
P5-equicoverable graphs which contain cycles with length at least 5

FAN WU
Department of Mathematics

Tianjin University
Jinnan District, 300354, Tianjin

CHINA
fanwutju@126.com

YUQIN ZHANG ∗†
Department of Mathematics

Tianjin University
Jinnan District, 300354, Tianjin

CHINA
yuqinzhang@tju.edu.cn

Abstract: A graph G is called H-equicoverable if every minimal H-covering of G is also a minimum H-covering
of G. In this paper, we investigate the characterization of P5-equicoverable graphs which contain cycles with
length at least 5 and give some results of Pk-equicoverable graphs.
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1 Introduction
A graph G has order |V (G)| and size |E(G)|. If ver-
tex v is an endpoint of an edge e, then v and e are
incident. The degree of vertex v in a graph G, written
dG(v) or d(v), is the number of edges incident to v.
The path and circuit on k vertices are denoted by Pk

and Ck, respectively. A star is a tree consisting of one
vertex adjacent to all the others. The (n + 1)−vertex
star is the biclique K1,n.

A graph H is a subgraph of G if V (H) ⊆ V (G),
E(H) ⊆ E(G). Suppose that E′ is a nonempty subset
of E. The subgraph of G whose vertex set is the set of
ends of edges in E′ and whose edge set is E′ is called
the subgraph of G induced by E′ and is denoted by
G[E′]; G[E′] is an edge-induced subgraph of G.

The problem that we study stems from the re-
search of H-decomposable graphs, randomly decom-
posable graphs and equipackable graphs. In 2008,
Zhang introduced equicoverable graph which is the
dual concept of the equipackable graph and charac-
terized all P3-equicoverable graphs. In this paper, we
investigate all P5-equicoverable graphs which don’t
contain 3-cycle or 4-cycle and contain at least one cy-
cle with length at least 5. For further definitions and
results, we can refer to [1],[2],[3],[4],[5],[6].

Let H be a subgraph of a graph G. An H-
covering of G is a set L = H1, H2, . . . ,Hk of sub-
graphs of G, where each subgraph Hi isomorphic to
H , and every edge of G appeaers in at least one mem-
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ber of L. A graph is called H-coverable if there ex-
ists an H-covering of G. An H-covering of G with
k copies H1, H2, . . . ,Hk is called minimal if, for any
Hj ,

⋃k
i=1Hi − Hj is not an H-covering of G. An

H-covering of H1, H2, . . . ,Hk is called minimum if
there exists no H-covering with less than k copies
of H . A graph is called H-equicoverable if every
minimal H-covering is also a minimum H-covering.
Let C(G;H) denote the number of H in the mini-
mal H-covering of G, or simply C(G) for short and
let c(G;H) denote the number of H in the minimum
H-covering of G, or simply c(G) for short. For con-
venience, we denote by Cn ·Pk a graph obtained from
a cycle Cn and a path Pk by identifying one vertex of
the cycle Cn and an endpoint of the path Pk. And we
denote by Cn ·K1,k a graph obtained from a cycle Cn

and a star K1,k by identifying one vertex of the cycle
Cn and a leaf of the star K1,k.

Then we introduce a definition and a useful
proposition:

Definition 1 [6] For a star K1,k, we call the vertex
of degree k center, and other vertices leaves. A k-
extendedstar that has one vertex of degree k which is
also called center, k vertices of degree 2 and k leaves
is a tree obtained by inserting a vertex of degree 2
into each edge of a star K1,k. We denote it by S∗k .
A second order k-extendedstar is a tree obtained by
inserting two vertices of degree 2 into each edge of
a star K1,k, we denote it by S2∗

k . Similarly, an n-th
order k-extendedstar is a tree obtained by inserting n
vertices of degree 2 into each edge of a star K1,k, we
denote it by Sn∗

k .

In this paper, we denote by Cn · Sn∗
k a graph

obtained from a cycle Cn and an n-th order k-
extendedstar by identifying one vertex of the cycle Cn
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and the center of the n-th order k-extendedstar. We
denote by Pn ·K1,k a graph obtained from a path Pn

and a k-star by identifying one endpoint of the path
Pn and one leaf of the k-star.

Proposition 2 A connected graph G is P5-coverable
if and only if it has a subgraph P5 except the kind of
graphs in Figure 1.
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Figure 1: graphs which are not P5-coverable

s s s s
ss

s@
@
@
@
@

�
�
�
�
�ppps s

Lemma 3 If a connected graph G can be decom-
posed into several connected Pk-coverable graphs
and at least one component is not Pk-equicoverable,
G will not be Pk-equicoverable.

Theorem 4 [5] Path Pn is Pk-equicoverable if and
only if k ≤ n ≤ 2k or n = 3k − 1.

Theorem 5 [5] Cycle Cn is Pk-equicoverable if and
only if

{
k ≤ n ≤ 3k−1

2 or n = 2k − 1 if k is odd,

k ≤ n ≤ 3k−2
2 or n = 2k − 1 if k is even.

Lemma 6 Sn∗
k is Pn+2-equicoverable and

c(Sn∗
k ;Pn+2) = C(Sn∗

k ;Pn+2) = k.

Proof: Sn∗
k can be obtained by identifying the

endpoints of k copies of Pn+2. The Sn∗
k contain-

s a path of length at most 2n + 2, that is, P2n+3.
By Theorem 4, P2n+3 is Pn+2-equicoverable and
c(P2n+3;Pn+2) = C(P2n+3;Pn+2) = 2. If k is even,
c(Sn∗

k ;Pn+2) = C(Sn∗
k ;Pn+2) =

k
2 × 2 = k; If k is

odd, c(Sn∗
k ;Pn+2) = C(Sn∗

k ;Pn+2) =
k−1
2 ×2+1 =

k. ut

2 P5-equicoverable graphs
First,we introduce P5-equicoverable paths and cycles.

Lemma 7 [5] The path Pn is P5-equicoverable if and
only if n = 5, 6, 7, 8, 9, 10, 14.

Proof: By Theorem 4, we give the results. ut

Lemma 8 [5] The cycle Cn is P5-equicoverable if
and only if n = 5, 6, 7, 9.

Proof: We can refer to Theorem 5. ut

Lemma 9 G is a connected graph that is not a cycle.
If G doesn’t contain any 3-cycles or 4-cycles and con-
tains a 5-cycle, G will not be P5-equicoverable unless
G is C5 · S3∗

n or G is obtained by adding n copies of
P3 ·K1,t(t ≥ 3) to only one vertex of C5.

Proof: Case 1: G is obtained by adding copies
of P2 to the vertices of C5.

(1)If each vertex of C5 can be added to at most
one P2, G can only be one of the seven graphs shown
in Figure 2. No matter which graph is in Figure 2, a
minimal P5-covering whose covering number C(G) is
greater than the number of the minimum P5-covering
c(G). So the graphs are not P5-equicoverable.
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Figure 2: graphs obtained by adding at most one P2

to each vertex of C5

(2)If each vertex of C5 can be added to any copies
of P2. G is obtained by adding copies of P2 to the
vertices of the 5-cycle part of G0, where G0 is one of
the graphs in Figure 2. If the number of the copies
of P2 added is n, we can get a minimal P5-covering
whose covering number is C(G0) + n(using C(G0)
copies of P5 to cover the G0 part and n copies of P5 to
cover other parts), while the number of the minimum
P5-covering is at most c(G0) + n. By (1), each of G0

is not P5-equicoverable, then C(G0) > c(G0). So G
is not P5-equicoverable.

Case 2: G is obtained by adding copies of P3 to
the vertices of C5.
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Note that we identify the endpoint of each copy
of P3 with the vertices of C5, not the center vertex.
Otherwise G is the same as one of the graph in Case
1.

(1)If each vertex of C5 can be added to at most
one P3, G can only be one of the seven graphs shown
in Figure 3. No matter which graph is in Figure 3, a
minimal P5-covering whose covering number C(G) is
greater than the number of the minimum P5-covering
c(G). So the graphs are not P5-equicoverable.
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Figure 3: graphs obtained by adding at most one P3

to each vertex of C5

(2)If each vertex of C5 can be added to any copies
of P3. G is obtained by adding copies of P3 to the
vertices of the 5-cycle part of G0, where G0 is one of
the graphs in Figure 3. If the number of the copies
of P3 added is n, we can get a minimal P5-covering
whose covering number is C(G0) + n(using C(G0)
copies of P5 to cover the G0 part and n copies of P5 to
cover other parts), while the number of the minimum
P5-covering is at most c(G0) + n. By (1), each of G0

is not P5-equicoverable, then C(G0) > c(G0). So G
is not P5-equicoverable.

Case 3: G is obtained by adding copies of
K1,t(t ≥ 3) to the vertices of C5.

Note that we identify one of leaves of each copy
of K1,t with the vertices of C5, not the center vertex.
Otherwise G is the same as one of the graph in Case
1.

(1)If each vertex of C5 can be added to at most
one K1,t, G can only be one of the seven graphs
shown in Figure 4. No matter which graph is in Fig-
ure 4, a minimal P5-covering whose covering num-
ber C(G) is greater than the number of the mini-
mum P5-covering c(G). So the graphs are not P5-
equicoverable.
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Figure 4: graphs obtained by adding at most one K1,t

to each vertex of C5
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(2)If each vertex of C5 can be added to any copies
of K1,t. G is obtained by adding copies of K1,t to the
vertices of the 5-cycle part of G0, where G0 is one of
the graphs in Figure 4. If the number of the copies
of K1,t added is n, we can get a minimal P5-covering
whose covering number is C(G0) + n(t − 1)(using
C(G0) copies of P5 to cover the G0 part and n(t− 1)
copies of P5 to cover other parts), while the number
of the minimum P5-covering is at most c(G0)+n(t−
1). By (1), each of G0 is not P5-equicoverable, then
C(G0) > c(G0). So G is not P5-equicoverable.

Actually, this case is similar to Case 2.
Case 4: G is obtained by adding copies of P2 and

P3 to the vertices of C5.
If only copies of P2 or only copies of P3 are

added, G has been discussed in Case 1 or Case 2. Oth-
erwise, we have:

(1)If each vertex of C5 can be added to only one
P2 or one P3, G can only be one of the 24 graphs
shown in Figure 5. No matter which graph is in Fig-
ure 5, a minimal P5-covering whose covering num-
ber C(G) is greater than the number of the mini-
mum P5-covering c(G). So the graphs are not P5-
equicoverable.
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Figure 5: graphs obtained by adding only one P2 or

one P3 to each vertex of C5

(2)If each vertex of C5 can be added to any copies
of P2 or P3. G is obtained by adding copies of P2 and
P3 to the vertices of the 5-cycle part of G0, where
G0 is one of the graphs in Figure 5. If the num-
ber of the copies of P2 and P3 added is n, we can
get a minimal P5-covering whose covering number is
C(G0)+n(using C(G0) copies of P5 to cover the G0

part and n copies of P5 to cover other parts), while
the number of the minimum P5-covering is at most
c(G0)+n. By (1), each of G0 is not P5-equicoverable,
then C(G0) > c(G0). So G is not P5-equicoverable.

(3)If each vertex of C5 can be added to at most
one P2 · P3, G can only be one of the seven graphs
shown in Figure 6. No matter which graph is in Fig-
ure 6, a minimal P5-covering whose covering num-
ber C(G) is greater than the number of the mini-
mum P5-covering c(G). So the graphs are not P5-
equicoverable; If each vertex of C5 can be added to
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any copies of P2 · P3, G can be decomposed several
components which can be P5-coverable. While there
is at least one component which is similar to Case
1 or Case 4(2) not P5-equicoverable. G is not P5-
equicoverable.
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Figure 6: graphs obtained by adding at most one

P2 · P3 to each vertex of C5

Case 5: G is obtained by adding copies of P2 and
K1,t(t ≥ 3) to the vertices of C5.

The case is similar to Case 4. G is not P5-
equicoverable.

Case 6: G is obtained by adding copies of P3 and
K1,t(t ≥ 3) to the vertices of C5.

The case is similar to Case 2. G is not P5-
equicoverable.

Case 7: G is obtained by adding copies of P2 and
P3 and K1,t(t ≥ 3) to the vertices of C5.

The case is similar to Case 4. G is not P5-
equicoverable.

Case 8: G is obtained by adding copies of P4 to
the vertices of C5.

(1)If each vertex of C5 can be added to at most
one P4, G can only be one of the seven graphs shown
in Figure 7. No matter which graph is in Figure 7, a
minimal P5-covering whose covering number C(G) is
greater than the number of the minimum P5-covering
c(G). So the graphs are not P5-equicoverable.
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Figure 7: graphs obtained by adding at most one

P4 to each vertex of C5

(2)If each vertex of C5 can be added to any copies
of P4. G is obtained by adding copies of P4 to the
vertices of the 5-cycle part of G0, where G0 is one of
the graphs in Figure 7. If the number of the copies
of P4 added is n, we can get a minimal P5-covering
whose covering number is C(G0) + n(using C(G0)
copies of P5 to cover the G0 part and n copies of P5 to
cover other parts), while the number of the minimum
P5-covering is at most c(G0) + n. By (1), each of G0

is not P5-equicoverable, then C(G0) > c(G0). So G
is not P5-equicoverable.

Case 9: G is obtained by adding copies of P2 and
P4 to the vertices of C5.

If only copies of P2 or only copies of P4 are
added, G has been discussed in Case 1 or Case 8. Oth-
erwise, we have:

(1)If each vertex of C5 can be added to only one
P2 or one P4, G can only be one of 24 graphs similar
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to Figure 5. No matter which graph is, a minimal P5-
covering whose covering number C(G) is greater than
the number of the minimum P5-covering c(G). So the
graphs are not P5-equicoverable.

(2)If each vertex of C5 can be added to any copies
of P2 or P4. G is obtained by adding copies of P2 and
P4 to the vertices of the 5-cycle part of G0, where G0

is one of the graphs in (1). If the number of the copies
of P2 and P4 added is n, we can get a minimal P5-
covering whose covering number is C(G0) + n(using
C(G0) copies of P5 to cover the G0 part and n copies
of P5 to cover other parts), while the number of the
minimum P5-covering is at most c(G0) + n. By (1),
each of G0 is not P5-equicoverable, then C(G0) >
c(G0). So G is not P5-equicoverable.

(3)If each vertex of C5 can be added to at most
one P2·P4, G can only be one of the seven graphs sim-
ilar to Figure 6. No matter which graph is, a minimal
P5-covering whose covering number C(G) is greater
than the number of the minimum P5-covering c(G).
So the graphs are not P5-equicoverable. If each ver-
tex of C5 can be added to any copies of P2 · P4, G
can be obtained by adding copies of P2 · P4 to the
vertices of the 5-cycle part of G0, where G0 is one
of the graphs above. If the sum of the number of the
copies of P2 ·P4 added is n, we can get a minimal P5-
covering whose covering number is C(G0) + n(using
C(G0) copies of P5 to cover the G0 part and n copies
of P5 to cover other parts), while the number of the
minimum P5-covering is at most c(G0) + n. Each of
G0 is not P5-equicoverable, then C(G0) > c(G0). So
G is not P5-equicoverable.

Case 10: G is obtained by adding copies of P3

and P4 to the vertices of C5.
If only copies of P3 or only copies of P4 are

added, G has been discussed in Case 2 or Case 8. Oth-
erwise, we have:

(1)If each vertex of C5 can be added to only one
P3 or one P4, G can only be one of the 24 graphs sim-
ilar to Figure 5. No matter which graph is, a minimal
P5-covering whose covering number C(G) is greater
than the number of the minimum P5-covering c(G).
So the graphs are not P5-equicoverable.

(2)If each vertex of C5 can be added to any copies
of P3 or P4. G is obtained by adding copies of P3 and
P4 to the vertices of the 5-cycle part of G0, where
G0 is one of the graphs above in (1). If the num-
ber of the copies of P3 and P4 added is n, we can
get a minimal P5-covering whose covering number is
C(G0)+n(using C(G0) copies of P5 to cover the G0

part and n copies of P5 to cover other parts), while
the number of the minimum P5-covering is at most
c(G0)+n. By (1), each of G0 is not P5-equicoverable,
then C(G0) > c(G0). So G is not P5-equicoverable.

(3)If each vertex of C5 can be added to at most
one P3·P4, G can only be one of the seven graphs sim-
ilar to Figure 6. No matter which graph is, a minimal
P5-covering whose covering number C(G) is greater
than the number of the minimum P5-covering c(G).
So the graphs are not P5-equicoverable. If each ver-
tex of C5 can be added to any copies of P3 · P4, G
can be obtained by adding copies of P3 ·P4 to the ver-
tices of the 5-cycle part of G0, where G0 is one of the
graphs above. If the number of the copies of P3 · P4

added is n, we can get a minimal P5-covering whose
covering number is C(G0) + 2n(using C(G0) copies
of P5 to cover the G0 part and 2n copies of P5 to
cover other parts), while the number of the minimum
P5-covering is at most c(G0) + 2n. Each of G0 is not
P5-equicoverable, then C(G0) > c(G0). So G is not
P5-equicoverable.

Case 11: G is obtained by adding copies of P2,
P3 and P4 to the vertices of C5.

P2, P3 and P4 are all added to the vertices of C5,
otherwise the cases has been discussed.

First, G can be obtained by adding copies of P2

and P3 to the vertices of C5 and we denote it by
G23. Next we add P4 to G23. If the number of the
copies of P4 added is n, we can get a minimal P5-
covering whose covering number is C(G23)+n(using
C(G23) copies of P5 to cover the G23 part and n
copies of P5 to cover other parts), while the number
of the minimum P5-covering is at most c(G23) + n.
Each of G23 is not P5-equicoverable by Case 4, then
C(G23) > c(G23). So G is not P5-equicoverable.

Case 12: G is obtained by adding copies of P4

and K1,t(t ≥ 3) to the vertices of C5.
The case is similar to Case 10. G is not P5-

equicoverable.
Case 13: G is obtained by adding copies of P2,

P4 and K1,t(t ≥ 3) to the vertices of C5.
The case is similar to Case 11. G is not P5-

equicoverable.
Case 14: G is obtained by adding copies of P3,

P4 and K1,t to the vertices of C5.
The case is similar to Case 10. G is not P5-

equicoverable.
Case 15: G is obtained by adding copies of P2,

P3, P4 and K1,t(t ≥ 3) to the vertices of C5.
The case is similar to Case 11. G is not P5-

equicoverable.
Case 16: G is obtained by adding copies of P5 to

the vertices of C5.
(1)If we add n copies of P5 to only one vertex

of C5, both the minimal P5-covering number and the
minimum P5-covering number are n+ 2. So it is P5-
equicoverable. We denote the graph by C5 · S3∗

n .
(2)If we add n copies of P5 to at least two vertices

of C5, there exists a minimal P5-covering number is
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n+3 and the minimum P5-covering number is n+2.
Obviously,c(G) 6= C(G), G is not P5-equicoverable.

Case 17: G is obtained by adding copies of P2 ·
K1,t(t ≥ 3) to the vertices of C5.

The case is similar to Case 8. G is not P5-
equicoverable.

Case 18: G is obtained by adding copies of P3 ·
K1,t(t ≥ 3) to the vertices of C5.

We identify one endpoint of P3 with one of the
vertices of C5.

(1)If we add n copies of P3 · K1,t(t ≥ 3) to on-
ly one vertex of C5, both the minimal P5-covering
number and the minimum P5-covering number are
n(t− 1) + 2. So it is P5-equicoverable.

(2)If we add n copies of P3·K1,t(t ≥ 3) to at least
two vertices of C5, there exists a minimal P5-covering
number is n(t− 1)+3 and the minimum P5-covering
number is n(t− 1) + 2. Obviously, c(G) 6= C(G), G
is not P5-equicoverable.

Case 19: G is a graph not contained in Case 1-18.
Each G can be decomposed into two connect-

ed components: a graph G0 which is not P5-
equicoverable contained in Case 1-18 and a graph
which is P5-coverable. By Lemma 3, G is not P5-
equicoverable. ut

In summary, G is not P5-equicoverable unless G
is C5 · S3∗

n or G is obtained by adding n copies of
P3 ·K1,t(t ≥ 3) to only one vertex of C5.

Next we consider graphs that contains a cycle
with length larger than 5.

Lemma 10 Cn·P2(n ≥ 6) is P5-equicoverable if and
only if n = 8.

Proof: (1)If Cn is P5-equicoverable, we have
n = 6, 7, 9. Because C(Cn · P2;P5) > c(Cn ·
P2;P5)(n = 6, 7, 9), C6 · P2 and C7 · P2 and C9 · P2

are not P5-equicoverable.
(2)If Cn is not P5-equicoverable, we have n 6=

6, 7, 9. It is easy to find that C(C8 · P2;P5) = c(C8 ·
P2;P5) = 3. C8 · P2 is P5-equicoverable. For n ≥
10, Cn is not P5-equicoverable. We can use C(Cn)
copies of P5 to cover the Cn part and one copy of P5

to cover the else. Also, we can use c(Cn) copies of P5

to cover the Cn part and one copy of P5 to cover the
else. While c(Cn ·P2) ≤ c(Cn) + 1 < C(Cn) + 1, G
is not P5-equicoverable. ut

Lemma 11 Cn·P3(n ≥ 6) is P5-equicoverable if and
only if n = 7.

Proof: (1)If Cn is P5-equicoverable, we have
n = 6, 7, 9. Because C(Cn · P3;P5) > c(Cn ·
P3;P5)(n = 6, 9), C6 · P3 and C9 · P3 are not
P5-equicoverable. While C(C7 · P3;P5) = c(C7 ·
P3;P5) = 3. C7 · P3 is P5-equicoverable.

(2)If Cn is not P5-equicoverable, we have n 6=
6, 7, 9. It is easy to find that C(C8 · P3;P5) > c(C8 ·
P3;P5). C8 · P3 is not P5-equicoverable. For n ≥
10, Cn is not P5-equicoverable. We can use C(Cn)
copies of P5 to cover the Cn part and one copy of P5

to cover the else. Also, we can use c(Cn) copies of P5

to cover the Cn part and one copy of P5 to cover the
else. While c(Cn ·P3) ≤ c(Cn) + 1 < C(Cn) + 1, G
is not P5-equicoverable. ut

Lemma 12 Cn·P4(n ≥ 6) is P5-equicoverable if and
only if n = 6.

Proof: (1)If Cn is P5-equicoverable, we have
n = 6, 7, 9. Because C(Cn · P4;P5) > c(Cn ·
P4;P5)(n = 7, 9), C7 · P4 and C9 · P4 are not
P5-equicoverable. While C(C6 · P4;P5) = c(C6 ·
P4;P5) = 3. C6 · P4 is P5-equicoverable.

(2)If Cn is not P5-equicoverable, we have n 6=
6, 7, 9. It is easy to find that C(C8 · P4;P5) > c(C8 ·
P4;P5). C8 · P4 is not P5-equicoverable. For n ≥
10, Cn is not P5-equicoverable. We can use C(Cn)
copies of P5 to cover the Cn part and one copy of P5

to cover the else. Also, we can use c(Cn) copies of P5

to cover the Cn part and one copy of P5 to cover the
else. While c(Cn ·P4) ≤ c(Cn) + 1 < C(Cn) + 1, G
is not P5-equicoverable. ut

Lemma 13 Cn · P5(n ≥ 6) is not P5-equicoverable.

Lemma 14 Cn · K1,t(n ≥ 4, t ≥ 3) is not P5-
equicoverable.

Lemma 15 Cn · P2 · K1,t(n ≥ 4) is not P5-
equicoverable.

Lemma 16 Cn · P3 · K1,t(n ≥ 6) is not P5-
equicoverable

Lemma 17 G is a connected graph that is not a cycle.
If G doesn’t contain cycles with length smaller than 6
and contains a 6-cycle,G is P5-equicoverable if and
only if G is C6 · P4.

Proof: Case 1: G is obtained by adding copies
of P2 to the vertices of C6.

(1)If we add one P2 to only one vertex of C6, by
Lemma 10, it is not P5-equicoverable.

(2)If we add n(n ≥ 2) copies of P2 to only one
vertex of C6, there will be a minimal P5-covering
whose covering number is n + 2. While the number
of the minimum P5-covering number is less than or
equal to n+ 1.

(3)If we add n(n ≥ 2) copies of P2 to at least two
vertices of C6 and each vertex of C6 can be added to
at most one P2, G must be one of the eleven graphs
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shown in Figure 7. For each graph which contains a
6-cycle, we can blow up a vertex that no P2 is added to
of C6 to two vertices. As a consequence, the original
graph with a 6-cycle turns out to be a tree. A blow-
ing up that makes the result tree not P5-equicoverable
must exist. So G is not P5-equicoverable. For exam-
ple, we blow up v1 of the left graph to two vertices v2
and v3 of the right graph in Figure 8. Obviously, it’s
not P5-equicoverable.
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Figure 7: graphs obtained by adding n(n ≥ 2) copies

of P2 to at least two vertices of C6 can be added to at

most one P2r
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Figure 8: v1 blown up to two vertices v2 and v3

(4)If we add n(n ≥ 2) copies of P2 to at least t-
wo vertices of C6 and each vertex of C6 can be added

to any copies of P2. Without loss of generality, sup-
pose G is obtained by adding m copies of P2 to G0,
where G0 is one of graphs above in (3). Then there
exists a minimal P5-covering whose covering number
is C(G0)+m. We can use C(G0) copies of P5 to cov-
er the G0 part and use m copies of P5 to cover other
parts. While the number of the minimum P5-covering
number is at most c(G0) + m. As we all know, for
each G0, there exists a minimal P5-covering whose
C(G0) > c(G0), then it is not P5-equicoverable.

Case 2: G is obtained by adding copies of P3 to
the vertices of C6.

(1)If we add one P3 to only one vertex of C6, by
Lemma 11, it is not P5-equicoverable.

(2)If we add n(n ≥ 2) copies of P3 to only one
vertex of C6, there will be a minimal P5-covering
whose covering number is n + 2. While the number
of the minimum P5-covering number is less than or
equal to n+ 1.

(3)If we add n(n ≥ 2) copies of P3 to at least two
vertices of C6 and each vertex of C6 can be added to
at most one P3, G must be one of the eleven graphs
similar to Figure 7. For each graph which contains a
6-cycle, we can blow up a vertex that no P3 is added to
of C6 to two vertices. As a consequence, the original
graph with a 6-cycle turns out to be a tree. A blow-
ing up that makes the result tree not P5-equicoverable
must exist. So G is not P5-equicoverable.

(4)If we add n(n ≥ 2) copies of P3 to at least t-
wo vertices of C6 and each vertex of C6 can be added
to any copies of P3. Without loss of generality, sup-
pose G is obtained by adding m copies of P3 to G0,
where G0 is one of graphs above in (3). Then there
exists a minimal P5-covering whose covering number
is C(G0)+m. We can use C(G0) copies of P5 to cov-
er the G0 part and use m copies of P5 to cover other
parts. While the number of the minimum P5-covering
number is at most c(G0) + m. As we all know, for
each G0, there exists a minimal P5-covering whose
C(G0) > c(G0), then it is not P5-equicoverable.

Case 3: G is obtained by adding copies of
K1,t(t ≥ 3) to the vertices of C6.

Similar to Case 2, G is not P5-equicoverable.
Case 4: G is obtained by adding copies of P4 to

the vertices of C6.
(1)If we add one P4 to only one vertex of C6, by

Lemma 12, it is P5-equicoverable.
(2)The following proof is similar to (2),(3),(4) in

Case 2, G is not P5-equicoverable.
Case 5: G is obtained by adding copies of

P2, P3, P4,K1,t(t ≥ 3) to the vertices of C6.
There are eleven subcases: G is obtained by

adding copies of at least two of P2, P3, P4,K1,t(t ≥
3). Similar to the proof process of Case 2, G is not
P5-equicoverable.
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Case 6: G is obtained by adding copies of P5 to
the vertices of C6.

(1)If we add one P5 to only one vertex of C6, by
Lemma 13, it is not P5-equicoverable.

(2)If G is not the graph in (1), G can be decom-
posed into two connected components: a graph which
is not P5-equicoverable and a P5-coverable graph. By
Lemma 3, G is not P5-equicoverable.

Case 7: G is obtained by adding copies of P4 and
P5 to the vertices of C6.

If only copies of P4 or only copies of P5 are
added, G has been discussed in previous. Other-
wise, similar to Case 4 of Lemma 9, G is not P5-
equicoverable.

Case 8: G is a graph not contained in Case 1-7.
We decompose G into two connected compo-

nents: a graph G0 contained in Case 1-7 and a graph
which is P5-coverable. G0 is not P5-equicoverable,
by Lemma 3, G is not P5-equicoverable.

In summary, G is not P5-equicoverable unless it
is C6 · P4. ut

Lemma 18 G is a connected graph that is not a cycle.
If G doesn’t contain cycles with length smaller than 7
and contains a 7-cycle,G is P5-equicoverable if and
only if G is C7 · P3.

Lemma 19 G is a connected graph that is not a cycle.
If G doesn’t contain cycles with length smaller than 8
and contains a 8-cycle,G is P5-equicoverable if and
only if G is C8 · P2.

Lemma 20 G is a connected graph that is not a cycle.
If G doesn’t contain cycles with length smaller than 9,
G is not P5-equicoverable.

Proof: Case 1: If G is one of the graphs in Lem-
ma 10-Lemma 16, G is not P5-equicoverable.

Case 2: If G is not a graph in Case 1, according to
the proof process of Lemma 17, G can be decomposed
into connected components: a tree which is not P5-
equicoverable and P5-coverable graphs. ut

In the end, we conclude the main results: A con-
nected graph G is P5-equicoverable if and only if G
satisfies one of the following:

Theorem 21 Let G be a connected graph that doesn’t
contain 3-cycles or 4-cycles and contains a cycle with
length at least 5. Then G is P5-equicoverable if and
only if either of the following holds:

(1)G is a cycle Cn(n = 5, 6, 7, 9);
(2)G is C5 · S3∗

n (n ≥ 1);
(3)G is obtained by adding n copies of P3 ·

K1,t(t ≥ 3) to only one vertex of C5.
(4)G is C6 · P4.
(5)G is C7 · P3.
(6)G is C8 · P2.

For disconnected graphs ,we have:

Theorem 22 A graph G that doesn’t contain 3-cycles
or 4-cycles and contains at least one cycle with length
larger than 4 is P5-equicoverable if and only if each
component of G is P5-equicoverable.

3 Results of Pk-equicoverable graphs
Theorem 23 Cn · P2 is Pk-equicoverable if and only
if n = k − 1 or n = 2k − 2.

Proof:
(1)When n ≤ k − 2, Cn · P2 doesn’t contain the

subgraph of Pk. Then it is not Pk-equicoverable.
(2)When n = k − 1, Cn · P2 is Pk-equicoverable

and C(Cn · P2;Pk) = c(Cn · P2;Pk) = 2.
(3)When k ≤ n ≤ 2k − 3, it is easy to find

c(Cn · P2;Pk) = 2. Conveniently, denote the edges
of Cn · P2 by e0, e1, · · · en. There exits a minimal
Pk-covering as following: we denote it by H =
{H1, H2, H3},


H1 = {e0, e1, e2, · · · , ek−2},
H2 = {en, e1, e2, · · · , ek−2},
H3 = {ek−1, ek, ek+1, · · · , en−1}.

Then H is a minimal Pk-covering instead of
the minimum Pk-covering of Cn. It is not Pk-
equicoverable.

(4)When n = 2k−2, Cn ·P2 is Pk-equicoverable.
It is clear that c(Cn · P2;Pk) = 3. We denote
the vertices of Cn · P2 by v0, v1, v2, · · · , v2k−2.
Generally speaking, suppose that there exist-
s a copy of Pk covering the edge v1v2, which
is denoted by H0 = {v1v2, v2v3, · · · , vk−1vk}.
Then there also exists a copy of Pk cover-
ing the edge vkvk+1, which is denoted by
Hi = {vivi+1, vi+1vi+2, · · · , vi+k−2vi+k−1}(2 ≤
i ≤ k − 1). Similarly, there must be a copy of Pk

covering the edge v1v0, which is denoted by H1 =
{vk+1vk+2, vk+2vk+3, · · · , v2k−3v2k−2, v2k−2v1, v1v0}.
And by the definition of the equicoverable,
{H0, Hi, H1|2 ≤ i ≤ k − 1} is the family of
the minimal Pk-covering of Cn · P2.(or



H0 = {v0v1, v1v2, v2v3, · · · , vk−2vk−1},
Hi = {vivi+1, vi+1vi+2, · · · , vi+k−2vi+k−1}

2 ≤ i ≤ k − 1,

H1 = {vk+1vk+2, vk+2vk+3 · · · , v2k−3v2k−2,
v2k−2v1, v1v0}.
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As a result, the number of minimal Pk-covering
of Cn · P2 is only 3. Cn · P2 is Pk-equicoverable.

(5)When n = 3k − 3, it is easy to find
c(Cn · P2;Pk) = 4. We denote the edges of
Cn · P2 by e0, e1, · · · , e3k−3. There exits a mini-
mal Pk-covering as following: we denote it by H =
{H1, H2, H3, H4, H5},



H1 = {e0, e1, e2, · · · , ek−2},
H2 = {e1, e2, · · · , ek−1},
H3 = {ek, ek+1, · · · , e2k−2},
H4 = {ek+1, ek+2, · · · , e2k−1},
H5 = {e2k, e2k+1, · · · , e3k−3, e1}.

So it is not Pk-equicoverable.
(6)When 2k − 1 ≤ n ≤ 3k − 4 and n ≥ 3k − 2,

Cn · P2 is not Pk-equicoverable by Theorem 4. ut

Corollary 24 Cn ·P3(n ≥ k+1) is Pk-equicoverable
if and only if n = 2k − 3.

Corollary 25 Cn ·P4(n ≥ k+1) is Pk-equicoverable
if and only if n = 2k − 4.

Corollary 26 Cn ·P5(n ≥ k+1) is Pk-equicoverable
if and only if n = 2k − 5.

Theorem 27 Cn · Pk(n ≥ k + 1, k ≥ 6) is not Pk-
equicoverable.

Proof:
(1)When k + 1 ≤ n ≤ 2k − 2 and n ≥ 2k, it is

easy to come to the conclusion according to Theorem
5.

(2)When n = 2k − 1, c(Cn ·
Pk;Pk) = 4. We denote its edges by
ep1, ep2, · · · , ep(k−1), ec1, ec2, · · · , ec(2k−1). There
exits a minimal Pk-covering as following: we denote
it by H = {H1, H2, H3, H4, H5},



H1 = {ec1, ep1, ep2, · · · , ep(k−2)},
H2 = {ec(2k−1), ep1, · · · , ep(k−2)},
H3 = {ep1, ep2, · · · , ep(k−1)},
H4 = {ec2, ec3, · · · , eck},
H5 = {eck, ec(k+1), · · · , ec(2k−2)}.

So it is also not Pk-equicoverable. ut

Corollary 28 Cn ·K1,t(n ≥ k − 1, t ≥ 3) is not Pk-
equicoverable.

Theorem 29 Cn · S(k−2)∗
m is Pk-equicoverable if and

only if 3 ≤ n ≤ k and c(G) = C(G) = m+ 2.

Proof: (1)When n ≥ k + 1, it is not Pk-
equicoverable by Theorem 27.

(2)When 3 ≤ n ≤ k−1, the subgraph Cn doesn’t
contain Pk. There must be m copies of Pk covering
the part of S

(k−2)∗
m ; The else can be covered by us-

ing only two copies of Pk. It is Pk-equicoverable and
c(G) = C(G) = m+ 2.

(3)When n = k, the S(k−2)∗
m part must be covered

by m copies of Pk. We can only use two copies of Pk

to cover the else Cn part. Then the Cn · S(k−2)∗
m is

Pk-equicoverable. ut
The next comment follows immediately from

Theorem 29.

Corollary 30 Cn · Pk−2 ·K1,t is Pk-equicoverable if
and only if 3 ≤ n ≤ k.
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