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Abstract: In this paper, we investigate the pricing of vulnerable European options under a Markov-modulated jump
diffusion process. The states of market economy which are described by a two-state continuous time Markov-chain
are explained as a stable state and a high volatility state. The dynamic of the risky asset is described by a Markov-
modulated geometry Brownian motion when the market state is stable, otherwise, it follows a Markov-modulated
jump diffusion process. We consider two types of models to describe default risk: one is the structural model, the
other is the reduced form model. By utilizing techniques of measure changes, some analytic formulas for pricing
vulnerable European options are derived under these models.
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1 Introduction

In a financial market, the default risk often effects ev-
ery financial contract. How to quantify the default
risk is very important for both market practitioners
and financial researchers. there are two most popu-
lar of models to quantify it, that is structural models
and reduced form models, more details see Duffie and
Singleton[1] and Bielecki and Rutkowski[2]. Johnson
and Stulz [3] first studied the pricing of options with
the default risk, namely the so-called vulnerable op-
tions. Hull and White[4] and Jarrow and Turnbull [5]
took into account the default risk when pricing options
traded on the over the counter market. However, Hul-
1 and White[4] and Jarrow and Turnbull [5] assumed
independence between the total assets of the option
writer and the underlying asset of the option. Klein
[6] extended [4] and [5] by relaxing their assumption.
Since then, there exists a significant number of stud-
ies on the pricing of vulnerable options, for example,
Klein and Inglis [7], Liao and Huang [8] and Capponi
et al.[9].

A large number of empirical studies show that the
risky asset price follows a geometric Brownian mo-
tion is not realistic. Consequently, many different fi-
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nancial models have been proposed to describe the dy-
namics of risky assets. For example, the jump diffu-
sion processes, Markov-modulated model, stochastic
volatility model, constant elasticity of variance mod-
el, stochastic interest rate model and Studies including
those of Merton[10], Elliott and Osakwe [11], Wang
et al.[12], Li et al.[13], Chang et al.[14] and other-
s. Edwards [15] presented a new Markov-modulated
model. He supposed that the Markov-chain had on-
ly two states which represent high volatility econom-
ic state and low volatility economic state. When the
market is at high volatility state, the dynamic of risky
asset follows the Lévy process, otherwise, it satis-
fies log normal distribution. Elliott [11] extended
Edwards’s [15] model to N states and introduced a
Markov-modulated pure jump model. In their model,
they assumed that the Markov-chain had N states and
the compensator of a jump process changed its value
when the Markov-chain changed.

In this paper, we are in line with Edwards’s
[15] idea and consider a two-state Markov-modulated
jump diffusion model for the vulnerable option val-
uation. Our model is similar to those of Elliott[11].
However, we assume that the Markov-chain has two
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states and the compensator of the jump process is ze-
ro when the market is at low volatility state,i.e geo-
metric Brownian motion. When the market is at the
high volatility state, the risky asset follows a jump d-
iffusion model.We investigate the pricing of vulnera-
ble options under a two-state Markov-modulated jump
diffusion model. Most of the literatures about the
price of vulnerable options did not consider the regime
switching effect. Wang and Wang [16] incorporat-
ed the regime switching into the model and obtained
the price of vulnerable options. However, the work
in this paper is different from Wang and Wang [16].
The major differences between their papers and this
one are as follows: firstly, the model considered here
is different from that in Wang and Wang [16]. Sec-
ondly, the Markov-regime switching risk is priced in
this paper. Finally, we provide the analytic formulas
for pricing vulnerable options under structural models
and reduced form models, respectively.

This paper is structured as follows: Section 2 de-
scribes the dynamic of the risky asset price under the
two-state regime switching jump diffusion model. In
Section 3, we present an equivalent martingale mea-
sure. Section 4 obtains the pricing formulas of vul-
nerable options under the structural model. Section
Sprovides the pricing formulas of vulnerable options
under the reduced form model. The final section gives
a conclusion.

2 Financial market

Suppose that we have a given complete probability s-
pace (2, F,{Ft}tepo,1), P), where P is a real world
measure and 7 is a fixed investment horizon. We also
have ¢, a continuous time Markov chain, to represent
the states of the market economy. Moreover, we sup-
pose that € has the state space M = {e1,e2} , where
states e = (1,0) € R? and e = (0,1) € R?
of the chain can be explained to represent a "high
volatility ” state and a “’stable” state, respectively. As-
sume that the Markov chain process ¢ has a genera-
tor A(t) = [ai;(t)]i jem. From Elliott et al.[17], the
semi-martingale dynamics of the Markov chain is giv-
en by

t
€t = €0 + / A(s)ds + M(t),
0

where M (t) is a P martingale.

We consider a financial market with three traded
assets, a riskless bond and two risky assets. The risk-
less bond price process B = (B;) evolves according
to

dBt = TBtdt, (1)
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where 7 is the fixed interest rate. For sake of conve-
nience, we assume By = 1.

We assume that the risky asset price follows a
jump diffusion process when the state of market econ-
omy is state ej, whereas the risky asset price follows
the Black-Scholes model when the state of market e-
conomy is state es. The dynamic of the risky asset .S
is specified as

ds, a2
i = pdt+odWy — Ag(ez — 1)[{€t:€1}dt
N}
+ o=y d(Y_ €N = 1), @
j=1

where Iy is a indictor function, p and o is the

appreciation rate and volatility of the risky asset S

and W is a standard P Brownian motion, N} is a

Poisson process with intensity Ag, the jump ampli-

tudes { X} =12, are independent and identical dis-

tribution with probability density function f(z) =
1 =22

Let J; denote the occupation time of ¢ in state e;
over the time period [0, ¢], then

t
J, = / Iereyyds. 3)
0

Consequently, the risky asset price process S = (S;)
according to

Nl
Jt

1
So exp {(u — 502)15 + Wi + Z X
j=1

Sy =

— As(e® =)}, @)

In addition, the dynamic of V; is described as follow-
ing
1 N
Vo exp {(b - 51/2)15 + WY, + E:lYJ
]:

V. =

2

— Av(eF — 1)}, (5)
where b and v is the appreciation rate and volatility of
risky asset V' and W5 is a standard P Brownian mo-
tion, N7 is a Poisson process with intensity Ay, the
jump amplitudes {Yj}j:m,... are independent and i-
dentical distributgon with probability density function
1 Y

g(y) = \/727672.?, —00 < y < oo. Furthermore, we

let the correlation coefficient of dW7, and dWs; be p.
e, NI, N?, X = (Xj)j:1,2,.‘. and Y = (Yj)j:LZm
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are supposed that be mutually independent and inde-
pendent of W7 and W,

For convenience, we write (4) and (5) as the fol-
lowing

s, = St(,udt+JdW1t+ / (6" = 1)Jg(da, db)
_ /OO (€® — 1)ks(dz, dt)), ©6)

and

dv, = V}(bdt—i—udWQt—i— / (e = 1)y (dy, di)
e = bty an). ™

where < -,- > denotes the inner product operator
and Jg(dz,dt) and ky (dy, dt) are the random mea-
sures associated with the jump of S and V, respec-

2
tively. For m € {S,V}, kp(dz,dt) = > <
j=1

€1, €j > kpmj(x)dxdt is its compensator, and ky,; ()
is a Lévy measure which depends on the states of the
Markov chain ¢, kgi(z) = Asf(x), ksa(z) = 0,
kvi(y) = Avg(y) and ky2(y) = 0.

3 Equivalent martingale measures

In this paper, we use a Markov-modulated jump diffu-
sion model to describe the dynamics of the risky asset-
s. Since the jumps and Markov-chain render the mar-
ket is incomplete, the equivalent martingale measure
is no unique. In order to pricing vulnerable options,
we need to choose an equivalent martingale measure
for pricing vulnerable options.
We first define

dA?(t) = A%(t)(1dWry + O2dWoy), A°(0) = 1,

where 61 and 05 are constants.
We consider a real valued and bounded stochas-
tic process C(t) := {c;;(t)|t € [0,T]} on (Q, F,P)
such that ¢;;(t) satisty the following two conditions:
L. ¢;;(t) > 0 for i # j;

N
2. Z Cij (t) = 0.
i=1
Define the following matrix:

D = (dij(1)); j_12 = [cij(t)/aij(D)]ij=12- (B

For ¢t € [0,7], write N(¢) = fot(I -
diag(e(u—)))de(u). Here N(t),cjo 7y is a vector of
counting processes, its component IN;(¢) counts the
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number of times that the chain € jumps to state e; in
the time interval [0, ¢], for each ¢ = 1,2. Then we
cite the following result from Dufour and Elliott [18]
without proof.

Lemma 1 For a given rate matrix A(t), let a(t) =

(a11(8), az(t)) and Ao(t) = A(t) — diag(a(t)),
where diag(y) is a diagonal matrix with the diago-
nal elements given by the vector y. Define

t
N(t) = N(1) — / Ao(u)X (u)du.
0
Then N = N(t)te[o,T] is an P martingale.

Let d(t) = (di1(t),d2(t)) and Do(t) =
D(t) — diag(d(t)). We consider a process
AC(t) = 1+ 5 A (u=) Do (u)X (u—) ~ 1] (dN(u) -
Ao (u)X (u)du). Define A%C = Ae’c(t)te[o’ﬂ as the
product of the two density processes A? and AC, that
is A%C(t) = AP(t)AC(t). Moreover, we present a
new probability measure Q%C, which is defined by
the following

dQG,C

= A%C(1).
dP | F ®)

p(bf(;)_ap;)(g;r)y’ 0, _

. Then the measure Q% is a risk neu-

Lemma2 Let 67 =

pp—r)v—(b=r)o
(1-p*)ov

tral martingale measure, and Wlat = Wi —01t—pbat,
Wgt = Wy — 69t — pb1t are two standard Browni-
an motions under Q% with corr(dWY,, dW$,) = p.
Furthermore, C(t) := {c¢;;(t)|t € [0,T} is a family
of rate matrices of the Markov chain ¢.

Proof. Let S; = e 'Sy, V; = e "'V, {Ff} denote
the P augmentation of the natural filtration generated
by the Markov-chain €, and write G; = F;V F7. From
(6) and by Ito’s formula, we have

. . t 1 t
S, = Suexp{/(,u—r—QUQ)ds+/ odWis

+ /ut /_Z (xJi(dx,ds) — (e — 1)kg(dz,ds)) }

According to the law of condition expectation and the
above equation, we obtain

Ego.c[Si|F]
= EQ [EQG,C [St|Gi]| F

_ t
= S.exp {/ (Ww—r+00 + paﬁg)du}
0

= Su.
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plb=r)o—(pu—r)v
(1-pHov

. Using the same method we get

The last equality follows by 6; =

_ plp—r)v—(b—=r)o
b2 = T men
that Ego.c [Vi|F] = Vi Hence, Q%€ is arisk neutral
martingale measure. By Girsanov’s theorem,

0
Wit

0 _
Wy =

Wiy — 01t — pbat,
Wai — Ot — pO1t,

are two standard Q%¢ Brownian motions, and
corr(dW?,,dW¥,) = p. In addition, we find that C
is a family of rate matrices of the chain ¢ under Q%¢
from Dufour and Elliott [18]. Then we complete the
proof of Lemma 2.

From Lemma 2, we find that, under the risk neu-
tral martingale measure Q%C, the dynamics of risky
assets Sy and V; are given by

s, = S; (rdt + odW?, + / (e* —1)Js(dz,dt)
- [ e Dhsts ), ©
av, = W (rdt + vdW¥ + / (eY — 1)Jy(dy,dt)

oo

- [ @ niviayan).
—0o0

Remark 3 We assume that Markov chain e, Brow-

nian motions W1 and Wy are independent of ran-

dom measures Jg(dx, dt) and Jy (dy,dt). Hence, the

compensators of Jg(dx,dt) and Jy(dy,dt) are not

changed from the measure P to the risk neutral mea-
sure QC.

From (9), (10) and Remark 3, we have

N;
1 Jt
St = Soexp {(r — 502)15 + anat + ZXj
j=1
2
— gleT — 1)Jt}. 11)
and
1 N
Vi = Vyexp {(r — §V2)t + VWQGt + ZYJ
7j=1
2
~ (e - 1)Jt}. (12)

4 Structural model
In this section, we adopt the framework in Klein [6]

to describe the payoff of vulnerable European option-
s. A vulnerable European call option has a promised
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payoff (St — K)™. If the option writer’s asset Vp
is less than a threshold value D*, then option writer
will default and can’t pay the promised payoff at the
maturity time 7'. In the case of default, only the pro-
portion % of the promised payoff is paid out by
the option writer. However, if Vr is greater than D*,
the option writer will pay the promised payoff at time
T. Here o, D and D* are constants.

Let 1°®(T) denote the payoff of a vulnerable
European call option. Then it is given by

wcall(T)
= (St — K)"Ijvu>pn
1—a)V;
+ (D)T(ST — K) Iy cpy. (13)

Moreover, the payoff ¢**!(T') of a vulnerable Euro-
pean put option is given by

YT
= (K- ST)+I{VT2D*}
+ (1_[‘;‘)%(1( — ) Ty, (14)

Before giving the option pricing formula, we present
two useful Propositions. Since ¢ is independent of
Js(dx,dt) and Jy (dy,dt), measure of change from
Q%€ to Qg and Q gy does not change the dynamic of
. Furthermore, it is easy to obtain the following two
propositions by Girsanov’s theorem. We present them
without giving the proof.

Proposition 4 Let 1, denote the Radon-Nikodym pro-
cess which is given by

dQs
dQG,C

Hi N EQe,c [St|.7:%]

1 t 00
= exp {UWft - 202t+/0 / zJg(dx, du)

_ /Ot /:(ex — ks (dr, du) }.

Then under the probability measure Qg and condi-
tional on F7,

N =

s _
Wi =

s _
Wy =

0
WQt - pO’t,
are two standard Brownian  motions and

corr(dWi,dWs) = p.  The compensator of
random measure Jg(dx, dt) is given by

Fo(dr, dt) = ek (da, dt) = Ny— e~ 5"
slaz, = e rglax, = A\g € 25 )
V2o
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. 82
with g = MAgsez. Moreover, the generator of

Markov chain and the compensator of random mea-
sure Jy (dy, dt) do not be changed.

Proposition 5 Let (; denote the Radon-Nikodym pro-
cess which is given by

_dQgsy
- dQe,C

- StV
He EgoclSiVi|Fz]

Gt

1
= exp (JWft + Vtht - = (02 + 02+ 2,001/) t

2
+ /0 /_OO [2J1(dz, du) — (e — 1)ks(dz, du)]

+ /0 t / Z [yJa(dy, du) — (e¥ — 1)ky (dy, dU)])-

Then under the probability measure Qgy and condi-
tional on F5,

t t
Wlstv = Wlet—/ asds—p/ vsds,
0 0
t t
WQStV = Wgt—/ pasds—/ vsds,
0 0
are two standard Brownian motions and

corr(dW5Y,dWaY) = p. Moreover, the compen-

sators of random measures Jg(dx, dt) and Jy (dy, dt)
(x—6%)2
252

are given by §Sv(d:c,dt) = Sﬁe and

~ (z=~)2 2

T o'l
ksy(dx,dt) = X}, N 2% with A}, = Aye2
, respectively. Moreover, the generator of Markov
chain does not be changed.

Assume that the Markov chain process € has a gener-
ator ¢ = (c;j;). Let Oy (y) denote the condition
probability density of Jr under the measure P and
given €9 = e;, Yoon et al.[19] provided the analytic
formula of ¢~ . (y), that is, for Vy(0 <y < T)

Trlegmer () = exp [—caa(T — y) — c11y]

X{ <6171“C—2§y>§ I (2 (cricaay(T — y))%>
+c11lp (2 (cr1c00y(T — y))%> }’

C

Trlcomes (¥) = exp [—c2o(T — y) — enny]
x{ (701”22@?73”))5 I (2 (c11c20y(T — y))%)
+ca2lp (2 (cr1c20y(T — y))%> }a

and ¢JT\60261(0) = 0, ¢JT|50261(T) = e-uTl,
¢JT\60262(T) = 6_022T, ¢JT|6t:€2(T) = 0, where

T .— (z\b O ﬁ
b(7) = (3) 20 nIT(b+n+1)"
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Under the risk neutral martingale measure Q%
we let ¢(0, S, V, i) denote the price of vulnerable Eu-
ropean call options at time 0 given Sp = S, Vp =V,
€o = e;. The following theorem is the main result of
this section, which gives the price of a vulnerable Eu-
ropean call option under a Markov-modulated jump
diffusion model.

Theorem 6 The price of a vulnerable European call
option has the following representation:

c(0,8,V,i) = i i/OT (STr(m A5 Y)

m=0n=0
X 7T(’fl, )‘V7y)'/\/’(dl(m7y)?d2(na y)vp*(mvn))
— Ke"'r(m, As,y)m(n, Av,y)
X N(d3(m7y)ad4(n7y))p*(m)n))

1—a)V r * *
(D) [Se Tr(m, N, y)m(n, Ny, )

X N(dS(m7 y)a dﬁ(na y)) —P* (m7 n))
- Kw(m, s, y)ﬂ-(na )‘y\ﬂ/’ y)

X N(dz(m,y), ds(n, ), =" (m,n)))

X ¢3T|€0:ei (y)dy7 (15)
where N (-,-, p) represents the bivariate cumulative
normal distribution with correlative coefficient p, For
eachm=0,1,2,..,n=0,1,2..,andi € S,V

m!
povT

(02T + md?) (2T + nr?)’

Aiy)™
r(m, vy y) = e )

9

p*(m,n) = \/

and

log £ + (r + 262)T + mé?
V2T + mo?
2
As(e” — 1)y
V2T + mo?
log % + (r — v+ pov)T
VAT + nvy?
72
Av(ez — 1)y
V2T + ny?
02T + mé>
di(m,y) — s
V2T + md?
ovT
d?(n7y) - P

VAT +ny?

povT

V2T + md?

dl (mv y) =

do(n,y) =

dB(mv y)
dy(n,y) =

ds(m,y) = di(m,y)+
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ny? + 2T
povT

V2T +ms?
povT

VT + 2

0,8,V;i
QG,C
ditional expectation given So = S, Vo =V, g9 = ¢;.
Based on the risk neutral pricing theorem, we have

dg(n,y) = —da(n,y)—

d7(m,y) = dz(m,y)+

ds(n,y) = ds(n,y) +

Proof. For convenience, let E [-] denote the con-

c(0,5,V,1) 16)

— 0,5,V,i —
= TG |(Sr = K) Ty 4

Svi | (1—a)Vr
X E%a,c‘*/ [D(ST - K)+I{VT<D*}:| :

Let

C(O, JTPF']E—')
= EQO,C |:€_TT(ST - K)+I{VTZD*}‘f%i| (17)

(1-)Vp F%] |

5 (51 = K) vy e

+ EQe,C |:

Then, apply the law of iterated expectation, we get

c(0,8,V,i) = EXS X (0, Jp, FE)] .

= Egoie (18)

In what follows, we first derive ¢(0, Jr, 7). Using
Bayes formula we get

c(0, Jr, Fr) = SEgs [I{STZK,VTZD*} ]:’j“}

— KeEque [I{STzK,VTzD*} F ?}
(1-a)V
D

- KEqgv [I{STzK,VT<D*}

(eTTSEst [I{STEK,VT<D*} ]‘—%}

7))

Combing the Proposition 4 with (11) and (12), we
have

19)

Egs [Isr>Kve>p+} 1 F7]
N
1
_ QS<(r + 50T + oWy + ; X; = \g
2 K 1
X (e% — 1)Jr > log 5 (r — 51/2 + pov)T + v
N§T , i
S g D <
X Wi Y Y= Av(er —1)Jr > log— ]-"T).
=1
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Conditioning on N} = m, N3 = n, and using the
. T, T
independence we obtain

Egs [I{STEK,VTED*} ]:%}

= Z Z w(m, \s, Jr)m(n, Ay, Jr)

m=0n=0

X N(dl(ma JT)7d2(n7 JT)apT(mvn)) (20)

Employing the same method, we can obtain

EQQ,C {I{STZK,VTZD*} ./—'.%:| (21)

= Y w(m,As, Jr)w(n, v, Jr)

m=0n=0

X N(d3(mv JT)7 d4(n7 JT)7 pT(m7 n>)7

(22)

EQSV [I{STZK,VT<D*} ‘Fje—']

- Z Z 7(m, Ng, Jr)m(n, Ay, Jr)

m=0n=0

X N(d5(m, JT>7 d6(”7 JT)v —Pé(m, n))a

Eqv [Iisyzkvaenn| P ] (23)

- Z Z m(m, As, Jr)m(n, Ay, Jr)

m=0 n=0

X N(d7(ma JT)v dS(n7 JT)v _pi(m7 TL))
It follows from (19), (20), (21), (22) and (23) that
c(0, Jr, F7)

— Z Z <S7r(m, g, Jr)m(n, Ay, Jr)
m=0n=0

x  N(di(m,Jr),da(n, Jr), pi(m,n))

- Ke_rTT((ma )\57 JT)’R—(’nH )\Va JT)

X N(d3(m7JT)7d4(n7 JT)7pT(m7n))
(1-a)V

+ T GTTSTF(m, )\*S, JT)W(nv )‘}k/7 ‘]T)

X N(d5<m,JT),d6(n,JT),—p;(m,n))
- Kﬂ-(ma )‘Sa JT)ﬂ'(’I’l, )‘V7 JT)

% N(de(m, Jr), ds(n, Jr), —pk(m, n))] ) (24)

Note that the condition probability density of Jr un-
der the measure Q?"¢ and conditional on ¢y = e;
is ¢§T‘5026i (y), it follows from (18) and (24) yields
(15). Hence, we complete the proof of Theorem 6.

Let p(0, S, V, i) denote the price of vulnerable put
options at time 0. Then we can obtain the following
proposition.
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Proposition 7 The value of vulnerable European put
option is given by

p(0,5,V, 1)

o0

= c(o,s,v,i)—/oT(Zw(n,Av,y)

n=0

X

[S N (do(m,y)) — Ke "TN (dy(m, y))}
(1—DO‘W > 7 A y) [Se TN (ds(m, y)

n=0
- KN(dS(m7 y))] ) ¢?[T|80=6i (y)dy

Proof. From (13) and (14), we can obtain

e (Sy) PP (St) = (ST — K) v, p+
1— o)V,
U=V (6 KTy,
then
(0,8, Vi) = p(0, 5, V;1) + B0 [Egoc
[e—rT (\chall(ST) _ \I,put(ST)> ]:7{} }
= p(0,5,V,) + EZ Y w(n, v, )
n=0
X [SN(da(m, Jr)) = K™ TN (da(m, Jr))]
1—a)V & .
+ (D) z_;]w(n, Avs JT)

x [SeTT./\f(dﬁ(m, Jr)) — KN (ds(m, JT))} }

Since the condition probability density of J7 under
the measure Q%C and conditional on ¢ = e; is
Trleo—es (y), we obtain the result.

Remark 8 If the market parameters are constants,
that is, the risky asset price processes S and V follow
the Merton jump diffusion model, the value c¢(0,S, V)
of vulnerable European call options is

c(0,5,V)
- Y% (Sﬂ'(m, \g, T)m(n, Ay, T)

m=0n=0
x N(di(m,T),ds(n,T), p;(m,n))
— Ke "Trn(m, g, T)n(n, \v, T)
X N(d3(mvT)7d4(n’ T),pi(m,n))
(1-a)V

+ —5 Se " (m, N5, T)w(n, Ny, T)

X N(d5(m7T)7d6(n7 T)u _pf(m7n))
— Kn(m, s, T)m(n, Ay, T)

X N(dr(m, T),ds(n, T), ~pi(m,n) ). (25)
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5 Reduced form model

In recent years, the reduced form approach has been
widely applied to the pricing of defaultable securi-
ties. A reduced form model treats default as an un-
predictable event by taking the default time as an ex-
ogenous random variable. In this section, we use the
reduced form model for valuing the European options
with default risk. We consider a filtered probability
space (2, F, Fo<i<T, @), where @ is a risk neutral
martingale measure. When the writer of the option
defaults, an exogenously specified constant fraction
times the payoff will be paid at maturity. Moreover,
we let 7 denote the default time of the writer of the
option with default intensity process );. In addition,
we assume that the default intensity process \; is de-
scribed by a Markov-modulated Vasicek model.

d\ = /i(Lt — )\t)dt + vedWiy, (26)

where ¢; and v; are modelled by the Markov chain ¢,
e = til{e,—¢;) and vy = vl —.,). Furthermore, we
suppose that the dynamic of the risky asset S is given
by

N
1 t
St = SoeXp{(T—QO'Z)t+O'W1t+ZlXj
]:
2
— As(eT — 1), @7)

where all parameters of the above equation have been
explained in Section 2 and corr(dWi, dWs) = p13,
Nt and {Xj,j =1,2,...} are independent of Ws.

Let 7 = o ()\s,0 < s < t) be the right contin-
uous P complete filtration generated by the default
intensity process Ay, and Gy = o (I;<4,0 < s <t).
Furthermore, we define a new filtration Z; = F; V
.7-“% V Gr V F%, which the minimal o-field containing
Fi, }'%, Gr and F7. Then the conditional and uncon-
ditional distribution of 7 are given by

t
P(r>tZy) = exp <—/ )\udu> , (28)
0

P(r>1) = Eg [exp<_/otxudu)].

As in Jarrow and Yu [20], we assume that the recovery
rate is a constant w. The payoff is given by w times
the payoff of the default free option at maturity if the
writer of the European option defaults.

A vulnerable European call option in reduced for-
m has payoff W (Sz) at time T which is given by

vell(Sp) = w(Sr — K) Ii<r
+ (Sr—K)'Ipamy, (29

Volume 16, 2017



WSEAS TRANSACTIONS on MATHEMATICS

where the parameter 1 > w > 0 is a constant,
K represents the strike price. The random variable
(Sp — K)™ is the value at time 7" of the option to buy
one share of stock at the price K. If ST < K, this
option should be exercised by its holder. If S > K,
this option should not be exercised, it is worthless to
its holder. When 7 < T, it means that the writer of
option will default, the holder of option will receive
w(S — K)T at time T, whereas if 7 > T, default
case will not occur, the holder of option will receive
(St — K)T at time T

Moreover, the payoff WP“!(Sr) of a vulnerable
put option in reduced form is given by

UP(Sr) = w(K = Sr) T I<ry
+ (K - ST)+I{T>T}'

Let ¢(0,.5,4) denote the valuation of the vulnerable
European call option at time 0 and given Sy = S and
€o = e;. Then by the risk neutral pricing theorem we
obtain

(30)

20,5.9) = EG¥ [e—rT(w(ST—K)W{TgT}

+ (ST — K)+I{T>T}>:|‘

In terms of the equation (28) and the property of con-
dition expectation, we have

(0, 8,4)
= WEG™ [T (S — K)T) 31
bR [ sy ]

Details can be found in the Proposition 1 in Jarrow
and Yu [20].

Let P(t,T) = Eg [e_ s Asdsm} .
Shen and Siu [21], we have the regime switching ex-
ponential affine form solution

P(t,T) =exp{—B(t,T)r+ C(t,T,¢)},

From the

(32)

where the terminal conditions are given by
C(Ta T7 €T) = B(T7 T) = O, B(t7 T) — 1_67Z(T7t)
and
T
cters) = ofeal o] [ (sonte

; 332(3 T))} € = 6}}

Define a new measure Q* equivalent to Q by the fol-
lowing Radon-Nikodym derivative

dQA B B
0 |7 =(r =

o= Jo Asds

B o ]
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where
A
dgf = —uB(t, T)dW,
t
+ Ct,T,e) L <C(t,T),dM; >

with C(t,T,5) = e“®Te) and C(t,T) =
(C(t,T,e1),C(t,T,ez)) .
According to Girsanov’s theorem, we have

t
Wi = W1t+p13/ vsB(s, T)ds,
0

¢
Wi = W +/ vsB(s,T)ds
0

are two standard (* Brownian motions with
corr(dWyy,dW3,) = pi3.  Since N! and
{Y;,7=1,2,..} are independent of Wi, W3, the
measure of change from Q to Q* does not alter the
intensity of N' and the distribution of Y;. In addi-
tion, by Lemma 3.2 in Shen and Siu [21], we can
obtain, under the measure Q’\, the rate matrix A =
(@f‘j)i,je 4 of the Markov chain ¢ is given by

(33)

and the semi-martingale decomposition of the Markov
chain € is given by

¢
€ =¢0+ / A;\esds + Mt)‘,
0

where M} is a Q* martingale.

Theorem 9 The value of vulnerable European cal-
[ option in reduced form model is given by

(0, S, %)
=/

+ (1 —=w)P(0,T)N(dy(m,y) } Zﬂ' m,As,Y)

m=0

x KeoT [w./\f(dg(m,y)) +(1—w)P(0,T)

X N(ds(m,9)] ) 85 oo, ()

where N (-) denotes the cumulative normal distribu-
tion function, and

o0

>~ wlm. X5, y)S W (dy(m, )

m=0

T
~ P13 | vuB(u,T)du
d1<may) = dl(mvy) - \/\{OT 5 5 )
o Oudu+md
T
~ P13 | VuB(u,T)du
d3(may) = d3(m7y) - \/:/[:(; 5 5 )
o Oudu+md
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where di(m,y) and da2(m,y) are defined in Theorem
7.

Proof. Firstly, we can obtain
B> [ T(Sp — K)*| 7]

S w(m, g, Jp)N (di(m, Jr))  (35)
m=0

— KeT Z m(m, \g, Jp)N (ds(m, Jr)).

m=0

Moreover, using the Bayes formula we have
sy e s w0
= P(0,T)Ep [e—TT(ST — K)+‘]-"§p] . (36)

Changing measure from @ to Q* yields

T

Sr = Sexp{/ (r— 502 — p13vuB(u, T))du
0
Nl

+ oW+ Z Y - As(eT — 1)JT}

7j=1

Hence

s [~ (57 - K)* 73]

[ 3" w(m g, SN (di(m, Jr)  (BT)
m=0

=N A, N (da(m. Jr)|.
m=0

Combing (31), (35), (36), and (37), we obtain the re-
sult.

Let p(0, S, 1) denote the valuation of the vulnera-
ble European put option at time 0 and given Sy = S
and g = e;. It is provided in the following Proposi-
tion.

Proposition 10 The value of vulnerable European
put option is given by

p(0,8,i) = ¢0,8,i) —wSy+ Ke T

— (1 —w)Spe P Jo vuB(uT)du
Proof. In light of (29) and (30), we obtain

YPH(T) — (T) w(K — Sr)

+ (1 — w)(K — ST)I{7->T}-
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Using the risk neutral pricing theorem,
]/7\(0’ S) Z) - E(Ov Sv Z)
_ E%’S’i [e_TT(\Ime(T) _ \I/call(T))i|
= wE%S’i [e_TT(K - S7)]
7S) i -
(1 —w)BG™ e (K - S1) (1]

Since @ is a risk neutral martingale measure, then
EgS [T (K — 51)|Fp| = KeT - 50,

Moreover,

051[6 (K — Sr I{T>T}‘fT}

_ EOSl[e I r+>\u)duK Sr) }]:-5:|
= OSZ [e*’”T K — Sr) ‘fT]

_ K@ 506 P13 fO vy B(u, T)du

Hence

p(0,5,i) = ¢0,8,i) —wSy+ Ke T
— (1—w)Spe e o vuB(wT)du.

6 Conclusion

We first have introduced a two-state Markov-
modulated jump diffusion model to describe the dy-
namics of risk assets. A key feature of this finan-
cial model is that a regime switch will induce a high
volatility state of economic, it maybe bring a jump in
the price of risky asset. Then, since the market in this
paper is incomplete, the regime switching risk is con-
sidered in this paper, and we present an risk neutral
martingale measure to pricing options. In the end, we
investigate the pricing of vulnerable European options
and provide some analytical pricing formulas of these
derivatives.
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