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Abstract: In this paper, we investigate the pricing of vulnerable European options under a Markov-modulated jump
diffusion process. The states of market economy which are described by a two-state continuous time Markov-chain
are explained as a stable state and a high volatility state. The dynamic of the risky asset is described by a Markov-
modulated geometry Brownian motion when the market state is stable, otherwise, it follows a Markov-modulated
jump diffusion process. We consider two types of models to describe default risk: one is the structural model, the
other is the reduced form model. By utilizing techniques of measure changes, some analytic formulas for pricing
vulnerable European options are derived under these models.
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1 Introduction
In a financial market, the default risk often effects ev-
ery financial contract. How to quantify the default
risk is very important for both market practitioners
and financial researchers. there are two most popu-
lar of models to quantify it, that is structural models
and reduced form models, more details see Duffie and
Singleton[1] and Bielecki and Rutkowski[2]. Johnson
and Stulz [3] first studied the pricing of options with
the default risk, namely the so-called vulnerable op-
tions. Hull and White[4] and Jarrow and Turnbull [5]
took into account the default risk when pricing options
traded on the over the counter market. However, Hul-
l and White[4] and Jarrow and Turnbull [5] assumed
independence between the total assets of the option
writer and the underlying asset of the option. Klein
[6] extended [4] and [5] by relaxing their assumption.
Since then, there exists a significant number of stud-
ies on the pricing of vulnerable options, for example,
Klein and Inglis [7], Liao and Huang [8] and Capponi
et al.[9].

A large number of empirical studies show that the
risky asset price follows a geometric Brownian mo-
tion is not realistic. Consequently, many different fi-

nancial models have been proposed to describe the dy-
namics of risky assets. For example, the jump diffu-
sion processes, Markov-modulated model, stochastic
volatility model, constant elasticity of variance mod-
el, stochastic interest rate model and Studies including
those of Merton[10], Elliott and Osakwe [11], Wang
et al.[12], Li et al.[13], Chang et al.[14] and other-
s. Edwards [15] presented a new Markov-modulated
model. He supposed that the Markov-chain had on-
ly two states which represent high volatility econom-
ic state and low volatility economic state. When the
market is at high volatility state, the dynamic of risky
asset follows the Lévy process, otherwise, it satis-
fies log normal distribution. Elliott [11] extended
Edwards’s [15] model to N states and introduced a
Markov-modulated pure jump model. In their model,
they assumed that the Markov-chain had N states and
the compensator of a jump process changed its value
when the Markov-chain changed.

In this paper, we are in line with Edwards’s
[15] idea and consider a two-state Markov-modulated
jump diffusion model for the vulnerable option val-
uation. Our model is similar to those of Elliott[11].
However, we assume that the Markov-chain has two
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states and the compensator of the jump process is ze-
ro when the market is at low volatility state,i.e geo-
metric Brownian motion. When the market is at the
high volatility state, the risky asset follows a jump d-
iffusion model.We investigate the pricing of vulnera-
ble options under a two-state Markov-modulated jump
diffusion model. Most of the literatures about the
price of vulnerable options did not consider the regime
switching effect. Wang and Wang [16] incorporat-
ed the regime switching into the model and obtained
the price of vulnerable options. However, the work
in this paper is different from Wang and Wang [16].
The major differences between their papers and this
one are as follows: firstly, the model considered here
is different from that in Wang and Wang [16]. Sec-
ondly, the Markov-regime switching risk is priced in
this paper. Finally, we provide the analytic formulas
for pricing vulnerable options under structural models
and reduced form models, respectively.

This paper is structured as follows: Section 2 de-
scribes the dynamic of the risky asset price under the
two-state regime switching jump diffusion model. In
Section 3, we present an equivalent martingale mea-
sure. Section 4 obtains the pricing formulas of vul-
nerable options under the structural model. Section
5provides the pricing formulas of vulnerable options
under the reduced form model. The final section gives
a conclusion.

2 Financial market

Suppose that we have a given complete probability s-
pace (Ω,F , {Ft}t∈[0,T ], P ), where P is a real world
measure and T is a fixed investment horizon. We also
have εt, a continuous time Markov chain, to represent
the states of the market economy. Moreover, we sup-
pose that ε has the state space M = {e1, e2} , where
states e1 = (1, 0)

′ ∈ R2 and e2 = (0, 1)
′ ∈ R2

of the chain can be explained to represent a ”high
volatility ” state and a ”stable” state, respectively. As-
sume that the Markov chain process ε has a genera-
tor A(t) = [aij(t)]i,j∈M. From Elliott et al.[17], the
semi-martingale dynamics of the Markov chain is giv-
en by

εt = ε0 +

∫ t

0
A(s)ds+M(t),

where M(t) is a P martingale.
We consider a financial market with three traded

assets, a riskless bond and two risky assets. The risk-
less bond price process B = (Bt) evolves according
to

dBt = rBtdt, (1)

where r is the fixed interest rate. For sake of conve-
nience, we assume B0 = 1.

We assume that the risky asset price follows a
jump diffusion process when the state of market econ-
omy is state e1, whereas the risky asset price follows
the Black-Scholes model when the state of market e-
conomy is state e2. The dynamic of the risky asset S
is specified as

dSt
St−

= µdt+ σdW1t − λS(e
δ2

2 − 1)I{εt=e1}dt

+ I{εt=e1}d(

N1
t∑

j=1

eXj − 1), (2)

where I{·} is a indictor function, µ and σ is the
appreciation rate and volatility of the risky asset S
and W1 is a standard P Brownian motion, N1

t is a
Poisson process with intensity λS , the jump ampli-
tudes {Xj}j=1,2,... are independent and identical dis-
tribution with probability density function f(x) =

1√
2πδ

e−
x2

2δ2 , −∞ < x <∞.
Let Jt denote the occupation time of ε in state e1

over the time period [0, t], then

Jt =

∫ t

0
I{εs=e1}ds. (3)

Consequently, the risky asset price process S = (St)
according to

St = S0 exp
{
(µ− 1

2
σ2)t+ σW1t +

N1
Jt∑

j=1

Xj

− λS(e
δ2

2 − 1)Jt

}
. (4)

In addition, the dynamic of Vt is described as follow-
ing

Vt = V0 exp
{
(b− 1

2
ν2)t+ νW θ

2t +

N2
Jt∑

j=1

Yj

− λV (e
γ2

2 − 1)Jt

}
, (5)

where b and ν is the appreciation rate and volatility of
risky asset V and W2 is a standard P Brownian mo-
tion, N2

t is a Poisson process with intensity λV , the
jump amplitudes {Yj}j=1,2,... are independent and i-
dentical distribution with probability density function

g(y) = 1√
2π
e
− y2

2γ2 ,−∞ < y < ∞. Furthermore, we
let the correlation coefficient of dW1t and dW2t be ρ.
ε,N1, N2, X = (Xj)j=1,2,... and Y = (Yj)j=1,2,...

WSEAS TRANSACTIONS on MATHEMATICS Wei Wang, Xiaonan Su, Shaobo Gan, Linyi Qian

E-ISSN: 2224-2880 124 Volume 16, 2017



are supposed that be mutually independent and inde-
pendent of W1 and W2.

For convenience, we write (4) and (5) as the fol-
lowing

dSt = St

(
µdt+ σdW1t +

∫ ∞

−∞
(ex − 1)JS(dx, dt)

−
∫ ∞

−∞
(ex − 1)kS(dx, dt)

)
, (6)

and

dVt = Vt

(
bdt+ νdW2t +

∫ ∞

−∞
(ey − 1)JV (dy, dt)

−
∫ ∞

−∞
(ey − 1)kV (dy, dt)

)
, (7)

where < ·, · > denotes the inner product operator
and JS(dx, dt) and kV (dy, dt) are the random mea-
sures associated with the jump of S and V , respec-

tively. For m ∈ {S, V }, km(dx, dt) =
2∑

j=1
<

εt−, ej > kmj(x)dxdt is its compensator, and kmj(x)
is a Lévy measure which depends on the states of the
Markov chain ε, kS1(x) = λSf(x), kS2(x) = 0,
kV 1(y) = λV g(y) and kV 2(y) = 0.

3 Equivalent martingale measures

In this paper, we use a Markov-modulated jump diffu-
sion model to describe the dynamics of the risky asset-
s. Since the jumps and Markov-chain render the mar-
ket is incomplete, the equivalent martingale measure
is no unique. In order to pricing vulnerable options,
we need to choose an equivalent martingale measure
for pricing vulnerable options.

We first define

dΛθ(t) = Λθ(t)(θ1dW1t + θ2dW2t),Λ
θ(0) = 1,

where θ1 and θ2 are constants.
We consider a real valued and bounded stochas-

tic process C(t) := {cij(t)|t ∈ [0, T ]} on (Ω,F , P )
such that cij(t) satisfy the following two conditions:

1. cij(t) ≥ 0 for i ≠ j;

2.
N∑
i=1

cij(t) = 0.

Define the following matrix:

D = (dij(t))i,j=1,2 = [cij(t)/aij(t)]i,j=1,2. (8)

For t ∈ [0, T ], write N(t) =
∫ t
0 (I −

diag(ε(u−)))dε(u). Here N(t)t∈[0,T ] is a vector of
counting processes, its component Ni(t) counts the

number of times that the chain ε jumps to state ei in
the time interval [0, t], for each i = 1, 2. Then we
cite the following result from Dufour and Elliott [18]
without proof.

Lemma 1 For a given rate matrix A(t), let a(t) =

(a11(t), a22(t))
′

and A0(t) = A(t) − diag(a(t)),
where diag(y) is a diagonal matrix with the diago-
nal elements given by the vector y. Define

Ñ(t) = N(t)−
∫ t

0
A0(u)X(u)du.

Then Ñ = Ñ(t)t∈[0,T ] is an P martingale.

Let d(t) = (d11(t), d22(t))
′

and D0(t) =
D(t) − diag(d(t)). We consider a process
ΛC(t) = 1+

∫ t
0 Λ

C(u−)[D0(u)X(u−)−1](dN(u)−
A0(u)X(u)du). Define Λθ,C = Λθ,C(t)t∈[0,T ] as the
product of the two density processes Λθ and ΛC , that
is Λθ,C(t) = Λθ(t)ΛC(t). Moreover, we present a
new probability measure Qθ,C , which is defined by
the following

dQθ,C

dP

∣∣∣
Ft

= Λθ,C(t).

Lemma 2 Let θ1 = ρ(b−r)σ−(µ−r)ν
(1−ρ2)σν

, θ2 =
ρ(µ−r)ν−(b−r)σ

(1−ρ2)σν
. Then the measure Qθ,C is a risk neu-

tral martingale measure, andW θ
1t =W1t−θ1t−ρθ2t,

W θ
2t = W2t − θ2t − ρθ1t are two standard Browni-

an motions under Qθ,C with corr(dW θ
1t, dW

θ
2t) = ρ.

Furthermore, C(t) := {cij(t)|t ∈ [0, T ]} is a family
of rate matrices of the Markov chain ε.

Proof. Let S̃t = e−rtSt, Ṽt = e−rtVt, {Fε
t } denote

the P augmentation of the natural filtration generated
by the Markov-chain ε, and write Gt = Ft∨Fε

T . From
(6) and by Ito’s formula, we have

S̃t = S̃u exp
{∫ t

u
(µ− r − 1

2
σ2)ds+

∫ t

u
σdW1s

+

∫ t

u

∫ ∞

−∞
(xJ1(dx, ds)− (ex − 1)kS(dx, ds))

}
.

According to the law of condition expectation and the
above equation, we obtain

EQθ,C [S̃t|Ft]

= EQ̂[EQθ,C [S̃t|Gt]|Ft]

= S̃u exp

{∫ t

0
(µ− r + σθ1 + ρσθ2)du

}
= S̃u.
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The last equality follows by θ1 = ρ(b−r)σ−(µ−r)ν
(1−ρ2)σν

,

θ2 = ρ(µ−r)ν−(b−r)σ
(1−ρ2)σν

. Using the same method we get

thatEQθ,C [Ṽt|Fu] = Ṽu. Hence,Qθ,C is a risk neutral
martingale measure. By Girsanov’s theorem,

W θ
1t = W1t − θ1t− ρθ2t,

W θ
2t = W2t − θ2t− ρθ1t,

are two standard Qθ,C Brownian motions, and
corr(dW θ

1t, dW
θ
2t) = ρ. In addition, we find that C

is a family of rate matrices of the chain ε under Qθ,C

from Dufour and Elliott [18]. Then we complete the
proof of Lemma 2.

From Lemma 2, we find that, under the risk neu-
tral martingale measure Qθ,C , the dynamics of risky
assets St and Vt are given by

dSt = St

(
rdt+ σdW θ

1t +

∫ ∞

−∞
(ex − 1)JS(dx, dt)

−
∫ ∞

−∞
(ex − 1)kS(dx, dt)

)
, (9)

dVt = Vt

(
rdt+ νdW θ

2t +

∫ ∞

−∞
(ey − 1)JV (dy, dt)

−
∫ ∞

−∞
(ey − 1)kV (dy, dt)

)
. (10)

Remark 3 We assume that Markov chain ε, Brow-
nian motions W1 and W2 are independent of ran-
dom measures JS(dx, dt) and JV (dy, dt). Hence, the
compensators of JS(dx, dt) and JV (dy, dt) are not
changed from the measure P to the risk neutral mea-
sure Qθ,C .

From (9), (10) and Remark 3, we have

St = S0 exp
{
(r − 1

2
σ2)t+ σW θ

1t +

N1
Jt∑

j=1

Xj

− λS(e
δ2

2 − 1)Jt

}
. (11)

and

Vt = V0 exp
{
(r − 1

2
ν2)t+ νW θ

2t +

N2
Jt∑

j=1

Yj

− λV (e
γ2

2 − 1)Jt

}
. (12)

4 Structural model

In this section, we adopt the framework in Klein [6]
to describe the payoff of vulnerable European option-
s. A vulnerable European call option has a promised

payoff (ST − K)+. If the option writer’s asset VT
is less than a threshold value D∗, then option writer
will default and can’t pay the promised payoff at the
maturity time T . In the case of default, only the pro-
portion (1−α)VT

D of the promised payoff is paid out by
the option writer. However, if VT is greater than D∗,
the option writer will pay the promised payoff at time
T . Here α, D and D∗ are constants.

Let ψcall(T ) denote the payoff of a vulnerable
European call option. Then it is given by

ψcall(T )

= (ST −K)+I{VT≥D∗}

+
(1− α)VT

D
(ST −K)+I{VT<D∗}. (13)

Moreover, the payoff ψput(T ) of a vulnerable Euro-
pean put option is given by

ψput(T )

= (K − ST )
+I{VT≥D∗}

+
(1− α)VT

D
(K − ST )

+I{VT<D∗}. (14)

Before giving the option pricing formula, we present
two useful Propositions. Since ε is independent of
JS(dx, dt) and JV (dy, dt), measure of change from
Qθ,C to QS and QSV does not change the dynamic of
ε. Furthermore, it is easy to obtain the following two
propositions by Girsanov’s theorem. We present them
without giving the proof.

Proposition 4 Let ηt denote the Radon-Nikodym pro-
cess which is given by

ηt =
dQS

dQθ,C

∣∣∣
Ht

=
St

EQθ,C [St|Fε
T ]

= exp
{
σW θ

1t −
1

2
σ2t+

∫ t

0

∫ ∞

−∞
xJS(dx, du)

−
∫ t

0

∫ ∞

−∞
(ex − 1)kS(dx, du)

}
.

Then under the probability measure QS and condi-
tional on Fε

T ,

WS
1t = W θ

1t − σt,

WS
2t = W θ

2t − ρσt,

are two standard Brownian motions and
corr(dWS

1t, dW
S
2t) = ρ. The compensator of

random measure JS(dx, dt) is given by

k̄S(dx, dt) = exkS(dx, dt) = λ∗S
1√
2πδ

e−
(x−δ2)2

2δ2 ,
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with λ∗S = λSe
δ2

2 . Moreover, the generator of
Markov chain and the compensator of random mea-
sure JV (dy, dt) do not be changed.

Proposition 5 Let ζt denote the Radon-Nikodym pro-
cess which is given by

ζt =
dQSV

dQθ,C

∣∣∣
Ht

=
StVt

EQθ,C [StVt|Fε
T ]

= exp
(
σW θ

1t + νtW
θ
2t −

1

2

(
σ2 + ν2 + 2ρσν

)
t

+

∫ t

0

∫ ∞

−∞
[xJ1(dx, du)− (ex − 1)kS(dx, du)]

+

∫ t

0

∫ ∞

−∞
[yJ2(dy, du)− (ey − 1)kV (dy, du)]

)
.

Then under the probability measure QSV and condi-
tional on Fε

T ,

WSV
1t = W θ

1t −
∫ t

0
σsds− ρ

∫ t

0
νsds,

WSV
2t = W θ

2t −
∫ t

0
ρσsds−

∫ t

0
νsds,

are two standard Brownian motions and
corr(dWSV

1t , dWSV
2t ) = ρ. Moreover, the compen-

sators of random measures JS(dx, dt) and JV (dy, dt)

are given by k̂SV (dx, dt) = λ∗S
1√
2πδ

e−
(x−δ2)2

2δ2 and

k̂SV (dx, dt) = λ∗V
1√
2πγ

e
− (x−γ2)2

2γ2 with λ∗V = λV e
γ2

2

, respectively. Moreover, the generator of Markov
chain does not be changed.

Assume that the Markov chain process ε has a gener-
ator c = (cij). Let ϕcJT |ε0=ei

(y) denote the condition
probability density of JT under the measure P and
given ε0 = ei, Yoon et al.[19] provided the analytic
formula of ϕcJT |ε0=ei

(y), that is, for ∀y(0 ≤ y ≤ T )

ϕcJT |ε0=e1
(y) = exp [−c22(T − y)− c11y]

×
{(

c11c22y
T−y

) 1
2
I1

(
2 (c11c22y(T − y))

1
2

)
+c11I0

(
2 (c11c22y(T − y))

1
2

)}
,

ϕcJT |ε0=e2
(y) = exp [−c22(T − y)− c11y]

×
{(

c11c22(T−y)
y

) 1
2
I1

(
2 (c11c22y(T − y))

1
2

)
+c22I0

(
2 (c11c22y(T − y))

1
2

)}
,

and ϕJT |ε0=e1(0) = 0, ϕJT |ε0=e1(T ) = e−c11T ,
ϕJT |ε0=e2(T ) = e−c22T , ϕJT |εt=e2(T ) = 0, where

Ib(x) := (x2 )
b

∞∑
n=0

(x
2
)2n

n!Γ(b+n+1) .

Under the risk neutral martingale measure Qθ,C ,
we let c(0, S, V, i) denote the price of vulnerable Eu-
ropean call options at time 0 given S0 = S, V0 = V ,
ε0 = ei. The following theorem is the main result of
this section, which gives the price of a vulnerable Eu-
ropean call option under a Markov-modulated jump
diffusion model.

Theorem 6 The price of a vulnerable European call
option has the following representation:

c(0, S, V, i) =

∞∑
m=0

∞∑
n=0

∫ T

0

(
Sπ(m,λ∗S , y)

× π(n, λV , y)N (d1(m, y), d2(n, y), ρ
∗(m,n))

− Ke−rTπ(m,λS , y)π(n, λV , y)

× N (d3(m, y), d4(n, y), ρ
∗(m,n))

+
(1− α)V

D

[
SerTπ(m,λ∗S , y)π(n, λ

∗
V , y)

× N (d5(m, y), d6(n, y),−ρ∗(m,n))
− Kπ(m,λS , y)π(n, λ

∗
V , y)

× N (d7(m, y), d8(n, y),−ρ∗(m,n))
)

× ϕcJT |ε0=ei
(y)dy, (15)

where N (·, ·, ρ) represents the bivariate cumulative
normal distribution with correlative coefficient ρ, For
each m = 0, 1, 2, ..., n = 0, 1, 2..., and i ∈ S, V

π(m,λi, y) = e−λiy
(λiy)

m

m!
,

ρ∗(m,n) =
ρσνT√

(σ2T +mδ2)(ν2T + nγ2)
,

and

d1(m, y) =
log S

K + (r + 1
2σ

2)T +mδ2
√
σ2T +mδ2

− λS(e
δ2

2 − 1)y√
σ2T +mδ2

d2(n, y) =
log V

D∗ + (r − 1
2ν

2 + ρσν)T√
ν2T + nγ2

− λV (e
γ2

2 − 1)y√
ν2T + nγ2

d3(m, y) = d1(m, y)−
σ2T +mδ2√
σ2T +mδ2

d4(n, y) = d2(n, y)−
ρσνT√
ν2T + nγ2

d5(m, y) = d1(m, y) +
ρσνT√

σ2T +mδ2
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d6(n, y) = −d2(n, y)−
nγ2 + ν2T√
ν2T + nγ2

d7(m, y) = d3(m, y) +
ρσνT√

σ2T +mδ2

d8(n, y) = d6(n, y) +
ρσνT√
ν2T + nγ2

.

Proof. For convenience, let E0,S,V,i
Qθ,C [·] denote the con-

ditional expectation given S0 = S, V0 = V , ε0 = ei.
Based on the risk neutral pricing theorem, we have

c(0, S, V, i) (16)

= e−rTE0,S,V,i
Qθ,C

[
(ST −K)+I{VT≥D∗}

]
+ e−rT

× E0,S,V,i
Qθ,C

[
(1− α)VT

D
(ST −K)+I{VT<D∗}

]
.

Let

c(0, JT ,Fε
T )

= EQθ,C

[
e−rT (ST −K)+I{VT≥D∗}

∣∣∣Fε
T

]
(17)

+ EQθ,C

[
(1− α)VT

D
(ST −K)+I{VT<D∗}

∣∣∣Fε
T

]
.

Then, apply the law of iterated expectation, we get

c(0, S, V, i) = E0,S,V,i
Qθ,C [c(0, JT ,Fε

T )] . (18)

In what follows, we first derive c(0, JT ,Fε
T ). Using

Bayes formula we get

c(0, JT ,Fε
T ) = SEQS

[
I{ST≥K,VT≥D∗}

∣∣∣Fε
T

]
− Ke−rTEQθ,C

[
I{ST≥K,VT≥D∗}

∣∣∣Fε
T

]
+

(1− α)V

D

(
erTSEQSV

[
I{ST≥K,VT<D∗}

∣∣∣Fε
T

]
− KEQV

[
I{ST≥K,VT<D∗}

∣∣∣Fε
T

] )
(19)

Combing the Proposition 4 with (11) and (12), we
have

EQS

[
I{ST≥K,VT≥D∗}|Fε

T

]
= QS

(
(r +

1

2
σ2)T + σWS

1T +

N1
JT∑

j=1

Xj − λS

× (e
δ2

2 − 1)JT ≥ log
K

S
, (r − 1

2
ν2 + ρσν)T + ν

× WS
2T

N2
JT∑

j=1

Yj − λV (e
γ2

2 − 1)JT ≥ log
D∗

V

∣∣∣Fε
T

)
.

Conditioning on N1
JT

= m, N2
JT

= n, and using the
independence we obtain

EQS

[
I{ST≥K,VT≥D∗}

∣∣∣Fε
T

]
=

∞∑
m=0

∞∑
n=0

π(m,λ∗S , JT )π(n, λV , JT )

× N(d1(m,JT ), d2(n, JT ), ρ∗1(m,n)) (20)

Employing the same method, we can obtain

EQθ,C

[
I{ST≥K,VT≥D∗}

∣∣∣Fε
T

]
(21)

=

∞∑
m=0

∞∑
n=0

π(m,λS , JT )π(n, λV , JT )

× N (d3(m,JT ), d4(n, JT ), ρ
∗
1(m,n)),

EQSV

[
I{ST≥K,VT<D∗}

∣∣∣Fε
T

]
(22)

=
∞∑

m=0

∞∑
n=0

π(m,λ∗S , JT )π(n, λ
∗
V , JT )

× N (d5(m,JT ), d6(n, JT ),−ρ∗2(m,n)),

EQV

[
I{ST≥K,VT<D∗}

∣∣∣Fε
T

]
(23)

=

∞∑
m=0

∞∑
n=0

π(m,λS , JT )π(n, λ
∗
V , JT )

× N (d7(m,JT ), d8(n, JT ),−ρ∗1(m,n)).

It follows from (19), (20), (21) , (22) and (23) that

c(0, JT ,Fε
T )

=

∞∑
m=0

∞∑
n=0

(
Sπ(m,λ∗S , JT )π(n, λV , JT )

× N (d1(m,JT ), d2(n, JT ), ρ
∗
1(m,n))

− Ke−rTπ(m,λS , JT )π(n, λV , JT )

× N (d3(m,JT ), d4(n, JT ), ρ
∗
1(m,n))

+
(1− α)V

D

[
erTSπ(m,λ∗S , JT )π(n, λ

∗
V , JT )

× N (d5(m,JT ), d6(n, JT ),−ρ∗2(m,n))
− Kπ(m,λS , JT )π(n, λV , JT )

× N (d7(m,JT ), d8(n, JT ),−ρ∗1(m,n))
])
.(24)

Note that the condition probability density of JT un-
der the measure Qθ,C and conditional on ε0 = ei
is ϕcJT |ε0=ei

(y), it follows from (18) and (24) yields
(15). Hence, we complete the proof of Theorem 6.

Let p(0, S, V, i) denote the price of vulnerable put
options at time 0. Then we can obtain the following
proposition.
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Proposition 7 The value of vulnerable European put
option is given by

p(0, S, V, i)

= c(0, S, V, i)−
∫ T

0

( ∞∑
n=0

π(n, λV , y)

×
[
SN (d2(m, y))−Ke−rTN (d4(m, y))

]
+

(1− α)V

D

∞∑
n=0

π(n, λ∗V , y)
[
SerTN (d6(m, y))

− KN (d8(m, y))
])
ϕcJT |ε0=ei

(y)dy.

Proof. From (13) and (14), we can obtain

ψcall(ST ) − ψput(ST ) = (ST −K)I{VT≥D∗}

+
(1− α)VT

D
(ST −K)I{VT<D∗},

then

c(0, S, V, i) = p(0, S, V, i) + E0,S,V,i
Qθ,C

[
EQθ,C[

e−rT
(
Ψcall(ST )−Ψput(ST )

) ∣∣∣Fε
T

] ]
= p(0, S, V, i) + E0,S,V,i

Qθ,C

{ ∞∑
n=0

π(n, λV , JT )

×
[
SN (d2(m,JT ))−Ke−rTN (d4(m,JT ))

]
+

(1− α)V

D

∞∑
n=0

π(n, λ∗V , JT )

×
[
SerTN (d6(m,JT ))−KN (d8(m,JT ))

]}
.

Since the condition probability density of JT under
the measure Qθ,C and conditional on ε0 = ei is
ϕcJT |ε0=ei

(y), we obtain the result.

Remark 8 If the market parameters are constants,
that is, the risky asset price processes S and V follow
the Merton jump diffusion model, the value c(0, S, V )
of vulnerable European call options is

c(0, S, V )

=

∞∑
m=0

∞∑
n=0

(
Sπ(m,λ∗S , T )π(n, λV , T )

× N (d1(m,T ), d2(n, T ), ρ
∗
1(m,n))

− Ke−rTπ(m,λS , T )π(n, λV , T )

× N (d3(m,T ), d4(n, T ), ρ
∗
1(m,n))

+
(1− α)V

D

[
Se−rTπ(m,λ∗S , T )π(n, λ

∗
V , T )

× N (d5(m,T ), d6(n, T ),−ρ∗1(m,n))
− Kπ(m,λS , T )π(n, λ

∗
V , T )

× N (d7(m,T ), d8(n, T ),−ρ∗1(m,n))
)
. (25)

5 Reduced form model

In recent years, the reduced form approach has been
widely applied to the pricing of defaultable securi-
ties. A reduced form model treats default as an un-
predictable event by taking the default time as an ex-
ogenous random variable. In this section, we use the
reduced form model for valuing the European options
with default risk. We consider a filtered probability
space (Ω,F ,F0≤t≤T , Q), where Q is a risk neutral
martingale measure. When the writer of the option
defaults, an exogenously specified constant fraction
times the payoff will be paid at maturity. Moreover,
we let τ denote the default time of the writer of the
option with default intensity process λt. In addition,
we assume that the default intensity process λt is de-
scribed by a Markov-modulated Vasicek model.

dλt = κ(ιt − λt)dt+ υtdW3t, (26)

where ιt and υt are modelled by the Markov chain ε,
ιt = ιiI{εt=ei} and υt = υiI{εt=ei}. Furthermore, we
suppose that the dynamic of the risky asset S is given
by

St = S0 exp
{
(r − 1

2
σ2)t+ σW1t +

N1
Jt∑

j=1

Xj

− λS(e
δ2

2 − 1)Jt

}
, (27)

where all parameters of the above equation have been
explained in Section 2 and corr(dW1t, dW3t) = ρ13 ,
N1 and {Xj , j = 1, 2, ...} are independent of W3.

Let Fλ
t = σ (λs, 0 ≤ s ≤ t) be the right contin-

uous P complete filtration generated by the default
intensity process λt, and Gt = σ

(
I{τ≤s}, 0 ≤ s ≤ t

)
.

Furthermore, we define a new filtration It = Ft ∨
Fλ
T ∨ GT ∨ Fε

T , which the minimal σ-field containing
Ft, Fλ

T , GT and Fε
T . Then the conditional and uncon-

ditional distribution of τ are given by

P (τ > t|I0) = exp

(
−
∫ t

0
λudu

)
, (28)

P (τ > t) = EQ

[
exp

(
−
∫ t

0
λudu

)]
.

As in Jarrow and Yu [20], we assume that the recovery
rate is a constant ω. The payoff is given by ω times
the payoff of the default free option at maturity if the
writer of the European option defaults.

A vulnerable European call option in reduced for-
m has payoff Ψcall(ST ) at time T which is given by

Ψcall(ST ) = ω(ST −K)+I{τ≤T}

+ (ST −K)+I{τ>T}, (29)
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where the parameter 1 > ω > 0 is a constant,
K represents the strike price. The random variable
(ST −K)+ is the value at time T of the option to buy
one share of stock at the price K. If ST < K, this
option should be exercised by its holder. If ST ≥ K,
this option should not be exercised, it is worthless to
its holder. When τ < T , it means that the writer of
option will default, the holder of option will receive
ω(ST − K)+ at time T , whereas if τ > T , default
case will not occur, the holder of option will receive
(ST −K)+ at time T .

Moreover, the payoff Ψput(ST ) of a vulnerable
put option in reduced form is given by

Ψput(ST ) = ω(K − ST )
+I{τ≤T}

+ (K − ST )
+I{τ>T}. (30)

Let ĉ(0, S, i) denote the valuation of the vulnerable
European call option at time 0 and given S0 = S and
ε0 = ei. Then by the risk neutral pricing theorem we
obtain

ĉ(0, S, i) = E0,S,i
Q

[
e−rT

(
ω(ST −K)+I{τ≤T}

+ (ST −K)+I{τ>T}

)]
.

In terms of the equation (28) and the property of con-
dition expectation, we have

ĉ(0, S, i)

= ωE0,S,i
Q

[
e−rT (ST −K)+

]
(31)

+ (1− ω)E0,S,i
Q

[
e−

∫ T
0 (r+λs)ds(ST −K)+

]
Details can be found in the Proposition 1 in Jarrow
and Yu [20].

Let P (t, T ) = EQ

[
e−

∫ T
t λsds|Ft

]
. From the

Shen and Siu [21], we have the regime switching ex-
ponential affine form solution

P (t, T ) = exp{−B(t, T )r + C(t, T, ε)}, (32)

where the terminal conditions are given by
C(T, T, εT ) = B(T, T ) = 0, B(t, T ) = 1−e−κ(T−t)

κ
and

C(t, T, ε) = log
{
EQ

[
exp

{∫ T

t

(
κιsB(s, T )

− 1

2
υ2sB

2(s, T )
)}∣∣∣εt = ε

]}
.

Define a new measure Qλ equivalent to Q by the fol-
lowing Radon-Nikodym derivative

dQλ

dQ

∣∣∣
FT

= ζλT =
e−

∫ T
0 λsds

EQ

[
e−

∫ T
0 λsds

] ,

where
dζλt
ζλt

= −υtB(t, T )dWt

+ C̃(t, T, εt)
−1 < C̃(t, T ), dMt >,

with C̃(t, T, εt) = eC(t,T,εt) and C̃(t, T ) =

(C̃(t, T, e1), C̃(t, T, e2))
′
.

According to Girsanov’s theorem, we have

W λ
1t = W1t + ρ13

∫ t

0
υsB(s, T )ds,

W λ
3t = W3t +

∫ t

0
υsB(s, T )ds

are two standard Qλ Brownian motions with
corr(dW λ

1t, dW
λ
3t) = ρ13. Since N1 and

{Yj , j = 1, 2, ...} are independent of W1, W3, the
measure of change from Q to Qλ does not alter the
intensity of N1 and the distribution of Yj . In addi-
tion, by Lemma 3.2 in Shen and Siu [21], we can
obtain, under the measure Qλ, the rate matrix Aλ =
(aλij)i,j∈A of the Markov chain ε is given by

aλij =


aij

C̃(t,T,ej)

C̃(t,T,ei)
, i ̸= j,

−
∑
k ̸=i

aik
C̃(t,T,ek)

C̃(t,T,ei)
, i = j,

(33)

and the semi-martingale decomposition of the Markov
chain ε is given by

εt = ε0 +

∫ t

0
Aλ

sεsds+Mλ
t ,

where Mλ
t is a Qλ martingale.

Theorem 9 The value of vulnerable European cal-
l option in reduced form model is given by

ĉ(0, S, i)

=

∫ T

0

( ∞∑
m=0

π(m,λ∗S , y)S
[
ωN (d1(m, y))

+ (1− ω)P (0, T )N (d̂1(m, y))
]
−

∞∑
m=0

π(m,λS , y)

× Ke−rT
[
ωN (d3(m, y)) + (1− ω)P (0, T )

× N (d̂3(m, y))
])
ϕa

λ

JT |ε0=ei
(y)dy, (34)

where N (·) denotes the cumulative normal distribu-
tion function, and

d̂1(m, y) = d1(m, y)−
ρ13
∫ T
0 υuB(u, T )du√∫ T
0 σ2udu+mδ2

,

d̂3(m, y) = d3(m, y)−
ρ13
∫ T
0 υuB(u, T )du√∫ T
0 σ2udu+mδ2

,
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where d1(m, y) and d2(m, y) are defined in Theorem
7.

Proof. Firstly, we can obtain

E0,S,i
Q

[
e−rT (ST −K)+

∣∣∣Fε
T

]
= S

∞∑
m=0

π(m,λ∗S , JT )N (d1(m,JT )) (35)

− Ke−rT
∞∑

m=0

π(m,λS , JT )N (d3(m,JT )).

Moreover, using the Bayes formula we have

E0,S,i
Q

[
e−

∫ T
0 (r+λu)du(ST −K)+

∣∣∣Fε
T

]
= P (0, T )EQλ

[
e−rT (ST −K)+

∣∣∣Fε
T

]
. (36)

Changing measure from Q to Qλ yields

ST = S exp
{∫ T

0
(r − 1

2
σ2 − ρ13υuB(u, T ))du

+ σW λ
1T +

N1
JT∑

j=1

Yj − λS(e
δ2

2 − 1)JT

}
.

Hence

EQλ

[
e−rT (ST −K)+

∣∣∣Fε
T

]
=

[
S

∞∑
m=0

π(m,λ∗S , JT )N (d̂1(m,JT )) (37)

− Ke−rT
∞∑

m=0

π(m,λS , JT )N (d̂3(m,JT ))
]
.

Combing (31), (35), (36), and (37), we obtain the re-
sult.

Let p̂(0, S, i) denote the valuation of the vulnera-
ble European put option at time 0 and given S0 = S
and ε0 = ei. It is provided in the following Proposi-
tion.

Proposition 10 The value of vulnerable European
put option is given by

p̂(0, S, i) = ĉ(0, S, i)− ωS0 +Ke−rT

− (1− ω)S0e
−ρ13

∫ T
0 υuB(u,T )du.

Proof. In light of (29) and (30), we obtain

ψput(T )− ψcall(T ) = ω(K − ST )

+ (1− ω)(K − ST )I{τ>T}.

Using the risk neutral pricing theorem,

p̂(0, S, i)− ĉ(0, S, i)

= E0,S,i
Q

[
e−rT (Ψput(T )−Ψcall(T ))

]
= ωE0,S,i

Q

[
e−rT (K − ST )

]
+ (1− ω)E0,S,i

Q

[
e−rT (K − ST )I{τ>T}

]
Since Q is a risk neutral martingale measure, then

E0,S,i
Q

[
e−rT (K − ST )

∣∣∣Fε
T

]
= Ke−rT − S0.

Moreover,

E0,S,i
Q

[
e−rT (K − ST )I{τ>T}

∣∣∣Fε
T

]
= E0,S,i

Q

[
e−

∫ T
0 (r+λu)du(K − ST )

∣∣∣Fε
T

]
= E0,S,i

Qλ

[
e−rT (K − ST )

∣∣∣Fε
T

]
= Ke−rT − S0e

−ρ13
∫ T
0 υuB(u,T )du.

Hence

p̂(0, S, i) = ĉ(0, S, i)− ωS0 +Ke−rT

− (1− ω)S0e
−ρ13

∫ T
0 υuB(u,T )du.

6 Conclusion
We first have introduced a two-state Markov-
modulated jump diffusion model to describe the dy-
namics of risk assets. A key feature of this finan-
cial model is that a regime switch will induce a high
volatility state of economic, it maybe bring a jump in
the price of risky asset. Then, since the market in this
paper is incomplete, the regime switching risk is con-
sidered in this paper, and we present an risk neutral
martingale measure to pricing options. In the end, we
investigate the pricing of vulnerable European options
and provide some analytical pricing formulas of these
derivatives.
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