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Abstract: This paper introduces three generalized geometric distributions: the binomial, negative binomial and
Poisson distribution of the same order k. The generating functions and probability distributions of them are in-
vestigated, and then the corresponding modes of the distributions are discussed. By the Fibonacci sequence, the
modes of the negative binomial distribution of order k are derived as mX(2,2)

= 6, 7, 8 and mX(2,3)
= 13. For the

mode of the binomial distribution of order k, only a conjecture is proposed as an open question for the parameters
k = 2, n = 2ñ and p = 0.5. Finally, the modes of the Poisson distribution of order k are discussed in some cases.

Key–Words: mode; success run; probability generating function; negative binomial distribution of order k; Poisson
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1 Introduction
The mode is an important statistic of probability dis-
tribution. Denote by mX the mode of Pn = P (X =
n), n = 0, 1, · · · , i.e., the value of n for which Pn

attains its maximum. The mode of geometric distri-
bution of order k and some mode vectors of multivari-
ate distributions were found by Shao et al in [17, 18].
the mode of the Poisson distribution of order k was
solved partially by Georghiou and Philippou in [6].
To the best of our knowledge, many modes of other
distributions presented in statistical literature of recent
decades are still awaiting discovery. As a continuation
of Shao’s work in [17], the present paper discusses the
mode of the negative binomial distribution of order k
by the Fibonacci sequence, and investigates the prop-
erties of the binomial distribution of order k and the
Poisson distribution of the same order including their
modes.

2 On the mode of the negative bino-
mial distribution of order k

Let X(k,r) be the number of trials until the rth occur-
rence of the success run with length k in Bernoulli
trials with success probability p. Then we say that
X(k,r) is distributed as the negative binomial distri-
bution of order k with parameter vector (r, p), de-
noted by NBk(r, p) [9, 10]. Especially for r = 1,
X(k) = X(k,1) is distributed as the geometric distri-
bution of order k with parameter p, denoted by Gk(p)
[1, 2, 10]. Note that NBk(r, p) is defined by success

runs, the readers are referred to [4, 7, 8, 12] for more
detail about the runs. The present section consider-
s the generating function, probability distribution and
modes of the distribution NBk(r, p).

Lemma 1 [14, 16] The probability generating func-
tion of X(k) distributed as Gk(p) is given by

GX(k)
(x) =

pkxk − pk+1xk+1

1− x+ qpkxk+1
.

Lemma 2 [15] The probability generating function
of X(k,r) distributed as NBk(r, p) is presented as

GX(k,r)
(x) =

(
pkxk − pk+1xk+1

1− x+ qpkxk+1

)r

.

Theorem 3 The modes of the random variable X(2,2)

distributed as NB2(2, 0.5) are mX(2,2)
= 6, 7, 8.

Proof. Firstly, by Lemma 1, for k = 2 and p = 0.5,
we consider the probability generating function

GX(2)
(x) =

∞∑
n=0

Pnx
n =

x2/4

1− x/2− x2/4
,

where Pn = P (X(2) = n). Then

(P0+P1x+P2x
2+ · · · ) · (1−x/2−x2/4) = x2/4.
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Comparing the terms in both sides of the above equa-
tion, we find

P0 = P1 = 0, P2 =
1

4
, P3 =

1

8
,

Pn =
1

2
Pn−1 +

1

4
Pn−2, n ≥ 4.

(1)

Let
Pn = Fn−2/2

n, n ≥ 2. (2)

Combining (1) with (2), we come to{
F0 = F1 = 1,

Fn = Fn−1 + Fn−2, n ≥ 2.

It implies that {Fn, n = 0, 1, · · · } is a Fibonacci se-
quence. That’s why another name for the geometric
distribution of order 2 with parameter p = 0.5 is the
Fibonacci probability distribution [13].

Secondly, by Lemma 2, we present the probabili-
ty generating function of X(2,2) as follows

GX(2,2)
(x) = G2

X(2)
(x) = (

∞∑
n=2

Pnx
n)2

= (
F0

22
x2 +

F1

23
x3 + · · · )2 = x4

24

∞∑
n=0

anx
n,

where

an =

n∑
i=0

Fi

2i
· Fn−i

2n−i
=

1

2n

n∑
i=0

FiFn−i =
Bn

2n
, n ≥ 0.

(3)
Note that

Bn = F0Fn + F1Fn−1 + · · ·+ FnF0, n ≥ 0,

which satisfying

Bn = Bn−1 +Bn−2 + Fn, n ≥ 2. (4)

Table 1: Numbers of Fn and Bn for 0 ≤ n ≤ 13

F0 F1 F2 F3 F4 F5 F6

1 1 2 3 5 8 13
B0 B1 B2 B3 B4 B5 B6

1 2 5 10 20 38 71
F7 F8 F9 F10 F11 F12 F13

21 34 55 89 144 233 377
B7 B8 B9 B10 B11 B12 B13

130 235 420 744 1308 2285 3970

Combining Table 1 with formula (3), we get

a0 = a1 < a2 = a3 = a4. (5)

When n ≥ 4, by (3) and (4), we have

an+1 − an = Bn+1/2
n+1 −Bn/2

n

= (Bn+1 − 2Bn)/2
n+1

= (Fn+1 +Bn−1 −Bn)/2
n+1

= (Fn+1 − Fn −Bn−2)/2
n+1

= (Fn−1 −Bn−2)/2
n+1

= (Fn−2 + Fn−3 −Bn−2)/2
n+1 < 0.

Then we arrive at

a4 > a5 > a6 > · · · . (6)

By (5) and (6), we obtain

a2 = a3 = a4 = max{an;n = 0, 1, 2, · · · }. (7)

On the other hand,

GX(2,2)
(x) =

x4

24

∞∑
n=0

anx
n

=

∞∑
n=0

an
24
xn+4 =

∞∑
n=4

an−4

24
xn.

Then
P (X(2,2) = n) =

an−4

24
, n ≥ 4.

By equation (7) we conclude that P (X(2,2) = n) at-
tains its maximum at X(2,2) = 6, 7, 8. This completes
the proof of the theorem. ⊓⊔

Theorem 4 The unique mode of the random variable
X(2,3) distributed as NB2(3, 0.5) is mX(2,3)

= 13.

Proof. Similar to the proof of Theorem 3, let
GX(2)

(x) be the probability generating function of
X(2) distributed as G2(0.5). Then

GX(2)
(x) =

∞∑
n=2

Pnx
n =

∞∑
n=2

Fn−2

2n
xn,

where Pn and Fn are the same ones as that in the proof
of Theorem 3. By Lemma 2, we obtain the probability
generating function of X(2,3) as follows

GX(2,3)
(x) = (

∞∑
n=2

Pnx
n)3

=
x6

26
(F0 +

F1

2
x+

F2

22
x2 + · · · )3

=
x6

26

∞∑
n=0

cnx
n,
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where

cn =
1

2n

n∑
i=0

BiFn−i.

From Table 1, we calculate the terms

c0 = 1, c1 = 3/2, c2 = 9/4,

which yielding

c0 < c1 < c2. (8)

When n ≥ 2,

cn+1 − cn

= (
n+1∑
i=0

BiFn+1−i − 2
n∑

i=0

BiFn−i)/2
n+1

= (Bn+1F0 +

n∑
i=0

BiFn+1−i − 2

n∑
i=0

BiFn−i)/2
n+1

= {Bn+1 +

n∑
i=0

Bi(Fn+1−i − Fn−i)

−
n∑

i=0

BiFn−i}/2n+1

= (Bn+1 +

n−1∑
i=0

BiFn−1−i −
n∑

i=0

BiFn−i)/2
n+1

= {Bn+1 −Bn +
n−1∑
i=0

Bi(Fn−1−i − Fn−i)}/2n+1

= (Bn+1 −Bn −
n−2∑
i=0

BiFn−2−i)/2
n+1

= (Bn−1 + Fn+1 −
n−2∑
i=0

BiFn−2−i)/2
n+1.

For n = 2, 3, 4, 5, 6,

Bn−1 + Fn+1 −
n−2∑
i=0

BiFn−2−i > 0.

Then we have

c2 < c3 < c4 < c5 < c6 < c7. (9)

When n ≥ 7, if we define

∆n = Bn−1 + Fn+1 −
n−2∑
i=0

BiFn−2−i,

by Table 1, we may get ∆7 < 0,∆8 < 0. Assume
that ∆n < 0,∆n+1 < 0. Then

∆n+2 = Bn+1 + Fn+3 −
n∑

i=0

BiFn−i

= (Bn +Bn−1 + Fn+1) + (Fn+2 + Fn+1)

−
n−2∑
i=0

Bi(Fn−1−i + Fn−2−i)−Bn−1 −Bn

= 2Fn+1 + Fn+2 −
n−2∑
i=0

Bi(Fn−1−i + Fn−2−i)

= 2Fn+1 + Fn+2 −
n−2∑
i=0

BiFn−1−i

−
n−2∑
i=0

BiFn−2−i

= (Bn−1 + Fn+1 −
n−2∑
i=0

BiFn−2−i)

−
n−2∑
i=0

BiFn−1−i −Bn−1 + Fn+1 + Fn+2

= ∆n −
n−1∑
i=0

BiFn−1−i + Fn+1 + Fn+2

= ∆n + (Bn + Fn+2 −
n−1∑
i=0

BiFn−1−i)

+Fn+1 −Bn

= ∆n +∆n+1 + (Fn + Fn−1 −Bn) < 0.

The inequality implies that for any a fixed n ≥ 7,
∆n < 0, from which it follows that

c7 > c8 > c9 > c10 > · · · . (10)

Combining (8), (9) with (10), we conclude that

c7 = max{cn;n = 0, 1, 2, · · · }.

Note that

P (X(2,3) = n) =
cn−6

26
, n ≥ 6,

then the unique mode of X(2,3) is mX(2,3)
= 13. ⊓⊔

3 On the modes of the binomial dis-
tribution of order k

Let N (k)
n be the number of success runs of length k

in n Bernoulli trials with success probability p. The
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probability distribution of N (k)
n denoted by Bk(n, p)

is called the binomial distribution of order k with pa-
rameter vector (n, p) [5, 11]. Note that when k = 1,
B1(n, p) is the usual binomial distribution B(n, p).
Based on the distribution NBk(r, p), this section con-
siders the probability distribution, the mean and the
mode of Bk(n, p).

Theorem 5 If the random variableX(k,r) is distribut-
ed as NBk(r, p), then its probability distribution is
given by

P (X(k,r) = n) =
∑

n1,n2,··· ,nk∋
n1+2n2+···knk=n−kr(

n1 + n2 + · · ·+ nk + r − 1

n1, n2, · · · , nk, r − 1

)(
q

p

) k∑
j=1

nj

pn,

where n = kr, kr + 1, kr + 2, · · · .

Proof. Following Lemma 2, we get

GX(k,r)
(x)

=

(
pkxk

1− qx(1 + px+ · · ·+ pk−1xk−1)

)r

= pkrxkr

(
1

1− q
p(px+ · · ·+ pkxk)

)r

= pkrxkr
(
1− q

p
(px+ · · ·+ pkxk)

)−r

= pkrxkr
∞∑
n=0

(
r + n− 1

r − 1

)(
q

p

)n
 k∑

j=1

(px)j

n

= pkrxkr
∞∑
n=0

(
r + n− 1

r − 1

)(
q

p

)n

×

∑
n1,··· ,nk∋

n1+···+nk=n

(
n

n1, · · · , nk

)
(px)n1+2n2+···+knk

=

∞∑
n=0

∑
n1,··· ,nk∋

n1+···+nk=n

(
r + n− 1

r − 1

)(
n

n1, · · · , nk

)

×
(
q

p

)n

(px)n1+2n2+···+knk+kr

=
∑

n1,n2,··· ,nk

(
n1 + n2 + · · ·+ nk + r − 1

n1, n2, · · · , nk, r − 1

)

×
(
q

p

)n1+n2+···+nk

(px)n1+2n2+···+knk+kr

=

∞∑
n=kr

∑
n1,··· ,nk∋∑k
i=1 ini=n−kr

(
n1 + · · ·+ nk + r − 1

n1, · · · , nk, r − 1

)

×
(
q

p

)n1+n2+···+nk

pnxn.

So, from the above we can come to the probability
distribution of X(k,r). ⊓⊔

Theorem 6 The probability distribution of Bk(n, p)
is given by

P (N (k)
n = r) =

k−1∑
s=0

∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=n−s−kr(
m1 + · · ·+mk + r

m1,m2, · · · ,mk, r

)(
q

p

)m1+···+mk

pn,

where r = 0, 1, · · · , [n/k], and [x] denotes the great-
est integer not exceeding x ∈ R.

Proof. Suppose X(k,r) is a variable distributed as
NBk(r, p), the occurrence of {X(k,r+1) = m} mean-
s that either the (m − k)th trial is a failure and the
subsequent k trials are successes, or the last 2k tri-
als are successes in the m trials. Let ⊙, ⊕ and ⊖
be a trial, a success and a failure respectively. For
m = n+k, n+k−1, · · · , n+1, we have the figure of
the events {X(k,r+1) = n+k−s}, s = 0, 1, · · · , k−1
as follows, where k = 4 for simplicity.

n trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊙⊖⊕⊕⊕ ⊕ s = 0
⊙ · · · ⊙ ⊙ ⊙⊙⊕⊕⊕⊕⊕⊕⊕⊕ s = 0
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊖⊕⊕⊕ ⊕ s = 1
⊙ · · · ⊙ ⊙ ⊙⊕⊕⊕⊕⊕⊕⊕ ⊕ s = 1
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊖⊕⊕⊕⊕ s = 2
⊙ · · · ⊙ ⊙ ⊕⊕⊕⊕⊕⊕⊕⊕ s = 2
⊙ · · · ⊙ ⊙ ⊙⊙⊖⊕⊕⊕ ⊕ s = 3
⊙ · · · ⊙ ⊕ ⊕⊕⊕⊕⊕⊕ ⊕ s = 3

Figure 1: The decomposition of {ξ(k,r+1) = n+ k − s}

Let {X(k,r+1) = n + k − s|(k − s) ⊕} denote
the event that (r + 1) success runs of length k occur
in (n+ k− s) trials and the last (k− s) successes are
deleted, where s = 0, 1, · · · , k − 1. By Figure 1, we
shall find that

∪k−1
s=0{X(k,r+1) = n+k−s|(k−s)⊕}

is equivalent to all the possible occurrence ways of the
r success runs in n trials. Hence we have

{N (k)
n = r} =

k−1∪
s=0

{X(k,r+1) = n+k−s|(k−s)⊕}.
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Therefore

P (N (k)
n = r)

=

k−1∑
s=0

P
(
{X(k,r+1) = n+ k − s|(k − s) ⊕}

)
=

k−1∑
s=0

p−(k−s) · P
(
X(k,r+1) = n+ k − s

)
=

k−1∑
s=0

∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=n−s−kr(
m1 +m2 + · · ·+mk + r

m1,m2, · · · ,mk, r

)(
q

p

) k∑
j=1

mj

pn.

Theorem 6 has been proven. ⊓⊔

Theorem 7 Let P ∗
k (n, r) = P (N

(k)
n = r). Then we

have the recurrence

P ∗
k (n, r) = P ∗

k (n− 1, r)− qpkP ∗
k (n− k − 1, r)

+pkP ∗
k (n− k, r − 1)− pk+1P ∗

k (n− k − 1, r − 1),

where n > k and 0 ≤ r ≤ [n/k].

Proof. Similar to Figure 1, we still assume that k = 4
for simplicity. Consider the following two events

B1 = {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊙︸ ︷︷ ︸
r runs in n trials

},

B2 = {
(r−1) runs in (n−1) trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙ ⊙︸ ︷︷ ︸

r runs in n trials

},

obviously, we have

{N (k)
n = r} = B1 ∪B2. (11)

For the event B1, regardless of success or fail-
ure, the nth trial doesn’t change the number of success
runs, hence it can be decomposed as

B1 = B11 ∪B12,

where

B11 = {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊖︸ ︷︷ ︸
r runs in n trials

}

= {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊖},

B12 = {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊕︸ ︷︷ ︸
r runs in n trials

}

= {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊕}\{
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙︸ ︷︷ ︸
n−k−1 trials

⊖⊕⊕⊕⊕}.

Hence we have

P (B1) = P (B11) + P (B12)
= qP ∗

k (n− 1, r) + pP ∗
k (n− 1, r)

− qpkP ∗
k (n− k − 1, r)

= P ∗
k (n− 1, r)− qpkP ∗

k (n− k − 1, r).(12)

On the other hand, for the event B2, all the last k
trials must be success, otherwise, the nth trial, i.e. the
last one can’t lead to a success run. So

B2 = {
(r−1) runs in (n−1) trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙ ⊙⊕⊕⊕ ⊕︸ ︷︷ ︸

r runs in n trials

}

= {
(n−k) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙⊙︸ ︷︷ ︸
(r−1) runs

⊕⊕⊕⊕}\{
n−k−1 trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙︸ ︷︷ ︸
(r−1) runs

⊕⊕⊕⊕⊕}.

Then we get

P (B2) = pkP ∗
k (n−k, r−1)−pk+1P ∗

k (n−k−1, r−1).
(13)

Combining (11), (12) with (13), we can derive the
recurrence relation in Theorem 7. ⊓⊔

Theorem 8 The mean of the random variable N (k)
n

distributed as Bk(n, p) is given by

EN (k)
n =

[n/k]∑
m=1

{1 + (n−mk)q}pmk.

Proof. Let En = EN
(k)
n , we find that

E0 = E1 = · · · = Ek−1 = 0, Ek = pk.

When n ≥ k + 1, following the equation in Theorem
7, we have

[n/k]∑
r=1

r · P ∗
k (n, r) =

[n/k]∑
r=1

r · P ∗
k (n− 1, r)

−qpk
[n/k]∑
r=1

r · P ∗
k (n− k − 1, r)

+pk
[n/k]∑
r=1

(r − 1 + 1) · P ∗
k (n− k, r − 1)

−pk+1

[n/k]∑
r=1

(r − 1 + 1) · P ∗
k (n− k − 1, r − 1),
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that is

En = En−1 − qpkEn−k−1

+pkEn−k + pk − pk+1En−k−1 − pk+1,

or

En − pkEn−k = En−1 − pkEn−k−1 + qpk.

Let Hn = En − pkEn−k. Then we get

Hk = Ek − pkE0 = pk

and
Hn = Hn−1 + qpk, n ≥ k + 1.

By the above recurrence, we come to

Hn = Hk + (n− k)qpk = pk + (n− k)qpk,

where n ≥ k + 1. That is

En − pkEn−k = pk + (n− k)qpk, n ≥ k + 1.

So, when n ≥ k,

En = pkEn−k + pk + (n− k)qpk

= p2kEn−2k + pk + p2k + (n− k)qpk

+(n− 2k)qp2k = · · ·
= p[

n
k
]kEn−[n

k
]k + (pk + p2k + · · ·+ p[

n
k
]k) +

(n−k)qpk + (n−2k)qp2k · · ·+(n−[
n

k
]k)qp[

n
k
]k

= 0 +

[n/k]∑
m=1

pmk +

[n/k]∑
m=1

(n−mk)qpmk

=

[n/k]∑
m=1

{1 + (n−mk)q}pmk.

The proof is complete. ⊓⊔
When p = 0.5, k = 2, n = 2ñ, ñ ∈ N, the

mean of the variable N (2)
2ñ distributed as B2(2ñ, 0.5)

is given by

EN
(2)
2ñ =

ñ∑
m=1

ñ+ 1−m

22m
=
ñ

3
− 1

9

(
1− 1

4ñ

)
.

Let [x] be the greatest integer not exceeding x ∈ R,
we can show that [EN (2)

2ñ ] = [(ñ− 1)/3].

Conjecture 9 If the random variable N (2)
2ñ has a dis-

tribution B2(2ñ, 0.5), then its unique mode is

m
N

(2)
2ñ

= [(ñ− 1)/3].

For example, let n = 2ñ = 10, by Theorem 6,

P (N
(2)
10 = 0) =

1

210

(
10

10, 0, 0

)
+

1

210

(
9

8, 1, 0

)
+ · · ·+ 1

210

(
5

0, 5, 0

)
+

1

210

(
9

9, 0, 0

)
+

1

210

(
8

7, 1, 0

)
+ · · ·+ 1

210

(
5

1, 4, 0

)
=

144

1024
,

P (N
(2)
10 = 1) =

1

210

(
9

8, 0, 1

)
+

1

210

(
8

6, 1, 1

)
+ · · ·+ 1

210

(
5

0, 4, 1

)
+

1

210

(
8

7, 0, 1

)
+

1

210

(
7

5, 1, 1

)
+

1

210

(
6

3, 2, 1

)
+

1

210

(
5

1, 3, 1

)
=

365

1024
,

P (N
(2)
10 = 2) =

1

210

(
8

6, 0, 2

)
+

1

210

(
7

4, 1, 2

)
+

1

210

(
6

2, 2, 2

)
+

1

210

(
5

0, 3, 2

)
+

1

210

(
7

5, 0, 2

)
+

1

210

(
6

3, 1, 2

)
+

1

210

(
5

1, 2, 2

)
=

344

1024
,

P (N
(2)
10 = 3) =

1

210

(
7

4, 0, 3

)
+

1

210

(
6

2, 1, 3

)
+

1

210

(
5

0, 2, 3

)
+

1

210

(
6

3, 0, 3

)
+

1

210

(
5

1, 1, 3

)
=

145

1024
,

P (N
(2)
10 = 4) =

1

210

(
6

2, 0, 4

)
+

1

210

(
5

0, 1, 4

)
+

1

210

(
5

1, 0, 4

)
=

25

1024
,

P (N
(2)
10 = 5) =

1

210

(
5

0, 0, 5

)
=

1

1024
,

So, we have

P (N
(2)
10 = 1) = max

0≤r≤5
{P (N (2)

10 = r)},
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which yielding m
N

(2)
10

= 1. On the other hand, [(ñ −
1)/3] = 1, we have m

N
(2)
2ñ

= [(ñ− 1)/3].
In Figure 2, the horizontal axis denotes the num-

bers of success run in B2(n, 0.5) and the vertical ax-
is denotes the corresponding values of the probabili-
ty. We observe clearly that when n = 2 × 5, 2 × 8
and 2 × 10, the modes of them are [(5 − 1)/3] = 1,
[(8− 1)/3] = 2 and [(10− 1)/3] = 3 respectively.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n=10
n=16
n=20

Figure 2: The The probability distributions of B2(n, 0.5)

4 On the mode of the Poisson distri-
bution of order k

This present section investigates the mode of the Pois-
son distribution of order k in some cases. Theorem 10
is inspired by Dai and Hou’s work [3], where they de-
rived the usual Poisson distribution P (λ) from a neg-
ative binomial distribution.

Theorem 10 In NBk(r, p), the variable η(k,r) =
X(k,r) − kr is the number of trials removing the r
success runs. Let q → 0 and rq → λ(λ > 0) as
r → ∞. Then the random variable η(k) = η(k,∞) is
said to have the Poisson distribution of order k with
parameter λ, to be denoted by Pk(λ). The probability
generating function of η(k) is given by

Gη(k)(x) = eλ(x+x2+···+xk−k).

Proof. Combining the definition of probability gener-
ating function of η(k,r) with Lemma 2, we have

Gη(k,r)(x) =

∞∑
m=0

P (η(k,r) = m)xm

=

∞∑
m=0

P (X(k,r) = m+ kr)xm

= x−kr
∞∑

m=0

P (X(k,r) = m+ kr)xm+kr

= x−krGX(k,r)
(x) =

pkr(1− px)r

(1− x+ qpkxk+1)r

=
(
(1− q)

−1
q

)−krq
×

(1−qx k−1∑
m=0

(px)m

) −1

qx
k−1∑
m=0

(px)m


rqx

k−1∑
m=0

(px)m

.

Let q → 0 and rq → λ(λ > 0) as r → ∞. Then
we get the probability generating function of η(k) =
η(k,∞) as follows

Gη(k)(x) = Gη(k,∞)
(x) = lim

r→∞
Gη(k,r)(x)

= eλ(x+x2+···+xk−k).

Thus the proof is complete. ⊓⊔

Theorem 11 Let η(k) be a random variable distribut-
ed as Pk(λ). Then

P (η(k) = m) =∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=m

λm1+m2+···+mk

m1!m2! · · ·mk!
e−λk,

where m = 0, 1, · · · .

Proof. Following Theorem 10, we get

Gη(k)(x) = eλ(x1+x2+···+xk−k)

= e−λk
∞∑

m=0

λm(x+ x2 + · · ·+ xk)m

m!

= e−λk
∞∑

m=0

λm

m!

∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=m(
m

m1,m2, · · · ,mk

)
xm1+2m2+···+kmk

=
∞∑

m=0

∑
m1,m2,··· ,mk∋

m1+m2+···+mk=m

λme−λkxm1+2m2+···+kmk

m1!m2! · · ·mk!

=

∞∑
m=0

∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=m

λ

k∑
j=1

mj

e−λk

m1!m2! · · ·mk!
xm.

Therefore,

P (η(k) = m) =∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=m

λm1+m2+···+mk

m1!m2! · · ·mk!
e−λk,
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where m = 0, 1, · · · . ⊓⊔

Theorem 12 Let η(2) be a random variable distribut-
ed as P2(λ). Then the mode of it is mη(2),λ = 0 if
0 < λ <

√
3 − 1, mη(2),λ = 0 or 2 if λ =

√
3 − 1,

mη(2),λ = 2 if
√
3− 1 < λ ≤ 1.

Proof. By Theorem 11, we have

Pm = P (η(2) = m) =
∑

m1,m2∋
m1+2m2=m

λm1+m2e−2λ

m1!m2!
,

P0 = e−2λ, P1 = e−2λλ, P2 = e−2λ(
λ2

2
+ λ). (14)

Note that 0 < λ ≤ 1, when n ≥ 1, we have

P2n − P2n+1

=

n∑
i=0

λ2n−ie−2λ

(2n− 2i)!i!
−

n∑
i=0

λ2n+1−ie−2λ

(2n+ 1− 2i)!i!

≥
n∑

i=0

λ2n−ie−2λ

(2n− 2i)!i!
−

n∑
i=0

λ2n−ie−2λ

(2n+ 1− 2i)!i!

=
n∑

i=0

(
λ2n−ie−2λ

(2n− 2i)!i!
− λ2n−ie−2λ

(2n+ 1− 2i)!i!
) > 0.

(15)

P2n+1 − P2n+2 =

=
n∑

i=0

λ2n+1−ie−2λ

(2n+ 1− 2i)!i!
−

n+1∑
i=0

λ2n+2−ie−2λ

(2n+ 2− 2i)!i!

=

n−1∑
i=0

(
λ2n+1−ie−2λ

(2n+ 1− 2i)!i!
− λ2n+2−ie−2λ

(2n+ 2− 2i)!i!
)

+e−2λ

(
λn+1

1!n!
− λn+2

2!n!
− λn+1

0!(n+ 1)!

)
> 0.

(16)

By (15) and (16), when 0 < λ ≤ 1, we get

P2 > P3 > P4 > · · · . (17)

Combining (14) and (17), when λ =
√
3 − 1, P0 =

P2 = max{Pm,m ≥ 0}, this means mη(2),λ = 0, 2;
when 0 < λ <

√
3 − 1, P0 = max{Pm,m ≥ 0}, it

yields mη(2),λ = 0; when
√
3 − 1 < λ ≤ 1, P2 =

max{Pm,m ≥ 0}, that is mη(2),λ = 2. ⊓⊔

Theorem 13 Let η(2) be a random variable distribut-
ed as P2(λ). Then the mode of it ismη(2),λ = (3λ−1)
if λ > 1 and λ ∈ N.

Proof. By Theorem 10, for k = 2, we have

G(x) = Gη(2)(x) = eλ(x+x2−2),

differentiating G(x), we get

G′(x) = λ(1 + 2x)G(x).

Differentiating (n − 1) times both sides of the above
equation with respect to x, then setting x = 0, we
arrive at

G(n)(0) = λG(n−1)(0) + 2λ(n− 1)G(n−2)(0),

We employ the fact Pn = G(n)(0)/n! and the above
to obtain the recurrence

nPn = λ(Pn−1 + 2Pn−2). (18)

Assume that mη(2),λ = n∗, so by (18),

n∗Pn∗ = λ(Pn∗−1 + 2Pn∗−2) ≤ 3λPn∗ ,

which yielding
n∗ ≤ 3λ. (19)

Let ∆0 = P0 > 0, ∆n = Pn − Pn−1, n ≥ 1.
Then

∆1 = P1 − P0 = (λ− 1)e−2λ > 0,

∆2 = P2 − P1 =
λ2

2
e−2λ > 0.

(20)

By (18), we come to

∆n+2 =
λ(λ+ n)∆n

(n+ 1)(n+ 2)
+
λ(3λ− n− 4)

(n+ 1)(n+ 2)
Pn−1.

(21)
So, when 1 ≤ n ≤ 3λ− 4, we have ∆n+2 > 0, that is

∆3 > 0,∆4 > 0, · · · ,∆3λ−2 > 0. (22)

Combining (20) with (22), we obtain

P0 < P1 < · · · < P3λ−2,

which yielding
3λ− 2 ≤ n∗. (23)

Together with (19) and (23), we get

3λ− 2 ≤ n∗ ≤ 3λ. (24)

By (18), we arrive at

n∆n = (λ− n)∆n−1 + (3λ− n)Pn−2. (25)

Setting n = 3λ in (25), we get

∆3λ = −2∆3λ−1. (26)
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Setting n = 3λ− 3, 3λ− 5 and 3λ− 7 in (21) respec-
tively, we get

∆3λ−1 =
λ(4λ− 3)∆3λ−3 − λP3λ−4

(3λ− 2)(3λ− 1)
,

∆3λ−3 =
λ(4λ− 5)∆3λ−5 + λP3λ−6

(3λ− 4)(3λ− 3)
,

∆3λ−5 =
λ(4λ− 7)∆3λ−7 + 3λP3λ−8

(3λ− 6)(3λ− 5)
.

(27)

By (18), we get
P3λ−4 =

λ(7λ− 10)P3λ−6 + 2λ2P3λ−7

(3λ− 4)(3λ− 5)
,

P3λ−6 =
λP3λ−7 + 2λP3λ−8

3λ− 6
.

(28)

Together with (27) and (28), we have

(3λ− 1) · · · (3λ− 6)

λ3
∆3λ−1

= (64λ3 − 267λ2 + 360λ− 156)∆3λ−7

+(3λ2 + 24λ− 36)P3λ−8 > 0.

Combining (26) with (29), we have ∆3λ−1 < 0
and ∆3λ > 0, this means that P3λ−1 > P3λ−2 and
P3λ−1 > P3λ, noting that the mode n∗ satisfies (24),
so we get the mode mη(2),λ = n∗ = 3λ− 1. ⊓⊔

At the end of this section, we give the probabil-
ity distributions of P2(λ) when λ = 0.5 and λ =
1, 2, 3 in Figure 3, where the corresponding modes
mη(2),0.5 = 0 and mη(2),λ = 3λ − 1 = 2, 5, 8 are
obvious.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

λ  =0.5
λ  =1
λ=2
λ=3

Figure 3: The probability distributions of P2(λ)

5 Conclusion
In section 2, we discuss the mode of the random vari-
able X(k,r) which has a distribution NBk(r, p). By
the Fibonacci sequence, we obtain mX(2,2)

= 6, 7, 8
and mX(2,3)

= 13 if the parameter p = 0.5. In sec-
tion 3, we investigate the probability distribution and

mean of the variable N (k)
n distributed as Bk(n, p) and

propose the conjecture on B2(2ñ, 0.5), i.e. m
N

(2)
2ñ

=

[(ñ − 1)/3]. In section 4, based on NBk(r, p), we
consider the probability generating function and prob-
ability distribution of Pk(λ), furthermore, we obtain
its modes in some cases: (1) mη(2),λ = 0 if 0 < λ <√
3− 1; mη(2),λ = 0 or 2 if λ =

√
3− 1; mη(2),λ = 2

if
√
3−1 < λ ≤ 1. (2)mη(2),λ = 3λ−1 if λ ∈ N and

λ > 1. It’s still an open question for all other cases.
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