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1 Introduction

Although the real world seems in a muddle, many
phenomena can be described by using nonlinear
differential equations. A fundamental goal in the
study of non-linear initial boundary value problems
involving partial differential equations is to determine
whether solutions to a given equation develop a sin-
gularity. Resolving the issue of blow-up is important,
in part because it can have bearing on the physical
relevance and validity of the underlying model.

For example, the nonlinear systems pose a lot
of interesting but also challenging mathematical
problems, which require people to develop new
and deep theories and methods to treat them. For
example, for the so-called BEC system, which has
cubic nonlinearities and is weakly coupled, the least
energy and the ground state have been attracting both
physicists and mathematicians. With the deepening
of the study on this line, some tough nuts remain
uncracked.

Let Q C IR? be a regular bounded domain in IR?.
We consider the following elliptic system:

—div(a(u1)Vuy) = p?erietrtnuz jp ()
—div(a(uz)Vug) = p?erzev2t12uin Q (1)
ur=ug = 0 on 0f).

The function a is assumed to be positive and smooth,

41, 72 and p are real constants. We take a(u;) = e ",
we assume that A > 0 and v; # v2 € (0, 1).
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Then problem (1) take the form
—Auy — A|Vui|? = p?eurtnuz in Q

—Aug — A|Vug|? = p?eu2t12% jn

2

up=us = 0 on 0f).

Using the following transformation
wr = (Ap2e")* and wy = (ApZe¥2)?,

then the function (w1, w9) satisfies the following prob-
lem

( A+l M
A

—Aw; =93 wlTWQ in Q
A+l 72
—ALUQ = Q2 Woy A wf‘ in
wi = wa = (Ap?)* on Q.

\

With Q; = (A\p?)%i,i=1,2.

This Yamabe system has found considerable
interest in recent years as it appears in a number
of physical problems, for instance in nonlinear
optics. There the coupled solution (wj,ws) denotes
components of the beam in Kerr-like photorefractive
media. We have self-focusing in both components
of the beam. The nonlinear coupling constant Q; is
the interaction between the two components of the
beam. The case in which the coupling is nonlinear
has been studied extensively, which is motivated by
applications to nonlinear optic and Bose-Einstein
condensation. See for example [9, 10, 11, 19, 20] and
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references therein.

The purpose of this paper is to prove the existence
of solutions (u1,ug) for the previous problem. More
precisely, we are interested to the existence of solu-
tions with singular limits as the parameters A, p tend
to 0.

We denote by ¢ the smallest positive parameter
satisfying

s 8 g2
T+

The current paper is mostly related to the papers
[1, 3, 5]. We shall use the same approach, namely
the nonlinear domain decomposition method, witch
has already been used successfully in geometric con-
text (constant mean curvature surfaces, constant scalar
curvature metrics, extremal Kahler metrics, ...).

In this paper, we will prove the existence of some
singular solution. More precisely, we prove the fol-
lowing result :

Theorem 1 Let () be a regular bounded domain of
R? and 21, ..., 2, € S be given disjoint points. Let
H(z,2')=G(z,7) +4log|z — 7|

be the regular part of G, where the Green’s function
G defined on ) x () is given by

—AG(z,2") =86, in Q, G(2,2')=0 on O0.

Suppose that (21, ..., zp) is a nondegenerate critical

point of the function
P
F(21y ey 2n ZH (2, 2i)
=1
1 & L
S HE Y Y G
2 j=pt1 i=1 j=p+1
then there exist pg > 0,A > 0 and

(uf’A)p§p07A§A0 a family of solutions of (2), such that

P
i A = 2 ) 2. Q
p,/l\rgo ul ; G( 5 & ) n Cloc ( \{Z17 >Zp})
WA . 2,
p}i§0u2 Z G(- 2z5) in Co (N {2pt1, s

Jj=p+1

To facilitate the presentation, we will look at the
special case where we have only two singular points.

Theorem 2 Let ) be a regular bounded domain of
IR? and z1, 73 € ) be given disjoint points. Let
H(z,2') = G(z,2) +4log|z — ¢/
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be the regular part of G, where the Green’s function
G defined on ) x () is given by

~AG(z,2") =86, in Q, G(2,2')=0 on 0.

(3)
Suppose that (z1, z2) is a nondegenerate critical point
of the function

1
H (21, 21)+5—H (22, 22)+G(21, 22),

F(z1,29) =
(21, 22) 2m 279

> 0,2 > 0 and
(uf’)\)pépo,)\é)\o a family of solutions of (2), such that

then there exist pg

Jim = Glom) in GO\ (a1)
pligo ug’A =G(,22) in Clzog(Q\{ZQ})

2 Proof of Theorem 2

2.1 Construction of the approximate solu-
tion

We denote by e the smallest positive parameter satis-
fying

9 8¢e?
P =1 x22
(1+¢?)
Let
1+¢&2
ug(z) == 2IOgT‘|2 4)
which is a solution of
—Au = p%e® in R (5)
Hence for all 7 > 0 the function
7(1 4 €2)
’LLE,T(Z) = 2 ].Og m (6)

is also solution to 5.

2.1.1 Linearized operators

First we introduce some definitions and notations:

Definition 3 Given k € N, o € (0,1), » € R and
|z r, let Cﬁ’a(IRZ) be the space of functions in
ch *(IR2) for which the following norm

loc

ol izy = e gy b0 (74 (e etz )
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is finite. Similarly, for givent > 1, let Cﬁ’a(BF) be the
space of function in C*(By) for which the following
norm

lullero gy = lullerais,)

+ Sup (7«_“”u(?"')|lck,(x(B1\Bl/2))7

1<r<r
is finite. Finally, set B} (z) = B,(z) — {z}, let
C,’f’a(Bf) be the space of functions in Cﬁ)?(Bf) for
which the following norm

_ = K . _
lullgayy = sup, (7" 1ulrlewe )

is finite.

We define the linear second order elliptic operator L
by
8

(1+12)2’

which is the linearized operator of —Au — p2e* =
0 about the symmetric solutions u.—1 r—1 defined by
(6). When k > 2, we let [Cﬁ’a(ﬂ)]o to be the subspace
of functions w € Cl’f’a () satisfying w = 0 on 9.

Li=-A—-

For all \,e,7 > 0, 71,72 € (0,1), we define

7oy i= max( A2 gl/2 (=) (1=72))

e TTE,A
Ry =

(N

Proposition 4 [3] All bounded solutions of Lw = 0
on R? are linear combination of

_1—7"2

2z )
= m and ¢Z(Z) = m fOl’Z = 1,2

bo(2)
Moreover, for u > 1, u & 7,
07
L:Cr*(R?*) — C,%(IR?)
is surjective.

In the following, we denote by G,, to be a right in-
verse of L. Similarly, using the fact that any bounded
harmonic function in IR? is constant, we claim

Proposition 5 Let 6 > 0, 6 & Z then A is surjective
from C3*(R2) 10 C"% (R?).

We denote by K5 : Co%(R?) — Cy*(R?) a right
inverse of A ford > 0,9 & Z.

Finally, we consider punctured domains. For k €
{1,2} given z;; € Q disjoint points, we define z :=
(71, 22) and Q*(Z) := Q\{Z.}. Let rp > 0 be small
such that B, (Z) are disjoint and included in 2. For
all r € (0,rp), we define

Q,(Z) == Q\ Ui_, B (%)
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Definition 6 Lerk € R, € (0,1) andv € R, let

CL (2(2)) = Cpoe' (2°(2)) Mim1,2 CL (B} (%)

— Yloc r

endowed the following norm
||ch’;va(Q*(g)) = ||chk,a(QTO/2(Z))

(7 o+ ) et 8,51 )-

Furthermore, for k > 2, let [Cf’a(Q*(Z))]O to be the
set of w € CH(V*(Z)) satisfying w = 0 on 9.

We recall the following result.
Proposition 7 [12] Let v < O, v &€ 7, then A is sur-
jective from [CE’Q(Q* ('z'))} J 10 C% Q% (7).

We denote by G, : C0 (Q*(2)) — [CBQ(Q*(Z))} )
right inverse of A forv < 0, v & Z.

2.1.2 Ansatz and first estimates

For all o > 1, we denote by
& Cr¥(By) — C(R?)
the extension operator defined by

f(2) for |z < o,
X (‘ai') f (aﬁ) for |z] > o.

Here x is a cut-off function over IR, which is equal
to 1 fort < 1 and equal to O for ¢t > 2. It easy to check
that there exists a constant ¢ = ¢(u) > 0, independent
of o > 1, such that

& ()(2) = { ®)

©)

o () gz < & lwllepes, -

Here, we are interested in the study of the system
2 near B(z1,7¢ )

—Auy — )\]Vul\Q = pletrtmuz

{ —Aug — >\|VUQ|2 = p2€u2+’Y2u1. (10)
Using the transformation
v1(2) = ur(£z) +4lne + thﬁ’
(11)

va(2) = ua(£2),
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the previous system can be written, in B(z1, R, »), as
—Avy — A|Vvi > = 2 e 1%2in B(zq, R, ),

92(1-7) A(1—72)

_ _ 2 _
AUQ )\’VU2| =2 (7’(]_ + 52))2(1*72)

(12)
Here 7 > 0 is a constant which will be fixed later.

We denote by 4 = u.—,=1, we look for a solution
of (12) of the form

v1(2) w(z — 21) — 11G(z, 22) + hi(2)

v2(2) G(z, 22) + hi(2)

this amounts to solve the equation

( 8 1 1
1 — _° kit mhy _pl
i =g [Tk
2
+)\‘V(ﬂ(z —21) —nG(z, 22) + hi)| ,
_Ahl — w eh%'f'(l_’Yl’Yz) G(z,22)+ 72 h%
2 (1+r2)%r
2
FA[V (04 + Gz, 22))

\
13)

in B(z1, R.)); where C. = [r(1 + £2)]202~1).
Fix o € (1,2) and § € (0,min{1,2(1 —
7), 2(1 — 72)}). To find a solution of (13), it is
enough to find a fixed point (h},hd) in a small ball

of Ci*(R?) x C3*(R?) solutions of

hi = Guo&uoTi(hi, h), ks = Kso&soTa(hi, h).
(14)
where
Ti(hi, hy) and To(hi, hs)
are the right hand side in (13). We denote by

N(= N ;) and M(= M. ) the nonlinear operators
appearing on the right hand side of the equation (14).

Lemma 8 Given k > 0, there exists €., > 0 and ¢, >
0 such that for all ¢ € (0,e.), p € (1,2) and 6 €

(07min{17 2(1 - ’)/1), 2(1 - '72)})

”N(O, 0)”(13"‘(112) < Ck T‘g’)\, HM(O7O)”(}?O‘(R2) < Ck T?,A?

I CRE k) — Ok D) gy

< Gk rg,)\ 1(h1, kg) — (ki, k%)”cﬁva(mz)xcg’a(]w)
and

HMUL%? k%) - M(k%a k%)”cga(RQ)

< Gk r?,)\ 1(h1, ky) — (ki k%)”cﬁva(np)xcg’a(mz)

E-ISSN: 2224-2880
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provided (hi, k}), (ki ki) € Cg’a(IRQ) X C(?’a(IR2)
satisfying

”(h%ak%)”cﬁv“(m2)xc§va(u{2) < QCHTE,N
(15)
H(k%ak%)”gﬁva(mz)xcg’a(m% < 2057"3,»
Proof: We have
sup 727 | 71(0,0) |
TSRS,/\
2
< sup M2 Via(z — z1) — 1VG(z, 22)
TSRs,)\
< ¢k T?,A

Making use of Proposition 4 together with (9), for i €
(1,2), we get that there exists ¢, such that

IN(0,0)l 2. 2y < €72, (16)

For the second estimate, we have

sup r2-0 | 72(0,0) |
TSRE,)\

80654(1_72) 9_5 9-5
<k sup ————1 40N
> HT‘SREA (1+r2)272 K

<. sup 8C.e 2 G(r) + ¢ ¥ IN
TSRE,)\

r2-0
(14 7r2)272
If2 —§ — 4~ <0, then S is bounded on R ;..
Te
S(r)=5(—).
(r) = (%)

where S(r) =

If2 -9 — 472 > 0, then sup
[0,

We get

||IM (0, O)HC?Q(RQ) <N+ m&X{g4(1*’YZ)7€2+57’;275})

= CHTE,A
To derive the third estimate, for h;, k;, i = 1,2, veri-
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fying (28), we have
sup 27| Ti(hy, hy) = Ti(ki, k)|

TSRE,A

{r2—H 1 1
< su 7‘ ehitnhy _pl_q
- TSRE)\ (1 +T2)2 ( ! )

_ (ek%-i-’hk% _ ]f} _ 1)’
+ sup A2 (|9 (@ - nG(z, 2) + )P
TSRE,)\
~ V(@ = MGz, 29) + k)1
82—k
o hl 2 kl 2 hl o k_l
5 g | (D = () -+ mlnd — R

+ sup )\7‘2_“|V(h% - k‘%)|
TSRE,)\

(IV(h} + kDI + 2V + 291V Gz, 22)] )
{r2—H

su
renen (L472)
14 = Kl gz + 17 l1hg — Ko |

+ sup Ar?7H||h4
TSRE,A

(e gz + 1 lz) +

2 [P (Il 2o + 1Kl 2e)

- k%”ci“

&r
—e
A+ "

We conclude that

HN(h%v h%) - 'N’Uf%a k%)HCiO‘(R%
< ¢ T?A H(h%’ h%) - (k%’ k%)”cﬁ’“(IRQ)xC?’a(]Rz)'

(17)
Similarly we get the estimate for

IM (R, hg) — Mk kD)l 2o ey

< ek 7'37/\ ||(h%7 h%) - (k%’ k%)”cZ’O‘(IRQ)xC?’O‘(RQ)'

(18)
m

Reducing ¢, if necessary, we can assume that

6,.;7“?1/\ < % for all e € (0,e,). Therefore (16)-(18)
are enough to show that

(B3, h) = (N (L, d), Mk, 13) )
is a contraction from the ball
{1 nh) € Ci(R2) x ¢} (R?)
(B3 sy o sy < 2w 724 )

into itself and hence a unique fixed point (hi, hl) ex-
ists in this set, which is a solution of (14). That is
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Proposition 9 Given k > 0, there exists €,, > 0 and
¢ > 0 such that for all € € (0,¢,), there exists a
unique (hi,hd) = (his)\,h%@A) solution of (26)
such that

||(h%, hé)”ci’a(]R?)xC?a(R?) < 20,.@7“3)\.

Hence

{ v1(2) == u(z — 21) — 11G(z, 22) + hi(2)
va(z) == G(z,22) + h%(z).

solves (10) in Bg_ , (21).
Similarly, we get also

Proposition 10 Given k > 0, there exists €, > 0 and
¢x > 0 such that for any € € (0,ey), there exists
a unique (h3,h3) = (hie,/\’ h’%,a,)\) solution of (26)
verifying

||(h%> hg)”cﬁ’a(]R%xC?“(]RQ) < 20,{7“?)\.

Hence

{ v1(2) = G(z,21) + h3(2)
va(2) 1= (2 — 29) — 712G (2, 21) + h3(2)

solves (10) in Bg_ , (22).

2.1.3 Harmonic extensions

Next, we will study the properties of interior and ex-
terior harmonic extensions. Given ¢ € C>%(S%'), we

define respectively H" = H™(yp;.) and H{* =
He(%1;)) to be the solution of
AHmt((P;) =0 in B, (19)
H™(p;) =¢ on dB.
AH! (i) =0 in R\B,
Hew! () =9 ondB, ()
lim H®'(p;2) =0
|z| =00

We will use also

Definition 11 Given k € N, a € (0,1) and v €
R, let C],f’a(]R2\Bl) as the space of functions w €
cha (R2\ By) for which the following norm

loc

— —v . =
kucllf,a(Rg\Bl) = ig}l) (7“ [Jw(r )”c’;’a(BQ\Bl))’

is finite.

We denote by e1(0) = cos 6, e2(0) = sin 6.
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Lemma 12 [2] There exists ¢ > 0 such that, for any

/godv51—0 and / perdd =0; £=1,2,
Sl St

‘ 21
then | H'™ (0 5 )l g2 gy < cllpllczasny.
Similarly, there exists ¢ > 0 such that if
/ pdf =0, (22)
1

then || H*™ (23 ) g2 e\ g,y < cll@llezasn).

If I C L?(S') be a subspace, we denote F; to be the
subspace of F' which are L?(S*)-orthogonal to €1, ea.
We will need the following result:

Lemma 13 /2] The mapping
P:C* (8L = (9L
defined by
P(p) = 0, H™ (p) — 0 H"! ()

is an isomorphism.

2.2 The nonlinear interior problem

Here, we are interested in the study of the system (2)
near B(z1, R. ).

—Avy — AV |2 = 2 enrtne2

22(1—72)64(1—72)

(7(1 +¢2))2(1-72)

—Avg — A\|Vug|? =2
(23)
Here 7 > 0 is a constant which will be fixed later.
Given ¢! = (p1,0d) € (C?*(S1))? satisfying
(21). We denote by % = u.—,—1 and write
vi(z) = u(z —21) = MG(Z, 22) + hi(2)
+ Him’l(%v % Zl) + vi(z)

va(2) = hy(2) + G(F, 22)
+ HY" (b, 5 + vl (2).

‘ (24)

Using the fact that H nt js harmonic and the fact

that 2e" = (H%)Q, this amounts to solve the equation

Lvj = (1+82)2 [ hi+H ol (B HY o)
T

+AV(@ —nG(F

8C: e1—72) plymintlipli(l G
_AU2 W e'"2 Uy ( ’71"/2) (

+ AV(hy + G(&

c29) + Hy™"' 4 0d) 2 4 Ah)
(25)

E-ISSN: 2224-2880
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where C. = [7(1 + £2)]2(2— 1),
Fix o € (1,2) and

d € (0,min{1, 2(1 — ), 2(1 —y2)}).

To find a solution of (25), it is enough to find a fixed
point (v}, v}) in a small ball of C;*(R?) x C2**(R?)
solutions of

{ U% = guo‘fuo%l(vi,v ), 26)
1

1
2
?}% = ,C5 Of(; ¢) §R2('U ,'U%).

Here &, is defined in (8), KCs, G,, are defined after
Propositions 4 and 5; and

R1(vi,v3) and Ro(vi,v3)

is the right hand side given in (25).
We denote by R(=R__ 1)and V(=T %) the

6777902 T,
nonlinear operators appearing on the right hand side

of the equation (26).

Given k > 0 (whose value will be fixed later on),
we further assume that the functions (1, 3) satisfy

(21, 03)|lczaxcza < K725 (27
Then, we have the following result

Lemma 14 Given k > 0, there exists €, > 0 and
¢k > 0 such that for all ¢ € (0,e.), p € (1,2) and
d € (0,min{1, 2(1 — 1), 2(1 —y2)})

1RO, 0)ll 2oy < e 720s 10, 0) g2y < €72,

IIN(v%vv%) N(t1, t3)

< cwrZy (vt vy) —

I ez
(t17 tQ) ||C2 a(]RQ)XCZ a(IRQ)

and

||T(U%7 U%) - T(t%v t%)
1

. ez r2)
S Gy [(v1,v3) —

191
(11, 12) o2 (m2) xe2e (m2)
provided (v}, v}), (t},t}) € Cr*(IR?) x C(?’a(W)
satisfying
H(ULU%)Hcga(Rz) C2(IR?) < 2¢pr g)\v

(28)
H(t%,t%)“ci,a(mg) C2 Q(RQ) < 26,,;/ 8)\

,20) + I+ H"™ 4 ol)[2 + Anj,

int, 1+ %)
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Proof : The first estimate follows from Lemma
12 together with the assumption on the norms of

2, we have

j —2
HHmt('/Ra,A)||C§,a(BRE’A) SC/{R&)\H@Z”CQ@(BRE,A)

< cne?.

On the other hand,

2—
SUp, < g, T B R1(0,0) |
82— (ehHH{"“ﬂl(h;+H;"tvl) _ 1)

S SUPr <R\ (147)7
+8up, < g, P2
(A (@ = nG(Z, 2) + B+ B2+ A}

Making use of Corollary 4 together with (9), for
i € (1,2), we get that there exists ¢, such that

HN(OaO)Hcﬁva(ﬂy) < ¢ rg,)\a (29)

For the second estimate, we have

sup 7°7° | R2(0,0)

TSRe,/\
8C 54(1_72)
< sup r2_5€722x
TSRE,)\ (]' +7r ) 72

ohat Hy" 4+ (1=7172) G( 2 20) +y2 (R +H{™ )

+sup, <, 770X

(A (hh + G(2, 2) + H' )2 + An).

Using the same argument of S(r) in proof of
Lemma 8, we get

10(0,0)l 2.0 g2y < ewr? (30)

To derive the third estimate, for v}, v%, t} and t% ver-
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ifying (28), we have
sup MRy (v, vy) — R (t, 1)]
TSRE,)\
{p2—H
———=X
(14172)2

int,1 int,1
(eu}+H{" +hi+y (vi+ H" +hd) U% —1)

< sup
TSRE,A

_ (et%*‘Hi‘m’l‘i‘hH% (ty+ Hy" " +hh) th— 1)‘

€z A
+A sup TQ*“(’V(U% + i —nG(=, 20) + bl 4+ H™P
TSR&,A T
€z .
_ IV(t% + U — ’YlG(7, 2,’2) + h% + Hint,l)IZ)
8r2k 1,2 1,2 11
< supi[v —(t +1U—t}
r<R. (1+7r2)2 (v1) (t1) Y1lvy 1
+ sup /\rz_”\V(v}_t})‘x
T‘SR&/\
_ €z A
<ec sup ”[rau(uv}n o [ 2o 0] = £ e
N r<R. x (1 + 7“2)2 Cu Cu Cu

+ 1700} = |z |

+ sup Ar¥ H[log — byl 20 (TQ“ i llgze + llt1]l g2 +C).
2o Ao = tlge (7 (o llgze + It lz)

We conclude that

IR0}, 08) = R 1) | gz g
< Cx T?,)\ H(’U%ﬂjé) - (t%vt%)”cz!a(m2)xc§va(m2)
€29
Similarly we get the estimate for
1T (o1, v3) = Tt 83)ll ez ray
< cx T‘i)\ ||(U%7 U%) - (ﬂ?t%)”ci’“(E{Q)xC?a(IRQ)’
(32)
g

Reducing ¢, if necessary, we can assume that
Cur? < %for all e € (0,e,). Therefore (29)-(32)

13
and are enough to show that

(v}, 0) = (R(o},v}), T(v},03))
is a contraction from the ball
{(0]v]) € G (R?) x ¢ (R?) ;
0k o)z gaycze ey < 20x720 )

into itself and hence a unique fixed point (v{,v3) ex-

ists in this set, which is a solution of (26). That is
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Proposition 15 Given k > 0, there exists €, > 0 and
¢ > 0 such that for all ¢ € (0, a,i) forall 1 €
[77, 7] C (0,00) and for a given p' satisfying (21)
and (27), there exists a unique

(viv U%) = (vl,E,Thsﬂl ) U2757717$01)

solution of (26) such that

| (v%, U%) Hcﬁ*“ (IR2)xC2“(IR2) < 20/@7“3,»

Hence
vi(2) =z = 21) = G(F, 22) + hi(2)
+H o}, G + 0l ()
vo(z) = h%(z) + G(2,2)
+Hy" (0}, Gr) + v (2)

solves (23) in Bg, ,(21).
Similarly, we get also

Proposition 16 Given k > 0 and 72 € [15 ,7)| C
(0, 00), there exists £, > 0 and ¢, > 0 such that for
any € € (0,¢,), any ©? satisfying (21) and (27), there
exists a unique (v3,03)(:= (V1 ¢ 1, 2, V2c 7y 02)) 5O-
lution of (26) such that

H(”%a U%)Hcgva(maxcgvﬂ(mz) < 2%7'3,»

Hence,
v1(2) —h2( )+G(gvzl)
+Hmt2( P1s (;QZQ)) + U%(Z)
v2(z) =u(z — 22) = G(F 21) + h3(2)
+HY"? (3, (EQZQ)) + v3(2)

solves (23) in Bg_ , (22).

Remark also that the functions v}, v3, v? and v3, ob-
tained in the above Proposition, depend continuously
on the parameter 7.

2.3 The nonlinear exterior problem

Given z := (Z1,%) € Q? close to z := (21, 22),
A € Rclose to 0, ¢1 := (@1, 8%) € (C*(Sh))?
and Pg = (@}, 53) € (C*¥(S1))? satisfying (22).
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Define
(W1 (1 + M)G(+, Z1)
+me VHT™ (@F; (- — 23) /7<)
Wo (1 + \2)G(+, 22)
+me BOHE (P (- — 50)fr2).
(33)

Here x,, is a cut-off function identically equal to 1
in B, /2 and identically equal to 0 outside By,. We
would like to find a solution of the system

Aug — A\|Vuy|? = pPevrtmuz,
—Aug — A\Vug|? = p2etztru (34)
in the domain 2,._(2) with u;
of wy and u9

= w1 + 01 perturbation
= Wg + U9 perturbation of Wa.

This amounts to solve in Q,_(Z)
—AD; = p2 (€W1+171+’Y1 (Wa+72)
+A V(W1 +01)* + Awy,

(35)
—Aby = p2 (€V~V2+172+72(V~V1+171)
+ AV (W2 + T9)|? + Awa.
For all o € (0,70/2) and all Y = (y1,92) € 02
such that ||Z — Y| < ro/2, where Z = (21, 22),

denote by &,y CS’“(me) — CYU(Q*(Y)) the
extension operator Which is equal to

f(2)
X<|z ;yj|>f(yj+0é:
0

Here x is a cut-off function over IR which is equal
to 1 for ¢ > 1 and equal to 0 for t < 1/2. Obviously,
there exists a constant ¢ = ¢(v) > 0 only depending
on v, such that

in Q(Y),
) in Bo(y) — Bojalyy),
Yl )
in By /2(y1) U By ja(y2)-

£ (w) < eflwllge (36)

(Q(Y))

o (@ (Y)

We fix v € (—1,0), to solve (35), it is enough to
find (91, 72) € (C2*(Q*(z)))? solution of

’51 - ,illoéjrg 051(61a62)7 (37)
’l~)2 = ,Cl, 9] f,«g o 52(171, 172).
where B B
Sl(ﬁly ’52) and 52(171, ’(72)
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is the right hand side in (35). We denote by

N (01,) =
M(01,09) =

v O frs 0 Sy (y, B2)
L 0 &p. 0 Sy, ).

Given k > 0 (whose value will be fixed later on), as-
sume that for k¥ € {1,2} the functions (B¥, %), the
parameters Ay and the point z = (27, Z2) satisfy

(B, 35)|lc2.axcea < K12 (38)

’)\k;| < m"g, (39)

|2k — 2k| < Kre

Then, the following result holds

Lemma 17 Under the above assumptions, there ex-
ists a constant c,, > 0 such that

HN(O, O)H(jgvo‘(ﬁ*(z)) < C,Qrg,

HM(Oa 0) ”cgva(()*(g)) < CM’?,

IN (91, B2) = N0, 5) |2 (e 2
<ecr?||(vy, v) — (¥, %)”(cia((z*(i)))?
and

M (@1, 2) — M(¥], )l ez (g (z))

< er? |[(1, 2) — (01, B) |l ez (e (32

provided that (01, U2, 0}, 75) € (CE’“(Q*(Z)))“ sat-
isfy

(40
4D

11, 82) | @20 e a2 < 28725

||(77/1’17/2)||(c§va(g‘)*(g)))2 < 20%7“?
Proof : As for the interior problem, the two first
estimates follows from the asymptotic behavior of
H*** together with the assumption on the norm of the
boundary data @’f,@’g,k = 1,2, given by (38). In-
deed, let ¢, denote a constant depending only on &,
by Lemma 1,
’He:(:t(@k

(2= Z)/re)| < c,.irgr*l. (42)

On the other hand,
51(0,0) = p* (™11 %2) 4 AWy > + Ay
and
S5(0,0) = p? (™2 172 ¥1) 4 \|Ws|? + A Wo.
\_Ne( v;ill estimate S (0, 0) in different subregions of
0*(z).
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e In B, 2(%1)\Br.(21) we have x,(z — Z1) =

1, Xro(z — 22) = 0and AWy = 0, so that Sl(O 0) =
p ew1+71w2 Then

’51(070”
<cpel|z— A 4(1+2) |z — Zo|” Im(i+dz) A Vw2
< cpe? |z — 51\_4 (1+21)
+ e |(T+ M)+ (14 \)|VH(z, 21)|
2
+ |He$t(s5%; (2 —21)/re)
<ec, £2p—4(1+21)
2
+ c,@((l + ) 4+ (14 M) logr + 7“?7)\7"_2) )

Hence, for v € (—1,0) and \; small enough, we
get

151(0,0) 0. < supr <rsro/ r277151(0,0)|

24 e

(Brq(21))
< c,.ia o

e In B, (21)\B,, /2(Z1), using the estimate (42), there
holds

151(0,0)] < exe?|z — 2|40 HM)

e (L4 A)r=t o (14 A logr + 73 r~2)
F[[A, X (2 = 2] [HH (Y5 (2 = 21) [7e)|

< ¢pe? + c,@)\((l +A)r 4 (14 Ap) logr + rigr_2>2
—i—c,{r_lrg‘

2

where [A, Xr| W = Awxr, + WAXr, + 2VW.VXp,-
Hence, for v € (—1,0) and A\; small enough, we get

151(0,0)[ o,

< Supro/2§r§r0
< c,i52r§ + A

0 (Brg (zw\Bm /2(21))
Y151(0,0)]

e Similarly, we can prove that in B, /5(22)\ B, (22),
for v € (—1,0) and Ay small enough, we have

HSI (0 0) Hco o Bro(z2))

< Supr <r<ro/2 r?
< ¢e? ro 24 e,

¥|51(0,0)]

and in By (22)\B,, 2(Z2)

1510 0)llcoe, 5, (52\ By 2(22)
< SUDP j2<r<ry T ¥|51(0,0)]
< c,@—:%? + .
eInQ — U?_,B,, (%), we have x,, (2 — %) = 0 for
k € {1,2} and AWy = 0. Thus

|511 (O, O)‘ S CH€26(1+)\1)G(Z,Z~1)6’)/1(1+)\2)G(z,z~2)'
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So for v € (—1,0), we have

51(0,0 = >
151 )HchQ(Q— Ur—1Bro (%))
é SuproST T2_V|Sl(070)|
< cpel.

So [|51(0,0)]| O @0 (5) < Ccur?.
Proposition 7 together with (36) we conclude that

Making use of

”/\7(07 0)”(}3»“(@*(;)) < Crﬂ“g,

v (43)
|| M0, O)HCE,Q(Q*(Z)) <cerl.

For the proof of the third estimate, let o1, 02, U}
and ¥, € Co* (1) satisfy (40), we have

|81 (1, B2) — S1(¥, 7))

< 05526@1+’)/1U72 V1M 617'1+'7117§

+ e AV, — V||V (51 + T, + 251
< cper 40 (Ifh — 0|+ |02 — %!)

+ e AV — V.

Then for \;, small enough, k € {1, 2}, using the esti-
mate (36), there exist ¢, (depending on ~ ) such that

IV (01, T2) = N (0, 85)l| 2. 0 29

< r? (Hﬁl — Ul gz ez + 1172 — 775”03“((2*(%)))

(44)
and

M (1, 82) — M0, )| 20 0z

)
< Cur? (Hﬁl — Ul ez ey +

(45)
The proof is completed. O

Reducing ¢, if necessary, we can assume that
Curl, ., < 3 foralle € (0,e4). Then, (44) and
(45) are enough to show that

(01, 2) = (N(731,752),M(171,172)>
is a contraction from the ball
~ o~ 2, 2 2
{(or,5) € (C2°(®?):
151, 52)ll ey < 26672, )
into itself. Hence there exist a unique fixed point

(01, 02) in this set, which is a solution of (37). We
conclude then
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Proposition 18 Given k > 0, there exists £, > 0
(depending on k) such that for any ¢ € (0,&,);
A and Zj, satisfying (39); any functions gblf and
@’2“ satisfying (22) and (38), there exists a unique
(01,02)(:= (V1,e.02,65 V2,e.0,2,53)) solution of (37) so
that for (v1,v2) defined by

( 01(2)2:: (1+ M)G(+, %)
+ 3 X (- = EVHT (@R (= 2) /1) +
k=1
vo(2) == (1 + X2)G(-, Z2)

2
+ ZXTO(' - 2k)H2ext(¢12€§ (- = Zk)/re) + U2
k=1

solve (34) in Q,_(Z). In addition, we have

191, 92) | 2.0 (e () < 2602

2.4 The nonlinear Cauchy-data matching

We will gather the results of previous sections. Using
the previous notations, assume that z := (21, 22) €
02 are given close to z := (z1, z2). Assume also that

T € [1y, 7] € (0,00) for k € {1,2}

are given (the values of 7, and 7']:— will be fixed later).

First, we consider some set of boundary data ©¥ :=
(oh, ©b) € (C?(S1))2. According to the result of

.Proposition 16 and provided ¢ € (0, ), we can find,

Uint := (Wint,1, Wint,2) a solution of

_ _ 2: 2 u1+y1u2
{ Auy — A\|Vuy|* = pe 46)

—Aug — A Vug|? = p2etztrzu

2
in U B,.(Zx), which can be decomposed as
k=1

Uint,1(2) =

e (2 — 51) — 11G(2, 52) + h} + vl + H™  in B, (%)

G(z,71) + b2 + 0¥ + H™? in B, ()
and wjne 2(2) =

Gz, 2) + hd + vd + H  in B, ,(%1)

Ue 7y (2 — Z2) — 712G (2, 21) + b3 + v3 + H™? in B, (%)

where the functions hi, h?, vi, v}, hd, h3, v}

v2 satisfying

and

H(h%, h%)”(cﬁ*a(]m)y < 2057“?’,\,
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H(h%, h%)”(cg«a(n@)p < 20,.@7“?7/\,

[ (v%, U%) | (€2 (R2))2 < 20&7’?,)\7

and
[ (v%, U%) [ (€3 (IR2))2 < QCHTS,X

Similarly, for & € {1,2}, given boundary data
oh, @k € c>2(81) satisfying (22), A\, € R satisfy-
ing (39), provided ¢ € (0,¢4), by Proposition 18,
we find a solution eyt = (Uext,1, Uext,2) Of (46) in
Q-Ui, B, , (Zk), which can be decomposed as

uext1< ) =1+ A)G( 7)
+ me Z) HE™ (315 (- = 24) [1e) + 01
uext,22( z) = (1+ A)G(+ 22)
+ ;Xm(' — ZR)H5™ (@53 (- — 24) /T ) + U2

with o1, 5y € Co*(Q*(Z)) satisfying

S~ —
(21, UZ)H(CE’Q(Q*@)W < 2Ck1Z )

It remains to determine the parameters and the bound-
ary data in such a way that the function equal to w;p;
in U%:1Brm (Zk) and equal to Uez in €2, (Z) is a
smooth function. This amounts to find the boundary
data and the parameters so that for [ = 1,2

47

WUint, ] = Uext, 1 and aruint,l = aruext,l

on 0B, _, (%), k € {1,2}.

Suppose that (47) is verified, this provides that for
each ¢ small enough, u. € C?>“ (which is obtained
by patching together the functions wu;,; and the func-
tion uezt), @ weak solution of our system and elliptic
regularity theory implies then this solution is in fact
smooth. That will complete our proof since, as € and
A tend to 0, the sequence of solutions we obtain satis-
fies the required singular limit behaviors, namely, . x
converges to G+, zj).

Before we proceed, the following remarks are
due. First it will be convenient to observe that the
function w. -, kK € {1,2}, can be expanded, on

0B, ,(Z), as

627'];2
Ue 7, (2) = —2log 7, —4log |z—2k\+(’)<m>.

(48)
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* Thus, for z on 9B,_, (21) we have
(uint,l - uext,l)(z> =
—2log 7 — 41 log |z — Z1| + hi(RL(z — Z1)/rc.0)

—’ylG(z, 22) + 'U%(R;(Z — 21)/7"57)\) — ?71
+H (0, (2 = 21) fre0) —
— (1 + M)H (2, 51) +(9(

ETl

3 ) +002,).
(49)

le—21 )7

Next, even though all functions are defined on
8BTE, L (21) in (47), it will be more convenient to solve

on S the following set of equations

(Wint,1 — Uewt,1)(Z1 +1ep2) =0

- 50
6T‘(ui7’lt,1 - uemt,l)(zl + 7'5,)\Z> =0. (50)

Indeed, all functions as considered as functions of z €
S1 and we have simply used the change of variables
Y = Z1 + 722 to parameterize OB,_, (Z1).

Since the boundary data are chosen to satisfy (22) or
(21). We decompose

and @}

1 1 1 1 S, a1, a1
P1=ProtPriter . =1 0tTP11tTP1 1

Where 90%70785%70 € Ey = IR are constant on
S, 11,91, belong to By = Span{er, ez} and

ol |, @l | are L?(S") orthogonal to Eq and E;.
we have for z € S1

(uint,l - uezt,l)(gl + 7’5,)\2) = —2logm

z 51
+4Alogre x — &z, 21) + O(Tg,)\)' e

where

51('7 ) 7H(

~H(. ) + G R

Then, the projection of the equations (50) over Eq will
yield

—2log T + 4\ logr. ) — 7151(21, z) + (9(7’ )\) =0,
4); + O(r? T2 y) = 0.
(52)
The system (52) can be simply written as

2log 1 +mé1(21,2)] = O(r2 )
and A\ = O(r E,/\)-

We are now in a position to define 7; and 7;". In
fact, according to the above analysis, as € and A tend
to 0, we expect that z; will converge to z; and 7 will
converge to 7 satisfying

logr A

210g ’7'1* = —’7151(21, Z).

Volume 16, 2017

He‘”(@p (2 —21)/re0)



WSEAS TRANSACTIONS on MATHEMATICS

Hence it is enough to choose 7, and 7;" in such a way
that

2log(1y ) < méi(z1,2) < 210g(71+).

Consider now the projection of (50) over E;.
Given a smooth function f defined in {2, we identify
its gradient Vf = (0, f, Oy, f) with the element of
[y

2
Vi=> 0ufer
=1
With these notations in mind, we obtain the system

Vé&i(21,2) = O(r2 ), (53)

3

@%,1 = 0(7”3,,\)'

Finally, we consider the projection onto
y proj
(L?(S')) .. This yields the system

90?[; -1t O(@,A) =0,

o (H{"t" — H{"l) + 0(r2 ) = 0.

Thanks to Lemma 13, this last system can be rewritten
as

1 2 ~1 2

Y1, = O(Ta,,\) and $1,L = O(Ta,,\)~

If we define the parameters ¢; € IR by

t1 =

|:2 log T1 + 7151(217 Z)] )
log e »

then the system we have to solve reads
1 1 =1 1 =1
T, \ = (tl’ AL @10, P1,05 P11 P11

AR AL )
Véi(#1,2), ¥1,1> ‘Pl,L) = O(Tg,)\)

where as usual, the terms O(r? 1) depend nonlinearly
on all the variables on the left side, but is bounded (in
the appropriate norm) by a constant (independent of £
and k) time rg,)\, provided € € (0, &,).

+ Similarly, when ¢ tends to 0, we expect that 2o
converges to z and 79 converges to 7, satisfying

2 log ’7'; = —’}/282(22, Z).

So we choose 7, and 7 to satisfy

2log(1y ) < —72€2(22,2) < 210g(7'2+),
where

1
~H(.,

52('72) = 7

52) + G(., 51).
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Using the decomposition Eg ® E; @ (L?(S1)) L

03 = @%,0+@%,1+@%,L and @5 = 95%,0+95%,1+95§,J_a

we can prove that

(uint,Q - uewt,Q)(EQ + 7‘57,\2:) =0
8r(uint,2 - uext,Q)(ZQ + TE,)\Z) =0

on S! yield to

2 _ 2 22 2 =2
17, = (t27)\27()02,0a(p2,0a(/72,17(/72,17

a9 ) (55)
Vé&s(22,7), $2,1> @2@_) = O(rg,)\)

where

ty = {2 log 7o + ¥2€2 (2, 5)]

log 7 A

% On the other hand, on 0B,_(Z2
(Wint,1 — Uext1)(2) = —MG(2, Z1)
+ IE(R2(z = 22) frep) + H™ (61, (=
— H{"'(31, (2 — Z2) [rep) + O(r2 ).

) we have

Z2)/Ten)

As above, we will solve on S the following system:

(Wint,1 — Uewt,1)(Z2 +1ep2) =0

- 56
8T(uint,1 - uewt,l)(ZQ + Tg’AZ) = 0. (56)

We decompose

of = CP%,O‘HP%J‘HD%,L and ¢F = @} 0+<P1 1+51 L
(57)
where @%70795%,0 € EO’ gp%,b@%,l S El and

7 1, #7 ) belongto (L(S1))..

Projecting the set of equations (56) over Eg, we
get A\ = O(ri ,)- From the L?-projection of (56) over
E,, we obtain the equation ¢ ; = O(r2,). Finally,
the L2-projection onto (L?(S1)), yields

QO%,L -1+ O(ri)\) =0,

8r (Hmt 2

Using again Lemma 13, the above system can be
rewritten as

— H{*%f) + 0(r2,) =0.

2

@%,L = O(Tg,x) and @%,L = O(T‘E,A)~

Then the system we have to solve reads

= 0(7“5,,\)-
(58)

2 =2 2 =2 2 ~2
(>‘17 1,00 1,00 P1,1> P1,15 P1,,Ls ‘Pl,J_)
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By exactly the same arguments for (54), we can claim
a solution of equation (58) in the ball of radius mﬁ’ N
of the corresponding product space.

* Similarly, using the fact that

©3 —(P20+9021+§02Land802 9020+‘P21+902L

with @%,Oa @%,0 € Eo, QD%,I’ 95%,1 € El and
©3.1,P3.1 € (L*(S1)) L, we can prove that

(uint,Q - uezt,?)(zl + TE,AZ) =0
ar(uint,Q - uemt,?)(gl + TE,)\Z) =0

on S*, yield to

()\2, 03,00 P50, 93,1, P31 80%,@ @%,J.) = 0(7’3,)\)'
(59)

Finally, recall that x = 7. \(z — z), in addition
the previous systems can be written as:

<X7 t, Akv ¢k7 @k7 ?gk> = O<r3,)\>'
Combining(54) and (55), we have

Ty = (Tsl,)\aTsQ,)\> = O(Tg,,\)- (60)

Then the nonlinear mapping which appears on
the right hand side of (60) is continuous, compact.
In addition, reducing ¢, if necessary, this nonlinear
mapping sends the ball of radius ra y (for the natural
product norm) into itself, pr0V1ded k is fixed large
enough. Applying Schauder s fixed point Theorem in
the ball of radius k7?2 Y in the product space where the
entries live, we obtaln the existence of a solution of
equation (60). . O

Remark. We recall that

LH(5) 46 5)

f(-2) = Y1

and

52('7 ) 7o H(

In order to inverse problem (54) and (55), we re-

mark that the fact that z; is a nondegenerate critical

point of &;,i = 1,2 is equivalent to say that (z1, z2)

is a nondegenerate critical point of the function F de-
fined by

2) + G(., 21).

.F(Zl, 22) =

2m 279
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Indeed, we have

OF oOF
VF(z1,20) = (82(21,22),872(2«1,@)). 61)

On the other hand,
1
&1(z,2z) = %H(z z1) + G(z, 22)
and 1
£2(22) 1= —H(z ) + Gz 2)
then
o0& 1 oOH 0
E(zlvz) = %5(2’1,21) + 5(21,'22)
oF
= 8721(2’1,»22)
and
o€ 1 0H 0
672(22, ) = P (22,22) + 5 (22,21)
oF
= 8722(2172’2)
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