

In this section, we review the SOR-like iteration
method for solving the saddle-point problems present-
ed by G. H. Golub et al[3].

To establish the convergence properties of itera-
tive method for the saddle-point problems, It need to
begin by writing the saddle-point problem (1) in non-
symmetric form:

AZ = b (7)

where

A =

(
A B
−BT 0

)
, Z =

(
x
y

)
, b =

(
p
−q

)
(8)

For the coefficient matrix of the augmented linear sys-
tem (7), we make the following splitting

A = D − L− U, (9)

where

D =

(
A 0
0 Q

)
, L =

(
0 0
BT 0

)
,

U =

(
0 −B
0 Q

)
(10)

and Q ∈ Rn×n is a prescribed nonsingular and sym-
metric matrix. Let ω be a nonzero real. Golub et
al considered the following generalized SOR iteration
scheme for the augmented linear system (7):(
x(k+1)

y(k+1)

)
= (D − ωL)−1[(1− ω)D + ωU ]

(
x(k)

y(k)

)
+ω(D − ωL)−1

(
p
−q

)
More precisely, we have the following algorithmic de-
scription of the SOR-like iteration method.

Algorithm 1. (The SOR-like iteration method)
Let Q ∈ Rn×n be a nonsingular and symmetric

matrix. Given initial vectors

x(0) ∈ Rm, ; y(0) ∈ Rn

and a relaxation factors ω > 0. For k = 0, 1, 2, . . .

until the iteration sequence {(x(k)T , y(k)T )T } is con-
vergent, compute{

x(k+1) = (1− ω)x(k) + ωA−1(p−By(k)),
y(k+1) = y(k) + ωQ−1(BTx(k+1) − q).

(11)

here Q is an approximate (preconditioning) matrix of
the Schur complement matrix BTA−1B.

Let ω and τ be two nonzero reals, Im ∈
Rm×m and In ∈ Rn×n be the m-by-m and n-by-n
identity matrices, respectively, and

Ω =

(
ωIm 0

0 τIn

)
Bai et al [4] considered the following generalized
SOR iteration scheme for the augmented linear sys-
tem (7):(
x(k+1)

y(k+1)

)
= (D − ΩL)−1[(I − Ω)D + ΩU ]

(
x(k)

y(k)

)
+(D − ΩL)−1Ω

(
p
−q

)
.

More precisely, we have the following algorithmic de-
scription of the GSOR iteration method.
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Algorithm 2. (The GSOR iteration method)
Let Q ∈ Rn×n be a nonsingular and symmetric

matrix. Given initial vectors

x(0) ∈ Rm, y(0) ∈ Rn

and two relaxation factors ω, τ 6= 0.
For k = 0, 1, 2, . . . until the iteration se-
quence {(x(k)T , y(k)T )T } is convergent, compute{

x(k+1) = (1− ω)x(k) + ωA−1(p−By(k)),
y(k+1) = y(k) + τQ−1(BTx(k+1) − q).

(12)

here Q is an approximate (preconditioning) matrix of
the Schur complement matrix BTA−1B.

Most recently, a growing interest has been noticed
in solving augmented systems with symmetric SOR
method (SSOR). Some have considered the SSOR it-
eration scheme for the saddle point problems (7)(see
[7]):

(
x(k+

1
2
)

y(k+
1
2
)

)
= (D−ωL)−1[(1−ω)D+ωU ]

(
x(k)

y(k)

)

+ ω(D − ωL)−1

(
p

−q

)
(
x(k+1)

y(k+1)

)
= (D−ωU)−1[(1−ω)D+ωL]

(
x(k+

1
2
)

y(k+
1
2
)

)

+ ω(D−ωU)−1

(
p

−q

)

Whereas others [14, 15] applied the nonsingular sym-
metric matrix Q with the following splitting:(

A B
−BT 0

)
=

(
A 0
0 Q

)
−
(

0 0

BT Q
2

)
−
(

0 −B
0 Q

2

)
(13)

The authors of [13], considered the following split-
ting:(

A B
−BT 0

)
=

(
A 0
0 Q

)
−
(

0 0
BT αQ

)
−
(

0 −B
0 βQ

)
(14)

whereQ being nonsingular symmetric, α, β ∈ R,α+
β = 1, and applied the symmetric SOR method to
solve the the saddle point problems (7).

Here we make the following splitting

A ≡
(

A B
−BT 0

)
= D − L′ − U ′ (15)

where

D =

(
A 0
0 Q

)
, L′ =

(
0 0
BT αQ

)
and

U ′ =

(
0 −B
0 (1− α)Q

)
We consider the the following SSOR iteration scheme
for the saddle point problems (7):

(
x(k+

1
2
)

y(k+
1
2
)

)
= (D−ΩL′)−1[(I−Ω)D+ΩU ′]

(
x(k)

y(k)

)

+ (D−ΩL′)−1Ω

(
p

−q

)
(
x(k+1)

y(k+1)

)
= (D−ΩU ′)−1[(I−Ω)D+ΩL′]

(
x(k+

1
2
)

y(k+
1
2
)

)

+ (D − ΩU ′)−1Ω

(
p

−q

)

More precisely, we have the following algorithmic
description of this three-parameter symmetric SOR
method method(3-SSOR-like).

Algorithm 3. (The 3-SSOR-like iteration method)
Let Q ∈ Rn×n be a nonsingular and symmetric

matrix. Given initial vectors

x(0) ∈ Rm, y(0) ∈ Rn

and three relaxation factors ω, τ > 0, 0 ≤
α ≤ 1. For k = 0, 1, 2, . . . until the iteration se-
quence {(x(k)T , y(k)T )T } is convergent, compute

x(k+
1
2
) = (1− ω)x(k) + ωA−1(p−By(k))

y(k+
1
2
) = y(k) + τ

1−ατQ
−1(BTx(k+

1
2
) − q)

y(k+1) = y(k+
1
2
)+ τ

1−τ+ατQ
−1(BTx(k+

1
2
)−q)

x(k+1) = (1−ω)x(k+
1
2
)+ωA−1(p−By(k+1))

(16)

here Q is an approximate (preconditioning) matrix of
the Schur complement matrix BTA−1B.

Obviously, when α = 0, Algorithm 3 reduces
to GSSOR-like method in [7]; when α = 1

2 , Al-
gorithm 3 reduces to GMSSOR method in[15]; when
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α = 0, ω = τ , it becomes the SSOR method studied
in Darvishi and Hessari [13]; when α = 1

2 , ω = τ , it
is the same as the method studied by Wu et al in[14].

By selecting different matrix Q, we can get some
useful 3-SSOR-like iterative algorithm. Such as Q =
θI, (θ 6= 0), Q = BTA−1B,Q = BTB, in addition
to the above special selection method, as long as y-
ou keep Q symmetric positive definite, can also have
other method.

Evidently, the 3-SSOR-like iteration method can
be equivalently rewritten as(
x(k+1)

y(k+1)

)
= M(α,ω,τ)

(
x(k)

y(k)

)
+H−1(α,ω,τ)

(
p
−q

)
(17)

where I is the identity matrix,

M(α,ω,τ) = G(α,ω,τ)F(α,ω,τ) (18)

=

(
M11 M12

M21 M22

)
(19)

= P−1(α,ω,τ)N
−1
(α,ω,τ)S(α,ω,τ) (20)

and

H(α,ω,τ) = Ω−1(D−ΩL′)D−1(2I−Ω)−1(D−ΩU ′)

=

(
1

ω(2−ω)A
1

2−ωB

− 1
2−ωB

T − ω
2−ωB

TA−1B + (1−ατ)(1−τ+ατ)
τ(2−τ) Q

)
where

G(α,ω,τ) = (D − ΩU ′)−1[(I − Ω)D + ΩL′] =(
(1− ω)Im − ωτ

1−τ+ατA
−1BQ−1BT −ωA−1B

τ
1−τ+ατQ

−1BT In

)
,

F(α,ω,τ) = (D − ΩL′)−1[(I − Ω)D + ΩU ′] =(
(1− ω)Im −ωA−1B

(1−ω)τ
1−ατ Q

−1BT In − ωτ
1−ατQ

−1BTA−1B

)
;

M11 =

(1− ω)2Im −
ωτ(2− τ)(1− ω)

(1− τ + ατ)(1− ατ)
A−1BQ−1BT ;

M12 =

(ω2 − 2ω)A−1B +
ω2τ(2− τ)A−1BQ−1BTA−1B

(1− τ + ατ)(1− ατ)
;

M21 =
(1− ω)τ(2− τ)

(1− τ + ατ)(1− ατ)
Q−1BT ;

M22 = In −
ωτ(2− τ)

(1− τ + ατ)(1− ατ)
Q−1BTA−1B

and

P(α,ω,τ) =

(
A ωB
0 (1− τ + ατ)Q

)
N(α,ω,τ) =(

1
1−ωA

−1 0

− (1−ατ)τ
(1−ω)(1−τ+ατ)Q

−1BTA−1 1−ατ
1−τ+ατQ

−1

)
;

S(α,ω,τ) =(
(1− ω)Im −ωA−1B

(1−ω)τQ−1BT (1−ατ)In−ωτQ−1BTA−1B

)
Here, M(α,ω,τ) is the iteration matrix of the 3-SSOR-
like iteration. In fact, (17) may also result from the
splitting

A = H(α,ω,τ) −N(α,ω,τ) (21)

of the coefficient matrix A, with

N(α,ω,τ) = H(α,ω,τ) −A

=

(
(1−ω)2
ω(2−ω)A

ω−1
2−ωB

−1−ω
2−ω B

T − ω
2−ωB

TA−1B+ (1−ατ)(1−τ+ατ)
τ(2−τ) Q

)
Easily, we see that

M(α,ω,τ) = H−1(α,ω,τ)N(α,ω,τ) (22)

is the iteration matrix of the 3-SSOR-like method. See
also (19). Therefore, the 3-SSOR-like method is con-
vergent if an only if the spectral radius of the ma-
trix M(α,ω,τ), define in (19) or (22), is less than one,
i.e., ρ(M(α,ω,τ)) < 1. See[11].

3 Convergence analysis
In this section, we will analyze convergence region for
parameters α, ω and τ , in the 3-SSOR-like method to
solve the saddle point problems (7).

Note that

D − ΩL′ =

(
A 0
−τBT (1− ατ)Q

)
D − ΩU ′ =

(
A ωB
0 (1− τ + ατ)Q.

)
Since A is symmetric and positive definite and Q is
nonsingular, so

det(D − ΩL′) = (1− ατ)n det(A) det(Q) 6= 0;

det(D − ΩU ′) = (1−τ+ατ)n det(A) det(Q) 6= 0

if and only if 1− ατ 6= 0 and 1− τ + ατ 6= 0, i.e.,

τ 6=
{

1

α
,

1

1− α

}
. (23)
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Lemma 4. [11] Consider the quadratic equation x2−
bx + c = 0 , when b and c are real numbers, Both
roots of the equation are less than one in modulus if
and only if |c| < 1 and |b| < 1 + c .

Lemma 5. Suppose that µ is an eigenvalue of J =
Q−1BTA−1B. If λ satisfies

(1− τ + ατ)(1− ατ)(λ− 1)[(1− ω)2 − λ]

= λτω(2− τ)(2− ω)µ (24)

then λ is an eigenvalue ofM(α,ω,τ). Conversely, if λ 6=
1 is an eigenvalue of M(α,ω,τ), and λ 6= (1−ω)2, and
µ satisfies (24), then µ is a nonzero eigenvalue of J .

Proof. Evidently, the eigenvalue µ of J are real and
nonzero if Q is a nonsingular symmetric positive
definite matrix. Let λ (λ 6= (1 − ω)2 and λ 6=
1) be a nonzero eigenvalue of M(α,ω,τ) with eigen-

vector
(
x
y

)
∈ Rm+n. Then we can obtain(
M11 M12

M21 M22

)(
x
y

)
= λ

(
x
y

)
(25)

or

P−1(α,ω,τ)N
−1
(α,ω,τ)S(α,ω,τ)

(
x
y

)
= λ

(
x
y

)
(26)

so

S(α,ω,τ)

(
x
y

)
= λN(α,ω,τ)P(α,ω,τ)

(
x
y

)
(27)

that is,(
(1− ω)Im −ωA−1B

(1− ω)τQ−1BT (1− ατ)In − ωτJ

)(
x
y

)
= λ

(
1

1−ωA
−1 0

−(1−ατ)τ
(1−ω)(1−τ+ατ)Q

−1BTA−1 1−ατ
1−τ+ατQ

−1

)

×
(
A ωB
0 (1− τ + ατ)Q

)(
x
y

)
so (

(1− ω)Im −ωA−1B
(1− ω)τQ−1BT (1−ατ)In−ωτJ

)(
x
y

)
=

λ

(
1

1−ω Im
ω

1−ωA
−1B

−(1−ατ)τQ−1BT

(1−ω)(1−τ+ατ) (1−ατ)In− ωτ(1−ατ)J
(1−ω)(1−τ+ατ)

)(
x
y

)
.

From above we have the following system of two e-
quations

(1− ω − λ
1−ω )x = (ω + λω

1−ω )A−1By;

[(1− ω)τ + λτ(1−ατ)
(1−ω)(1−τ+ατ) ]Q

−1BTx =

(λ− 1)(1− ατ)y + (ωτ − λωτ(1−ατ)
(1−ω)(1−τ+ατ))Jy.

(28)

From the first equation, we can obtain

x =
ω(λ+ 1− ω)

(ω − 1)2 − λ
A−1By, (29)

which means y 6= 0. Taking the place of x in the sec-
ond equation yields

[(1− ω)τ +
λτ(1− ατ)

(1− ω)(1− τ + ατ)
]
ω(λ+ 1− ω)

(ω − 1)2 − λ
y =

(λ− 1)(1− ατ)y + (ωτ − λωτ(1− ατ)

(1− ω)(1− τ + ατ)
)Jy.

By simple manipulations, it is easy to get that

(1− τ + ατ)(λ− 1)(1− ατ)[(1− ω)2 − λ]y

= λτω(2− τ)(2− ω)Jy.

Since µ is an eigenvalue of J = Q−1BTA−1B, then
we have

(1− τ + ατ)(1− ατ)(λ− 1)[(1− ω)2 − λ]

= λτω(2− τ)(2− ω)µ

We can prove the second assertion by reversing the
process.

We let µk(k = 1, 2, · · · , n) be the eigen-
values of the matrix J , and denote by µmin =
min
1≤k≤n

µk and µmax = max
1≤k≤n

µk. Moreover, without

loss of generality, we assume that

0 < µmin = µ1 ≤ µ2 ≤ · · · ≤ µn−1 ≤ µn = µmax

The following theorem presents a sufficient condition
for guaranteeing the convergence of the 3-SSOR-like
method.

Theorem 6. Consider the system of linear e-
quations (7). Let A ∈ Rm×m and Q ∈
Rn×n be symmetric positive definite matrix, and B ∈
Rm×n be of full column rank. Denote the small-
est and the largest eigenvalues of the matrix J =
Q−1BTA−1B by µmin and µmax,respectively. Then
the 3-SSOR-like method is convergent, if ω satis-
fies 0 < ω < 2, and α satisfies 0 ≤ α ≤ 1, and τ sat-
isfies the following condition:

0 <
τ(2− τ)

(1− τ + ατ)(1− ατ)
<

(2− ω)2 + ω2

(2− ω)ωµmax
(30)

Proof. After some manipulations on lemma 5, we
have

λ2 + bλ+ c = 0 (31)
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where

b = −ω2 + 2ω − 2 +
τω(2− τ)(2− ω)µ

(1− τ + ατ)(1− ατ)

and
c = (1− ω)2.

By lemma 4, |λ| < 1 if and only if

|(1− ω)2| < 1, (32)

and∣∣∣∣−ω2 + 2ω − 2 +
τω(2− τ)(2− ω)µ

(1− τ + ατ)(1− ατ)

∣∣∣∣
< (1− ω)2 + 1. (33)

From (32) we have

0 < ω < 2 (34)

and the relation (35) becomes to the following in-
equalities:

−1− (ω − 1)2

< −ω2 + 2ω − 2 +
τω(2− τ)(2− ω)µ

(1− τ + ατ)(1− ατ)
<

(1− ω)2 + 1. (35)

It follows that

τω(2− τ)(2− ω)µ

(1− τ + ατ)(1− ατ)
> 0 (36)

and

2 + 2(ω − 1)2 − τω(2− τ)(2− ω)µ

(1− τ + ατ)(1− ατ)
> 0. (37)

obviously, we have

0 <
τ(2− τ)

(1− τ + ατ)(1− ατ)
<

(2− ω)2 + ω2

(2− ω)ωµ
.

Then, we have

0 <
τ(2− τ)

(1− τ + ατ)(1− ατ)
<

(2− ω)2 + ω2

(2− ω)ωµmax
.

This completes the proof.

Note that

(2− ω)2 + ω2 ≥ 2ω(2− ω),

so

2

µmax
≤ (2− ω)2 + ω2

(2− ω)ωµmax

The following corollary presents a new condition
for guaranteeing the convergence of the 3-SSOR-like
method.

Corollary 7. Consider the system of linear e-
quations (7). Let A ∈ Rm×m and Q ∈
Rn×n be symmetric positive definite matrix, and B ∈
Rm×n be of full column rank. Denote the small-
est and the largest eigenvalues of the matrix J =
Q−1BTA−1B by µmin and µmax,respectively. Then
the 3-SSOR-like method is convergent, if ω satis-
fies 0 < ω < 2, and α satisfies 0 ≤ α ≤ 1, and τ sat-
isfies the following condition:

0 <
τ(2− τ)

(1− τ + ατ)(1− ατ)
<

2

µmax
(38)

Theorem 8. [15] Consider the system of linear
equations (7). Let A ∈ Rm×m and Q ∈
Rn×n be symmetric positive definite matrix, and B ∈
Rm×n be of full column rank. Denote the small-
est and the largest eigenvalues of the matrix J =
Q−1BTA−1B by µmin and µmax,respectively. Then
the 3-SSOR-like method is convergent, if ω satis-
fies 0 < ω < 2, and α satisfies α = 1

2 , and τ satisfies
the following condition:

0 < τ <
2 + 2(ω − 1)2

2ω(2− ω)µmax + 1 + (ω − 1)2
(39)

Proof. Since α = 1
2 , after some manipulations on

lemma 5,we have

λ2 + bλ+ c = 0 (40)

where

b = −ω2 + 2ω − 2 +
4τω(2− ω)µ

2− τ
and

c = (1− ω)2

By lemma 4, |λ| < 1 if and only if

|(1− ω)2| < 1, (41)

and ∣∣∣∣−ω2 + 2ω − 2 +
4τω(2− ω)µ

2− τ

∣∣∣∣
< (1− ω)2 + 1. (42)

From (41) we have

0 < ω < 2, (43)

and the relation (42) becomes the following inequali-
ties:

−1− (ω − 1)2

< −ω2 + 2ω − 2 +
4τω(2− ω)µ

2− τ
<

(1− ω)2 + 1. (44)
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It follows that

4τω(2− ω)µ

2− τ
> 0 (45)

and

2 + 2(ω − 1)2 − 4τω(2− ω)µ

2− τ
> 0. (46)

Then, we have

0 < τ <
2 + 2(ω − 1)2

2ω(2− ω)µmax + 1 + (ω − 1)2
.

This completes the proof.

Theorem 9. Consider the system of linear equations
(7). LetA ∈ Rm×m andQ ∈ Rn×n be symmetric pos-
itive definite matrix, and B ∈ Rm×n be of full column
rank. Denote the smallest and the largest eigenvalues
of the matrix J = Q−1BTA−1B by µmin and µmax,
respectively. Then the 3-SSOR-like method is conver-
gent, if ω = τ and α satisfies α = 0, and ω satisfies
the following condition:

0 < ω <
2√

4µmax + 1 + 1
< 1 (47)

Proof. Since α = 0, after some manipulations on
lemma 5, then, we have

λ2 + bλ+ c = 0 (48)

where

b = −ω2 + 2ω − 2− (
ω3 − 2ω2

1− ω
− 2ω2 + ω3)µ

and
c = (1− ω)2.

By lemma 4, |λ| < 1 if and only if

|(1− ω)2| < 1 (49)

and ∣∣∣∣−ω2 + 2ω − 2−
(
ω3 − 2ω2

1− ω
− 2ω2 + ω3

)
µ

∣∣∣∣
< (1− ω)2 + 1 (50)

From (49) we have

0 < ω < 2 (51)

and the relation (50) changes to the following inequal-
ities:

−1− (ω − 1)2

< −ω2 + 2ω − 2−
(
ω3 − 2ω2

1− ω
− 2ω2 + ω3

)
µ

< (1− ω)2 + 1.

It leads to

ω2(2− ω)2µ

1− ω
> 0 (52)

and

ω2(2− ω)2µ

1− ω
< (2− ω)2 + ω2. (53)

If

2
ω2(2− ω)2µ

1− ω
< (2− ω)2,

then we have

ω2(2− ω)2µ

1− ω
< (2− ω)2 < (2− ω)2 + ω2,

which follows that

ω2µ+ ω − 1 < 0.

Therefore, we have

0 < ω <
2√

4µmax + 1 + 1
< 1.

This completes the proof.

4 Numerical examples
In this section, we use a numerical example to further
examine the effectiveness and show the advantages of
the 3-SSOR-like method over the SOR-like method,
GSOR method, SSOR-like and GSSOR-like method.

This example is a system of purely algebraic e-
quations discussed in [12]. The matrices A and B are
defined as follows:

A = (ai,j)m×m =


i+ 1, i = j,

1, |i− j| = 1,

0, otherwise.

B = (bi,j)m×n =

{
j, i = j +m− n,
0, otherwise.

We report the corresponding the number of iter-
ations ( denoted by IT), the spectral radius (denoted
by ρ), the time needed for convergence (denoted by
CPU) and the norm of absolute error vectors ( denot-
ed by RES) by choosing Q = BTB for all the SOR-
like, 3-SSOR-like, GSOR, SSOR-like and GSSOR-
like methods. The stopping criterion are used in the
computations,

||rk||2
||r0||2

< 10−6
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where

rk =

(
p
−q

)
−
(

A B
−BT 0

)(
x(k)

y(k)

)
and {(x(k)T , y(k)T )T } is the k-th iteration for each of
the methods.

The optimum parameter for the SOR-like and G-
SOR method were determined according to had and
given the results. We chose the parameters for the
SSOR-like, GSSOR-like and 3-SSOR-like method by
trial and error. All the computations were performed
on an Intel E2180 2.0GHZ CPU, 2.0G Memory, Win-
dows XP system using Matlab 7.0.

From the below numerical results, we can see
that the iteration number and the time in the GSOR
method, SSOR-like method, GSSOR-like method and
3-SSOR-like method are less than that in the SOR-like
method. From the IT and CPU two rows, we know that
we can decrease the number of iterations and the time
needed for convergence by choosing three suitable pa-
rameters. However, the relaxed parameters of the 3-
SSOR-like method are not optimal and only lie in the
convergence region of the method. Furthermore, the
determination of optimum values of the parameters
needs further studies.

Table 1: Iteration number for the SOR-like method

m n m+n ωopt IT CPU(s)
50 40 90 1.8201 292 0.422
200 150 350 1.9533 1032 32.75
400 300 700 1.9759 2066 546.281

Table 2: Iteration number for the GSOR method

m n m+n ωopt τopt IT CPU(s)
50 40 90 0.8668 24.0711 18 0.031
200 150 350 0.6461 51.2419 30 0.922
400 300 700 0.8901 201 17 4.219

Table 3: SSOR-like method’s iteration number

m n m+n ω IT CPU(s)
50 40 90 0.945 25 0.0712
200 150 350 0.988 23 1.218
400 300 700 0.993 23 7.358

Table 4: GSSOR-like method’s iteration number

m n m+n ω τ IT CPU(s)
50 40 90 1.246 20.8 18 0.0289

200 150 350 0.6461 95 15 0.473
400 300 700 0.65 190 16 4.032

Table 5: 3-SSOR-like(GMSSOR) method

m 50 200 400
n 40 150 300

m+n 90 350 700
α 0.5 0.5 0.5
ω 1.4 1.2 1.4
τ 1.7 1.9 1.95
IT 16 17 18

CPU(s) 0.0122 0.1396 0.7562
RES 6.6444E-7 6.7564E-7 6.0273E-7

Table 6: 3-SSOR-like method

m 50 200 400
n 40 150 300

m+n 90 350 700
α 0.0006 0.005 0.004
ω 1.4 1.2 1.4
τ 25 58 100
IT 16 16 17

CPU(s) 0.0202 0.1308 0.7482
RES 4.1509E-7 6.8419E-7 7.3920E-7
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