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Abstract: - Continuous density functions and their truncated versions are widely used in engineering practice. 

However, limited work was dedicated to the theoretical analysis and presentation in closed forms of truncated 

density functions of discrete random variables. The derivations of exponential, uniform and Gaussian discrete 

and truncated density functions and related moments, as well as their applications in the theory of discrete time 

stochastic processes and for the modelling of communication systems, is presented in this paper. Some 

imprecise solutions and common mistakes in the existing books related to discrete time stochastic signals 

analysis are presented and rigorous mathematical solutions are offered.  
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1 Introduction 
 

 

1.1 Motivation 
Digital technology is widely used in the 

development and design of electronic devices in 

communication systems. Therefore, the theoretical 

analysis of these systems assumes representation of 

signals in discrete time domain. Consequently, the 

random variables in these systems need to be 

represented in discrete forms having the values in a 

limited interval. These problems motivated us to 

work on truncated discrete density functions 

derivations. Here, we will start with presenting three 

cases where this kind of analysis is necessary. 

FIRST CASE: In the analysis of discrete time 

stochastic processes, we are usually interested in 

calculating their mean, variance and autocorrelation 

function.  For these calculations, we need to use the 

probability density function of a random variable 

involved. In doing this, a common mistake is that 

the density function is defined as a continuous 

function of the related random variable, which 

implies that the random variable is of a continuous 

type even though it is not. Therefore, in order to 

preserve mathematical exactness, we need to define 

and use density functions of discrete random 

variables. The misleading and mathematically 

incorrect procedures in using continuous probability 

density function in the theory of discrete time 

stochastic processes can be found in published 

papers and books. For example, in book [1], page 

78, example 3.3.1 and book [2], pages 71 and 72, 

example 2.2.3, the mean and autocorrelation 

function of a discrete time harmonic process, which 

is defined as ( ) sin( )X m A m    with 

uniformly distributed phases in the interval (-π, π) 

having continuous density function ( )f  =1/2π, are 

calculated as 
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However, due to the discrete nature of the stochastic 

process X(m) and its realisations, which are discrete 

time function x(m) of argument m, the presented 

calculations are not mathematically correct. In this 

paper, these expressions will be rigorously 

calculated after deriving the proper density function

( )f  . Namely, the random phase θ has to be of a 

discrete type inside the interval (-π, π) having a 

discrete density function. On the other hand, based 

on existing theory, the density function of the 

discrete phase need to be presented as a mass 

function. However, the mass function cannot be 

used to directly solve the integrals. Therefore, in this 

paper, we derived and used the density functions of 

the discrete random variables expressed in terms of 

Dirac’s delta functions, which simplified the 

solution of related integrals, as will be shown in 

Section 5. 

SECOND CASE: The general expression for 

the probability of bit error of a direct sequence 

spread-spectrum (DSSS) systems in a wideband 

channel (WBC) with white Gaussian noise, 

assuming existence of one primary and a set of 

secondary channels, was derived in [3]. It is 

assumed that the signals in secondary channels are 

transmitted with random delays τ in respect to the 

relative zero-delay in the primary channel. The 

probability of error can be expressed in this form [3]  
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whereas ψ is the sequence factor, S is the number of 

interpolated samples in a chip, 2β is the spreading 

factor and Eb/N0 is the signal-to-noise ratio in the 

channel. The probability function (3) is a random 

function conditioned on the delay τ as a random 

variable. Therefore, the probability of error is the 

mean value of this function that can be calculated 

using this integral 

 

( ) ( )e e d tP P f d


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     .     (4)  

 

The probability density function of the random 

delay τ is generally represented by the continuous 

exponential density function, fτ(τ). However, in the 

above case the interval of τ values is limited and 

contains S possible discrete values. Therefore, the 

delay has to be expressed using a truncated discrete 

density function fdt(τ). Furthermore, this function has 

to be expressed in a form suitable to calculate 

integral (4). To solve all these problems we 

developed the expression of a truncated discrete 

exponential function in closed form and 

demonstrated its application for this case. 

THIRD CASE: In direct sequence spread-

spectrum (DSSS) and code division multiple access 

(CDMA) systems with imperfect sequence 

synchronisation, the probability of error conditional 

on the delay τ between transmitter and the receiver 

spreading sequences, for a single-user system with 

interleavers, can be expressed as 
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whereas 2 2( ) | | /( | |)X S    , ψ is the sequence factor, 

S is the number of interpolated samples in a chip, 
22b  is the mean square value of fading coefficients, 

2β is the spreading factor and Eb/N0 is the signal-to-

noise ratio in the channel.  

The similar phenomenon occurs for well-

investigated carrier synchronization, where a 

random phase difference exists between the received 

signal and the locally generated carrier. This random 

phase was usually represented by Gaussian and 

Tikhonov density function, as can be seen in Lo and 

Lam [4], Eng and Milstain [5] and Richards paper 

[6]. As has been pointed out by Richards, Tikhonov 

distribution can be expressed as Gaussian or 

uniform density function as its special cases. These 

densities are used to find the mean value of the 

probability of error that was conditioned on the 

phase random variable, as may be seen from papers 

of Polprasert and Ritcey [7], Song at al. [8] and 

Chandra at al. [9]. In all these papers, the density 

functions are assumed continuous and the interval of 

their values sometimes was beyond the interval of 

possible values of the phase error as explicitly noted 

in Richards’s paper [6].   

Therefore, in theoretical analysis and practice, 

the density function of discrete random variable τ 

has to be expressed using a truncated discrete 

density function. Furthermore, this function has to 

be expressed in a form suitable to solve the integral 

(4). For these reasons, in this paper we derived the 

expressions of truncated discrete exponential, 

Gaussian and uniform density functions and 

expressed them in terms of Dirac’s delta functions 

and demonstrated their applications. 

 

 

1.2 Background 
The theory of continuous density functions and their 

truncated versions, expressed as conditional density 
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functions, is well known. The problem of 

discretisation of Gaussian density function and the 

derivation of related discrete density function is 

analysed in detail in Roy’s paper [10] pointing out 

the importance of normal distribution that makes 

key role in stochastic systems modelling, 

apostrophising that the applied discretisation 

method approximates the value of probability of 

particular event faster than in the case of simulation. 

This paper was a good guide for our development in 

spite of that the notion of the discretisation interval 

is not preserved and symmetry of the obtained 

density function around the mean value is lost. 

Similar analyses for geometric and hypergeometric 

probability functions was presented in Xekalaki 

work [11]. Roy and Dasgupta [12] suggested 

discrete approximation procedures for the 

evaluation of the reliability of complex systems. 

Roy [13] investigated the discrete Rayleigh 

distribution function with respect to two measures 

of failure rate, and used this distribution for 

evaluation reliability of complex systems. In Ho and 

Cheng’s paper [14], the expression for the 

probability mass of a truncated exponential density 

function was derived. However, they did not present 

the related density function in closed form and did 

not derive the moment of the density function. 

Ahsanullah [15] presented his analysis of 

exponential distribution. Some observations on the 

exponential half logistic density function and related 

distribution were presented in Seo and Kang paper 

[16]. Raschke [17] pointed out the importance of 

applying the truncated exponential function in 

modelling the amplitude of an earthquake in 

seismology and suggested the use of the generalized 

truncated exponential distribution. 

In this paper, we will use our unique approach 

to derive the expressions for discrete probability 

density functions, and then extend them for the 

derivations of related truncated density functions 

that are more suitable in practice when the discrete 

random variable exists in a limited interval of its 

possible values.  

Specifically, the discrete truncated density 

functions of our interest need to fulfil these 

conditions: 1) Discretisation of the related 

continuous density functions. The discrete density 

function should be obtained by assigning probability 

values as the weights of Dirac’s delta functions. 2) 

Preservation of the value of discretisation interval Ts 

that allows us to reconstruct the sampling interval 

and relate it to the real values in practical 

application. For example, in the case of defining a 

delay in communication systems these sampling 

intervals will be expressed in appropriate time units.   

3) Expression of density functions in closed form: 

By using Dirac’s delta functions the obtained 

density function of discrete random variable can be 

used to calculate the mean values of a random 

function according to the integral (4).  

 

 

2 The Discrete Truncated Exponential 

Density Function and Its Moments 
This section contains basic derivatives of the density 

function and related moment. The obtained results 

can be used to find mean value of the probability of 

error expressed as (2). 

 

 

2.1The discrete exponential density function   

The procedure of a continuous exponential density 

function discretisation is presented in Fig. 1. The 

discretisation is performed at uniformly spaced 

discrete interval Ts. The problem is how to find the 

expression of this discrete density function and how 

to find its mean and variance. In our approach, in 

the process of discretisation the probability of each 

interval needs to be calculated and assigned to the 

discrete time instants nTs. There are two possibilities 

in this case: Firstly, the probabilities are assigned to 

the left side of the interval starting with discrete 

value τ=0. Secondly, the probability are assigned to 

the right side of the interval starting with discrete 

value τ=1. 
 

{0 }sP T   

  τ  

fd (τ) 

0   Ts  2Ts  …      (n-1)Ts nTs 
 

 

Figure 1. Discretisation of a continuous exponential 

density function. 

 

These two possibilities will have some 

consequences to the expressions for density 

function, mean and variance of the truncated 

discrete random variable and particular care should 

be taken about this issue. Firstly, we will derive the 

discrete density and distribution functions in closed 

forms and related moments.   

Proposition: The discrete density function, having 

the values at the uniformly spaced instants Ts, is 

expressed as 

 

WSEAS TRANSACTIONS on MATHEMATICS Stevan Berber

E-ISSN: 2224-2880 228 Volume 16, 2017



1

( ) ( 1) ( )s sT n T

d s

n

f e e nT






  
    ,    (6)  

 

where δ(.) are Dirac’s delta functions and τ is a 

continuous variable. The values of the density 

function are discrete and defined by the positions 

and weights of delta functions. 

Proof: If this density is uniformly discretized in 

respect to τ, with the interval of discretisation of Ts, 

the probability value in any interval defined by n is  
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To express the density in a closed form, these 

probabilities can be used as weights of Dirac’s delta 

functions representing the discrete exponential 

density function at time instants τ = nTs, which 

results in this expression 
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which completes our proof.  

Proposition: The mean and variance derived for any 

Ts, and for a unit interval Ts = 1, can be expressed in 

these forms 
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and  
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Proofs: The proofs for the unit discretisation 

interval Ts = 1 will be presented. In this case the 

mean of discrete density function is 

10
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After calculating  
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the expression for 1  can be found and used in (10) 

to find the mean as expressed by (8). Similarly, the 

mean square value can be found as 
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where the 
2 can be calculated as a function of 

1 as 

2 2 1 1e e      
. By inserting 

2 into (11), we 

can get the variance as stated in (9).  

Proposition: The mean values for the discrete 

random variable starting with n = 0 and with n = 1 

are different as was pointed out before. Their 

relationship is expressed as  
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This relation needs to be taken into account, 

especially in the case when the sampling interval Ts 

is large.  

 

 

2.2 The truncated discrete exponential density 

function  

As we pointed out in Introduction, our motivation in 

doing this research is to develop theoretical 

expressions for the discrete truncated density 

functions that are appropriate for discrete time 

stochastic systems modelling. For example, the 

delays in discrete time communication systems are 

taking values in a limited interval of, say, S possible 

discrete values. Therefore, the function that 

describes the delay distribution is truncated to 

interval S. 

Proposition: The density and distribution functions 

of a truncated discrete exponential random variable 

are given in closed form as  
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Proof: In order to find this truncated function, the 

whole domain of possible τ values from 0 to 

infinity, for the already analysed discrete density 

function, will be divided into non-overlapping 

intervals containing S values. All corresponding 

values in these intervals, starting with 1
st
, (S+1)th, 

(2S+1)th, etc. term, will be added to obtain the 

truncated density function values for n = 1, 2, …., S. 

Using expression for the density function with Ts = 

1, the first values of the density function in the 1
st
, 

2
nd

 and m-th interval of S values will be 
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The sum of these values, when m tends to infinity, 

will give the first truncated value defined for unit 

delay τ = 1, i.e., 
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and the value for density function for any delay n 

will be  
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If we assign these values to the weights of Dirac’s 

delta functions in the whole interval of possible 

truncated values S, we can get the truncated density 

function in this form 
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which completes our proof. In the process of density 

function discretisation, the discrete probability 

values were calculated at time instants nTs, starting 

with n = 1. This could be also done starting with the 

value n = 0. However, this will not be exactly the 

same density function, because it will result in 

different mean values of the delay and imprecise 

simulation of the discrete delays, as we will show. 

For the case when the discrete values of the density 

function start at n = 0, the mean value is 
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When the first density value is defined for n = 1, the 

mean value will be  
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These two mean values are not the same. The proof 

of their relationship is  
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Therefore, the mean value depends on the starting 

value of the discrete random variable of the density 

function, as we said in the previous section, and can 

vary with the duration of discrete interval Ts. It is 

important to have this difference in mind especially 

in the case when we are doing simulation of the 

discrete delay values. Namely, in the case when the 

first density function value is defined for n = 0, and 

the discrete variable values (variates) need to be 

generated, then the variate values in the first interval 

from 0 to Ts will be equated with zero, and the 

values from Ts to 2Ts will be equated with Ts and so 

on, until (S-1)Ts is reached. Therefore, if it is not 

important to notify and take into account all the 

delays inside the first Ts interval this presentation of 

the density function will be used. However, if all 

delays in the first Ts interval need to be taken into 

account, then the first sample of the density 

truncated function should be assigned to the first 

discrete time instant Ts.  

Proposition: The mean and variance of the discrete 

truncated random variable, when the first discrete 

value with the first density value is at n = 1, are 

expressed in this form  
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This value is for one greater than the mean value ηdt0 

of the discrete density with the first density value at 
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n = 0. Therefore, the mean value ηdt0 in closed form 

is 
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Thus, in practical applications, for the defined mean 

value 1/λ of the continuous exponential distribution, 

the mean value of discrete exponential ηdt can be 

found and compared.   

Proof: Based on the expression (13) for the discrete 

density function we may have  
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The sum 
S  can be found in a closed form from 

this expression 
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1
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1
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n
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
 



   


 



.  

 

Having available 
S  we may calculate the mean 

value as 
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
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 



, 

 

which confirms (19). Using (18) for Ts = 1, we may 

derive the expression for the mean of the random 

variable that starts with n = 0 and prove (20). In 

similar way, as it was presented in Giucaneanu 

paper [18] the variance is 

 
2 2 2

2 ( 1)
( 2)
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e e Se
S S e

e e e
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  

 

 
    

   

  


  

  
(21) 

 

The two graphs, the mean and variance as a function 

of parameter 1/λ, starting with 1/λ = 1 and finishing 

with 1/λ = 30, for S = 40, are presented in Fig. 2. 

Alongside with these graphs, the graphs of the mean 

and variance for discrete non-truncated density 

function, continuous (non-truncated) density 

function and continuous truncated density function 

are presented. There is obvious difference in the 

mean and variance values between non-truncated 

and truncated functions that should be taken into 

account in theoretical analysis and simulation of 

discrete time systems. To support this statement, in 

the next section we will present the procedure of 

generating variates of a discrete truncated 

exponential density function. 
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Figure 2 The mean and variance of discrete 

truncated exponential function. 

  

2.3 Generating variates of the discrete truncated 

exponential distribution 

In this section, a procedure of generating random 

variates of the truncated exponential discrete 

variable will be presented using the inverse 

transformation method. According to this method, 

variates of a uniform distribution F will be 

generated, continuous delay value τ will be 

calculated and then a discrete variate value τv will be 

assigned. The value of the truncated discrete 

exponential distribution function, for particular 

delay τv = τ, can be calculated for Ts =1 and 

expressed in this form  

 

1
( ) (1 )

1
dt S

F e F
e




  






 .   (22) 

 

The delay is expressed as a function of the 

distribution function value as 

 
1

ln(1 / )F A  


,    (23)  

 

where A is a constant, i.e., 1/ (1 )SA e   . Then 

the uniform continuous valued variates F are 

generated and the delay values are calculated 

according to (23). Because these calculated delay 
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values are real numbers, they need to be equated to 

the integer values which are not smaller than the 

real number in the argument of τ, i.e., 

 

1
ln(1 / )v F A

 
    




.    (24) 

 

The discrete values, calculated in this way, represent 

the variates τv of an exponential truncated discrete 

density function that has the first discrete value at n 

= 1. However, if the first discrete value is to be at n 

= 0, the discrete truncated density and distribution 

functions are slightly different, the discrete delay 

will be generated which is not greater than the 

generated uniform variate, i.e., 

 

1
ln(1 / )v F A

 
    




.   (25) 

 

 

3 The Discrete Truncated Gaussian 

Density Function and Its Moments 
This section contains basic derivatives of the 

Gaussian discrete and truncated discrete density 

function and related moment.  

 

 

3.1 The discrete Gaussian density function  

Following the general procedure of a continuous 

fc(τ) and related truncated continuous density 

function fct(τ) evaluation we will present here the 

discretisation of a Gaussian density function with a 

zero mean value. The related derivations for any 

mean value can be relatively easily obtained.  

The procedure of discretizing a continuous 

Gaussian density function is illustrated in Fig. 3. We 

will calculate the probability value inside Ts interval 

and assign it to the discrete value of the random 

variable. The probability inside shaded area in Fig. 3 

will be assigned to the discrete random variable 

defined for τ = 0. If we use the interval Ts on the left 

or on the right the discrete density function will 

introduce the mean value that is not equal to zero. 

For this reason, we are starting with the interval 

around the origin. 

Proposition: The discrete density function of 

Gaussian random variable, having the values at the 

uniformly spaced instants Ts of a random variable τ, 

can be expressed as 

 

2 2

1 (2 1) / 2 (2 1) / 2
( ) ( )

2 2 2s

s s
d s
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n T n T
f erfc erfc nT





  
   

 
  

 

 (26) 

where δ(.) is Dirac’s delta function and the error 

function complementary is 
2

( ) 2 / xerfc e dx


 


  .  

Proof: The probability value inside the interval 

around zero can be calculated as 
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   (27) 
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Figure 3 Discretisation of Gaussian density 

function. 

 

Similarly, the probability that the random variable is 

inside any discrete interval n is 

 

2 2

{(2 1) / 2 (2 1) / 2}

1 (2 1) / 2 (2 1) / 2

2 2 2

s s

s s

P n T n T

n T n T
erfc erfc

   

 
 



 

.  (28) 

 

If the calculated probabilities are assigned as the 

weights to the Dirac’s delta functions that are 

defined at discrete instants τ = nTs, then the obtained 

function represents the discrete Gaussian density 

function expressed as  
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1
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


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.  (29) 

 

For the unit interval, Ts = 1, this density is 
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,   (30) 

 

where the Erfc(n) is defined as  
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2 2

(2 1) (2 1)
( )

8 8

n n
Erfc n erfc erfc

 
 

 
,   (31) 

 

which completes our proof.  

 

 

 

3.2 The discrete truncated Gaussian density 

function  

In order to find this truncated function, the whole 

domain of possible discrete values τ from 0 to 

infinity, for the already derived functions, need to be 

divided into intervals containing S discrete values. 

All corresponding values in these intervals, starting 

with 1
st
, (S+1)th, (2S+1)th, etc. terms, need to be 

added to obtain the truncated density function 

values for n = 1, 2, …., S. However, in this case this 

method cannot give us the expression for density 

function in a closed form. For this reason, a method 

based on the definition of the continuous truncated 

density function will be used. According to this 

method the truncated density function is defined as 

the conditional density function on the interval (-S, 

S) and expressed as 
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where Erfc(n) is defined in (31) and P(S) is a 

function defined on a truncation interval 
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
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The truncated density function, for different values 

of the truncation interval S, is presented in Fig. 4 

alongside with the continuous and discrete density 

functions. When the truncation interval increases the 

truncated variance increases and is always smaller 

that the variance of continuous density. The SD 

denotes the domain of discrete function before 

truncation and S defines the truncation interval, i.e., 

the domain of truncated variable. 
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Figure 4 Continuous, discrete and discrete truncated 

Gaussian densities. DS is the interval of continuous 

and discrete random variable values. σ = 5 is the 

standard deviation of continuous variable and S is 

truncation interval. 

  

Proposition: The mean of the truncated discrete 

density function is zero. 

Proof: By definition 
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(34) 

 

The term of the sum for n = 0 is zero. The 

corresponding terms for negative and positive n are 

cancelling each other. Then, we may have 
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, (35) 

 

which completes our proof. 

Proposition: The variance of this density is  
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Proof: By definition 
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The term for n = 0 is zero. The corresponding terms 

for negative and positive n are added to each other. 

In addition, the we know that P(S) ≤ 1, thus, having 

in mind the variance for the discrete Gaussian 

random variable, we may have  

 

2 2 2 2

1

( ) ( ) 2 ( ) ( )
n S n S

dt

n S n

P S n Erfc n P S n Erfc n
 

 

     ,    (38) 

 

which completes our proof. 

 

 

4 The Discrete Truncated Uniform 

Density Function and Its Moments 
 

 

4.1 The discrete uniform density function  

Proposition: The discrete uniform density function 

is defined by this expression 
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d s

n S
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S


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and, for a unit interval Ts = 1, it is  
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d

n S

f n
S


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  
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Proof:  Suppose the uniform continuous density 

function is expressed as ( ) 1/ 2c cf T , defined inside 

the interval 
c cT T   . If it is discretised in 

respect to τ, as shown in Fig. 5, with the interval of 

discretisation of Ts, the probability value in the first 

interval around zero, n = 0, can be expressed as 

 

1
{ / 2 / 2}

2
s s s

c

P T T T
T

    .   (41) 

 

Similarly, the probability value in any interval n is  

 

1
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2
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c
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T
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These probabilities can be understood as the weights 

of Dirac’s delta functions that define the discrete 

density function, which can be expressed as 
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T
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{ / 2 / 2}s sP T T    

  τ  

fd (τ) 

-Tc  -STs …             -Ts/2 0 Ts/2 Ts     …     STs Tc

  

 

 

Figure 5 Discretisation of the uniform density 

function.  

 

In the case the number of positive and negative 

intervals is S, the whole interval is 2 2c s sT ST T  , 

and the relations between the values Tc, Ts and S, 

which will be used in this Section, can be found in 

these forms  

 

2
2 1c

s

T
S

T
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2 1

2 2

c s c

s s

T T T
S

T T


   .      (44) 

 

Now, based on (42) and (44) the probability that the 

random variable is in the n-th interval can be 

expressed as 
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 (45) 

 

Therefore, the discrete density function (43) can be 

expressed as stated by (39) for any Ts including Ts = 

1. The calculated probability in Ts interval (for 

example the shaded interval in Fig. 5) is assigned as 

the weight of a delta function defined at the origin. 

The probability values can be calculate in each Ts 

interval and assigned to the right or left of the 

interval as we discussed for the exponential 

function, with the similar consequences related to 

the symmetry and moments of the truncated discrete 

function. 

Proposition: The mean, mean square and variance 

are expressed as 

 

0d  , 2 2 ( 1)
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 and  

 

2 2 2 2 2 ( 1)
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3
d d s

S S
E E T


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And, for the unit interval Ts = 1, the variance is  
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2 ( 1)

3
d

S S 
 .     (47) 

 

Proofs: The proof for the mean is trivial. The mean 

square value is  
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The variance is 
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4.2 The discrete truncated uniform density 

function  

In practical application the discrete delays are taking 

values in a limited interval defined as the truncated 

interval (-S + a, S - a), where a ≤ S is a positive 

whole number named the truncation factor. 

Therefore, the function that describes the delay 

distribution is truncated and has the values in the 

truncated interval, as shown in Fig. 6. 
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Figure 6 Discrete truncated uniform density function 

presented using Dirac’s delta functions. 

 

Proposition: The density function is given in closed 

form by these expressions 
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and 
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Proof: Based on the definition of a truncated 

density function as a conditional density function, 

the truncated discrete uniform density function can 

be expressed as 

 

( ) ( | )

1
( )

( ) 2 1

( ) ( )

dt d

S a

s

d n S a

f f S a S a

nT
f S

P S a S a P S



 

     

 


 
    



  

 




. (51) 

 

The value P(S) can be calculated as 
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By inserting this expression into (51), the density 

function can be expressed as in (50). In the same 

way, for a unit sampling interval Ts = 1, the random 

variable τ is a whole number from the interval (-

S+a, S-a), for a ≥ 0, and the density function (51) is 

expressed as in (50) 

The variances of continuous, discrete and 

truncated discrete uniform density functions are 

presented in Table 1. Due to discretisation, the 

values of all truncated variances are smaller than the 

variance of continuous density. This fact needs to be 

taken into account in theoretical analysis and 

simulation of discrete time systems. 

 

Table 1 Variance expressions 
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4.3 The discrete asymmetric uniform density 

function  

The above-mentioned discrete density functions 

preserved the symmetry in respect to the mean 

value. However, in discrete time signal analysis, due 

to the nature of analogy-to-digital conversion, we 

are dealing with asymmetric densities. These 

density functions can be obtained using the same 

procedure as for the symmetric densities described 

above. The only difference is in the assignment of 

discrete probability values that will start at the point 

-Tc = -STs that corresponds to the discrete value S as 

shown in Fig. 7. In simple words we are assigning 
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the probabilities to the right side of the intervals 

defined by Tc and making S discrete values on the 

negative τ axis and (S-1) discrete values at the 

positive τ  axis including also a component for τ = 0.  
 

{ }c c sP T T T      

  τ  

fd (τ) 

-Tc=-STs …      -Ts        0         Ts …  (S-1)Ts   Tc

  

 

  

Figure 7 Discretisation of the uniform density 

function to obtain an asymmetric discrete density  

 

Following the procedure in subsection 4.1 it can be 

proven that the discrete probability density function 

can be expressed in terms of Dirac’s delta functions 

as 

 
1 1

( ) ( )
2

n S

d s

n S

f nT
S

  
 



   ,   (53) 

 

Where the whole interval of continuous random 

variable values can be expressed as 2 2c sT ST . 

Therefore, the corresponding discrete variable here 

can have S negative values and (S-1) positive 

values, i.e. it will have the density function that is 

asymmetric in respect to the zero value. The 

consequence of this is that the mean value of the 

discrete density will be different from zero due to 

this asymmetry. Following the procedures presented 

in subsections 4.1 and 4.2 it is simple to derive the 

moments of this discrete density function and the 

related truncated density function. 

 

 

5 Applications of Derived Expressions 
FIRST CASE: The application of the presented 

theory will be demonstrated on the solution for the 

first problem mentioned in the Introduction of this 

paper. Because the defined stochastic process X(m) 

is a discrete time process the number of phases is to 

be finite and needs to be represented by an 

asymmetric density function expressed by (53). 

Suppose that the number of samples inside one 

period of the sinusoidal realisation of stochastic 

process x(m) have N values. Therefore the number 

of random phases θn will be N all of them having the 

possible random values θn = 2πn/N, for n = -N/2, …, 

N/2-1.  

Therefore, the density function of the phase is 

defined by expression (53) with the following 

redefined parameters: Tc = π, S = N/2, Tc = TsN/2. 

Then, the discrete density function (53) has this 

form 
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and the mean value of the stochastic process can be 

calculated as 
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 



 (54) 

 

Due to the properties of sinusoidal function the sum 

in (54) is zero and the mean values of the stochastic 

process is zero for each m. The autocorrelation 

function needs to be calculated as 
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The sum in the first addend is equal to N and the 

sum in the second term is zero which result in this 

expression for the autocorrelation function 

 
2

( , ) cos( ( )
2

X

A
R m l m l  .    (55) 

 

Of course, the solutions presented in (1) and (2) are 

formally the same as in (54) and (55). However, the 

right calculations are demonstrated in (54) and (55) 

because they are based on rigorous mathematical 

presentation of the density function and strict 

mathematical procedure in the related solutions of 

integrals. Therefore, the method of presenting 

discrete random variables I am proposing in this 

paper can be used widely. Moreover, using the 

densities in the presented forms the integrals 

WSEAS TRANSACTIONS on MATHEMATICS Stevan Berber

E-ISSN: 2224-2880 236 Volume 16, 2017



involved can be solved relatively easy. In addition 

to this, we need to take care of various derivatives 

of discrete densities for the same continuous random 

variable. For example, in the analysis of discrete 

time stochastic process, like above, we need to use 

an asymmetric density. However, in the case when 

the variable represents random phase in 

communication systems, which can take negative 

and corresponding positive random values with the 

same probability, we need to use a symmetric 

density function as can be mentioned in the third 

case.  

SECOND CASE: We present here how to find 

the mean of the random function (3) by using and 

solving integral (4). Suppose that the random delay 

inside the chip interval τ is distributed according to 

the truncated discrete exponential density function. 

Inserting expression (3) for the conditional 

probability of error and the expression for the 

truncated discrete exponential density function (13) 

into the expression for the mean value of the 

probability of error (4), we may get the expression 

for the probability of error in a closed form as 
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(56) 

 

Therefore, using the density functions expressions 

as suggested in this paper it is relatively easy to 

solve these integrals and avoid the use of numerical 

integration. 

THIRD CASE: We can also find the 

probability of error in a DSSS system as the average 

value of the conditional probability of error 

presented in (4). For this system, it is impossible to 

achieve perfect synchronisation of the spreading 

sequences. Suppose the random delay τ in the 

system with imperfect synchronisation is 

characterised by the uniform truncated density 

function expressed as (50). By inserting (5) and (50) 

into (4) the average value for probability of error 

can be found 
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 (57) 

 

Because the possible random delays can have any 

positive and negative value around zero we have 

been using discrete symmetric density function. 

  The expression (5) presents the probability of 

error in DSSS system, which is equivalent to a 

single-user code division multiple access (CDMA) 

system. If the CDMA system operates with N users, 

the expression for the probability of error is 

 

 
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      (58) 

 

whereas 4( / 4 1) /N       . By inserting (58) 

and (50) into (4) the average value of the probability 

of error can be calculated following the procedure 

presented in (57), resulting in this expression 
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. (59) 

 

The final notes we may make: Firstly, the 

expressions for Gaussian and uniform density 

functions are derived for the assumed zero mean 

value of random variable. However, it is easy to 

derive the corresponding expressions for any mean 

value of the discrete random variables, as was done 

for an example of asymmetric uniform distribution 

in subsection 4.3. Secondly, in this paper we 

presented density functions of discrete random 

variables in terms of Dirac’s delta functions. It is 

important to note that it is possible to develop and 

use their expressions using Kronecker’s delta 

functions. Thirdly, in practice, the discrete random 

variables take the values in limited intervals. 

Therefore, the use of truncated density functions is 

necessary. This necessity supports our motivation 

for writing this paper. Namely, the mean values and 

variances are generally changing depending on the 

size of truncating interval, which can have 

significant influence on our theoretical analysis, 

simulation and practical design of digital devices. 

  

 

 

6 Conclusions 
 

In this paper the expressions for exponential, 

Gaussian and uniform discrete and truncated 

discrete density functions, and their first and second 

moments, are derived. The expressions for the 
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moments are compared with related moments of the 

continuous and truncated continuous density 

functions. It was confirmed that the density 

functions could be expressed in terms of Dirac’s 

delta functions in order to be applied for the 

calculation of the mean value of a function of 

random variable. The application of derived 

densities of discrete random variables is 

demonstrated on three examples. One example 

presents a rigorous calculation of the mean and 

autocorrelation function of a discrete time harmonic 

process, and two examples demonstrate precise 

calculations of the probability of error in DSSS 

communication systems where all signals are 

represented in discrete time domain. 
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