P_{5}-equicoverable graphs which contain cycles with length at least 5

FAN WU
Department of Mathematics
Tianjin University
Jinnan District, 300354, Tianjin
CHINA
fanwutju@126.com

YUQIN ZHANG *
Department of Mathematics
Tianjin University
Jinnan District, 300354, Tianjin
CHINA
yuqinzhang@tju.edu.cn

Abstract

A graph G is called H-equicoverable if every minimal H-covering of G is also a minimum H-covering of G. In this paper, we investigate the characterization of P_{5}-equicoverable graphs which contain cycles with length at least 5 and give some results of P_{k}-equicoverable graphs.

Key-Words: P_{5}-equicoverable, P_{k}-equicoverable,cycle,covering

1 Introduction

A graph G has order $|V(G)|$ and size $|E(G)|$. If vertex v is an endpoint of an edge e, then v and e are incident. The degree of vertex v in a graph G, written $d_{G}(v)$ or $d(v)$, is the number of edges incident to v. The path and circuit on k vertices are denoted by P_{k} and C_{k}, respectively. A star is a tree consisting of one vertex adjacent to all the others. The $(n+1)$-vertex star is the biclique $K_{1, n}$.

A graph H is a subgraph of G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$. Suppose that E^{\prime} is a nonempty subset of E. The subgraph of G whose vertex set is the set of ends of edges in E^{\prime} and whose edge set is E^{\prime} is called the subgraph of G induced by E^{\prime} and is denoted by $G\left[E^{\prime}\right] ; G\left[E^{\prime}\right]$ is an edge-induced subgraph of G.

The problem that we study stems from the research of H-decomposable graphs, randomly decomposable graphs and equipackable graphs. In 2008, Zhang introduced equicoverable graph which is the dual concept of the equipackable graph and characterized all P_{3}-equicoverable graphs. In this paper, we investigate all P_{5}-equicoverable graphs which don't contain 3-cycle or 4-cycle and contain at least one cycle with length at least 5 . For further definitions and results, we can refer to [1],[2],[3],[4],[5],[6].

Let H be a subgraph of a graph G. An H covering of G is a set $L=H_{1}, H_{2}, \ldots, H_{k}$ of subgraphs of G, where each subgraph H_{i} isomorphic to H, and every edge of G appeaers in at least one mem-

[^0]ber of L. A graph is called H-coverable if there exists an H-covering of G. An H-covering of G with k copies $H_{1}, H_{2}, \ldots, H_{k}$ is called minimal if, for any $H_{j}, \bigcup_{i=1}^{k} H_{i}-H_{j}$ is not an H-covering of G. An H-covering of $H_{1}, H_{2}, \ldots, H_{k}$ is called minimum if there exists no H-covering with less than k copies of H. A graph is called H-equicoverable if every minimal H-covering is also a minimum H-covering. Let $C(G ; H)$ denote the number of H in the minimal H-covering of G, or simply $C(G)$ for short and let $c(G ; H)$ denote the number of H in the minimum H-covering of G, or simply $c(G)$ for short. For convenience, we denote by $C_{n} \cdot P_{k}$ a graph obtained from a cycle C_{n} and a path P_{k} by identifying one vertex of the cycle C_{n} and an endpoint of the path P_{k}. And we denote by $C_{n} \cdot K_{1, k}$ a graph obtained from a cycle C_{n} and a star $K_{1, k}$ by identifying one vertex of the cycle C_{n} and a leaf of the star $K_{1, k}$.

Then we introduce a definition and a useful proposition:

Definition 1 [6] For a star $K_{1, k}$, we call the vertex of degree k center, and other vertices leaves. A k extendedstar that has one vertex of degree k which is also called center, k vertices of degree 2 and k leaves is a tree obtained by inserting a vertex of degree 2 into each edge of a star $K_{1, k}$. We denote it by S_{k}^{*}. A second order k-extendedstar is a tree obtained by inserting two vertices of degree 2 into each edge of a star $K_{1, k}$, we denote it by $S_{k}^{2 *}$. Similarly, an n-th order k-extendedstar is a tree obtained by inserting n vertices of degree 2 into each edge of a star $K_{1, k}$, we denote it by $S_{k}^{n *}$.

In this paper, we denote by $C_{n} \cdot S_{k}^{n *}$ a graph obtained from a cycle C_{n} and an n-th order k extendedstar by identifying one vertex of the cycle C_{n}
and the center of the n-th order k-extendedstar. We denote by $P_{n} \cdot K_{1, k}$ a graph obtained from a path P_{n} and a k-star by identifying one endpoint of the path P_{n} and one leaf of the k-star.

Proposition 2 A connected graph G is P_{5}-coverable if and only if it has a subgraph P_{5} except the kind of graphs in Figure 1.

Figure 1: graphs which are not P_{5}-coverable
Lemma 3 If a connected graph G can be decomposed into several connected P_{k}-coverable graphs and at least one component is not P_{k}-equicoverable, G will not be P_{k}-equicoverable.

Theorem 4 [5] Path P_{n} is P_{k}-equicoverable if and only if $k \leq n \leq 2 k$ or $n=3 k-1$.

Theorem 5 [5] Cycle C_{n} is P_{k}-equicoverable if and only if

$$
\left\{\begin{array}{l}
k \leq n \leq \frac{3 k-1}{2} \text { or } n=2 k-1 \text { if } k \text { is odd } \\
k \leq n \leq \frac{3 k-2}{2} \text { or } n=2 k-1 \text { if } k \text { is even }
\end{array}\right.
$$

Lemma $6 S_{k}^{n *}$ is P_{n+2}-equicoverable and $c\left(S_{k}^{n *} ; P_{n+2}\right)=C\left(S_{k}^{n *} ; P_{n+2}\right)=k$.

Proof: $S_{k}^{n *}$ can be obtained by identifying the endpoints of k copies of P_{n+2}. The $S_{k}^{n *}$ contains a path of length at most $2 n+2$, that is, $P_{2 n+3}$. By Theorem 4, $P_{2 n+3}$ is P_{n+2}-equicoverable and $c\left(P_{2 n+3} ; P_{n+2}\right)=C\left(P_{2 n+3} ; P_{n+2}\right)=2$. If k is even, $c\left(S_{k}^{n *} ; P_{n+2}\right)=C\left(S_{k}^{n *} ; P_{n+2}\right)=\frac{k}{2} \times 2=k$; If k is odd, $c\left(S_{k}^{n *} ; P_{n+2}\right)=C\left(S_{k}^{n *} ; P_{n+2}\right)=\frac{k-1}{2} \times 2+1=$ k.

$2 \quad P_{5}$-equicoverable graphs

First,we introduce P_{5}-equicoverable paths and cycles.
Lemma 7 [5] The path P_{n} is P_{5}-equicoverable if and only if $n=5,6,7,8,9,10,14$.

Proof: By Theorem 4, we give the results.
Lemma 8 [5] The cycle C_{n} is P_{5}-equicoverable if and only if $n=5,6,7,9$.

Proof: We can refer to Theorem 5.
Lemma $9 G$ is a connected graph that is not a cycle. If G doesn't contain any 3-cycles or 4-cycles and contains a 5-cycle, G will not be P_{5}-equicoverable unless G is $C_{5} \cdot S_{n}^{3 *}$ or G is obtained by adding n copies of $P_{3} \cdot K_{1, t}(t \geq 3)$ to only one vertex of C_{5}.

Proof: Case 1: G is obtained by adding copies of P_{2} to the vertices of C_{5}.
(1)If each vertex of C_{5} can be added to at most one P_{2}, G can only be one of the seven graphs shown in Figure 2. No matter which graph is in Figure 2, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5}-equicoverable.

Figure 2: graphs obtained by adding at most one P_{2}

$$
\text { to each vertex of } C_{5}
$$

(2)If each vertex of C_{5} can be added to any copies of P_{2}. G is obtained by adding copies of P_{2} to the vertices of the 5-cycle part of G_{0}, where G_{0} is one of the graphs in Figure 2. If the number of the copies of P_{2} added is n, we can get a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+n$ (using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n$. By (1), each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.

Case 2: G is obtained by adding copies of P_{3} to the vertices of C_{5}.

Note that we identify the endpoint of each copy of P_{3} with the vertices of C_{5}, not the center vertex. Otherwise G is the same as one of the graph in Case 1.
(1)If each vertex of C_{5} can be added to at most one P_{3}, G can only be one of the seven graphs shown in Figure 3. No matter which graph is in Figure 3, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5}-equicoverable.

Figure 3: graphs obtained by adding at most one P_{3}
to each vertex of C_{5}
(2)If each vertex of C_{5} can be added to any copies of P_{3}. G is obtained by adding copies of P_{3} to the vertices of the 5 -cycle part of G_{0}, where G_{0} is one of the graphs in Figure 3. If the number of the copies of P_{3} added is n, we can get a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+n\left(\right.$ using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n$. By (1), each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.

Case 3: G is obtained by adding copies of $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

Note that we identify one of leaves of each copy of $K_{1, t}$ with the vertices of C_{5}, not the center vertex. Otherwise G is the same as one of the graph in Case 1.
(1)If each vertex of C_{5} can be added to at most one $K_{1, t}, G$ can only be one of the seven graphs shown in Figure 4. No matter which graph is in Figure 4 , a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5} equicoverable.

Figure 4: graphs obtained by adding at most one $K_{1, t}$ to each vertex of C_{5}
(2)If each vertex of C_{5} can be added to any copies of $K_{1, t} . G$ is obtained by adding copies of $K_{1, t}$ to the vertices of the 5 -cycle part of G_{0}, where G_{0} is one of the graphs in Figure 4. If the number of the copies of $K_{1, t}$ added is n, we can get a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+n(t-1)$ (using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and $n(t-1)$ copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n(t-$ 1). By (1), each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.

Actually, this case is similar to Case 2.
Case 4: G is obtained by adding copies of P_{2} and P_{3} to the vertices of C_{5}.

If only copies of P_{2} or only copies of P_{3} are added, G has been discussed in Case 1 or Case 2. Otherwise, we have:
(1)If each vertex of C_{5} can be added to only one P_{2} or one P_{3}, G can only be one of the 24 graphs shown in Figure 5. No matter which graph is in Figure 5, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5} equicoverable.

Figure 5: graphs obtained by adding only one P_{2} or one P_{3} to each vertex of C_{5}
(2)If each vertex of C_{5} can be added to any copies of P_{2} or P_{3}. G is obtained by adding copies of P_{2} and P_{3} to the vertices of the 5 -cycle part of G_{0}, where G_{0} is one of the graphs in Figure 5. If the number of the copies of P_{2} and P_{3} added is n, we can get a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+n\left(\right.$ using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n$. By (1), each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.
(3)If each vertex of C_{5} can be added to at most one $P_{2} \cdot P_{3}, G$ can only be one of the seven graphs shown in Figure 6. No matter which graph is in Figure 6, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5} equicoverable; If each vertex of C_{5} can be added to
any copies of $P_{2} \cdot P_{3}, G$ can be decomposed several components which can be P_{5}-coverable. While there is at least one component which is similar to Case 1 or Case $4(2)$ not P_{5}-equicoverable. G is not P_{5} equicoverable.

Figure 6: graphs obtained by adding at most one

$$
P_{2} \cdot P_{3} \text { to each vertex of } C_{5}
$$

Case 5: G is obtained by adding copies of P_{2} and $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

The case is similar to Case $4 . G$ is not $P_{5^{-}}$ equicoverable.

Case 6: G is obtained by adding copies of P_{3} and $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

The case is similar to Case $2 . G$ is not $P_{5^{-}}$ equicoverable.

Case 7: G is obtained by adding copies of P_{2} and P_{3} and $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

The case is similar to Case $4 . G$ is not $P_{5}-$ equicoverable.

Case 8: G is obtained by adding copies of P_{4} to the vertices of C_{5}.
(1)If each vertex of C_{5} can be added to at most one P_{4}, G can only be one of the seven graphs shown in Figure 7. No matter which graph is in Figure 7, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5}-equicoverable.

Figure 7: graphs obtained by adding at most one

$$
P_{4} \text { to each vertex of } C_{5}
$$

(2)If each vertex of C_{5} can be added to any copies of P_{4}. G is obtained by adding copies of P_{4} to the vertices of the 5-cycle part of G_{0}, where G_{0} is one of the graphs in Figure 7. If the number of the copies of P_{4} added is n, we can get a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+n$ (using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n$. By (1), each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.

Case 9: G is obtained by adding copies of P_{2} and P_{4} to the vertices of C_{5}.

If only copies of P_{2} or only copies of P_{4} are added, G has been discussed in Case 1 or Case 8. Otherwise, we have:
(1)If each vertex of C_{5} can be added to only one P_{2} or one P_{4}, G can only be one of 24 graphs similar
to Figure 5. No matter which graph is, a minimal $P_{5^{-}}$ covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5}-equicoverable.
(2)If each vertex of C_{5} can be added to any copies of P_{2} or P_{4}. G is obtained by adding copies of P_{2} and P_{4} to the vertices of the 5-cycle part of G_{0}, where G_{0} is one of the graphs in (1). If the number of the copies of P_{2} and P_{4} added is n, we can get a minimal P_{5} covering whose covering number is $C\left(G_{0}\right)+n$ (using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n$. By (1), each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>$ $c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.
(3)If each vertex of C_{5} can be added to at most one $P_{2} \cdot P_{4}$, G can only be one of the seven graphs similar to Figure 6. No matter which graph is, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5}-equicoverable. If each vertex of C_{5} can be added to any copies of $P_{2} \cdot P_{4}, G$ can be obtained by adding copies of $P_{2} \cdot P_{4}$ to the vertices of the 5 -cycle part of G_{0}, where G_{0} is one of the graphs above. If the sum of the number of the copies of $P_{2} \cdot P_{4}$ added is n, we can get a minimal $P_{5^{-}}$ covering whose covering number is $C\left(G_{0}\right)+n$ (using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n$. Each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.

Case 10: G is obtained by adding copies of P_{3} and P_{4} to the vertices of C_{5}.

If only copies of P_{3} or only copies of P_{4} are added, G has been discussed in Case 2 or Case 8. Otherwise, we have:
(1)If each vertex of C_{5} can be added to only one P_{3} or one P_{4}, G can only be one of the 24 graphs similar to Figure 5. No matter which graph is, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5}-equicoverable.
(2)If each vertex of C_{5} can be added to any copies of P_{3} or P_{4}. G is obtained by adding copies of P_{3} and P_{4} to the vertices of the 5 -cycle part of G_{0}, where G_{0} is one of the graphs above in (1). If the number of the copies of P_{3} and P_{4} added is n, we can get a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+n$ (using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+n$. By (1), each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.
(3)If each vertex of C_{5} can be added to at most one $P_{3} \cdot P_{4}$, G can only be one of the seven graphs similar to Figure 6. No matter which graph is, a minimal P_{5}-covering whose covering number $C(G)$ is greater than the number of the minimum P_{5}-covering $c(G)$. So the graphs are not P_{5}-equicoverable. If each vertex of C_{5} can be added to any copies of $P_{3} \cdot P_{4}, G$ can be obtained by adding copies of $P_{3} \cdot P_{4}$ to the vertices of the 5-cycle part of G_{0}, where G_{0} is one of the graphs above. If the number of the copies of $P_{3} \cdot P_{4}$ added is n, we can get a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+2 n\left(\right.$ using $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and $2 n$ copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{0}\right)+2 n$. Each of G_{0} is not P_{5}-equicoverable, then $C\left(G_{0}\right)>c\left(G_{0}\right)$. So G is not P_{5}-equicoverable.

Case 11: G is obtained by adding copies of P_{2}, P_{3} and P_{4} to the vertices of C_{5}.
P_{2}, P_{3} and P_{4} are all added to the vertices of C_{5}, otherwise the cases has been discussed.

First, G can be obtained by adding copies of P_{2} and P_{3} to the vertices of C_{5} and we denote it by G_{23}. Next we add P_{4} to G_{23}. If the number of the copies of P_{4} added is n, we can get a minimal $P_{5^{-}}$ covering whose covering number is $C\left(G_{23}\right)+n$ (using $C\left(G_{23}\right)$ copies of P_{5} to cover the G_{23} part and n copies of P_{5} to cover other parts), while the number of the minimum P_{5}-covering is at most $c\left(G_{23}\right)+n$. Each of G_{23} is not P_{5}-equicoverable by Case 4 , then $C\left(G_{23}\right)>c\left(G_{23}\right)$. So G is not P_{5}-equicoverable.

Case 12: G is obtained by adding copies of P_{4} and $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

The case is similar to Case $10 . G$ is not $P_{5^{-}}$ equicoverable.

Case 13: G is obtained by adding copies of P_{2}, P_{4} and $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

The case is similar to Case $11 . G$ is not $P_{5^{-}}$ equicoverable.

Case 14: G is obtained by adding copies of P_{3}, P_{4} and $K_{1, t}$ to the vertices of C_{5}.

The case is similar to Case $10 . G$ is not $P_{5^{-}}$ equicoverable.

Case 15: G is obtained by adding copies of P_{2}, P_{3}, P_{4} and $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

The case is similar to Case $11 . G$ is not $P_{5^{-}}$ equicoverable.

Case 16: G is obtained by adding copies of P_{5} to the vertices of C_{5}.
(1)If we add n copies of P_{5} to only one vertex of C_{5}, both the minimal P_{5}-covering number and the minimum P_{5}-covering number are $n+2$. So it is P_{5} equicoverable. We denote the graph by $C_{5} \cdot S_{n}^{3 *}$.
(2)If we add n copies of P_{5} to at least two vertices of C_{5}, there exists a minimal P_{5}-covering number is
$n+3$ and the minimum P_{5}-covering number is $n+2$. Obviously, $c(G) \neq C(G), G$ is not P_{5}-equicoverable.

Case 17: G is obtained by adding copies of P_{2}. $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

The case is similar to Case $8 . G$ is not $P_{5^{-}}$ equicoverable.

Case 18: G is obtained by adding copies of P_{3}. $K_{1, t}(t \geq 3)$ to the vertices of C_{5}.

We identify one endpoint of P_{3} with one of the vertices of C_{5}.
(1)If we add n copies of $P_{3} \cdot K_{1, t}(t \geq 3)$ to only one vertex of C_{5}, both the minimal P_{5}-covering number and the minimum P_{5}-covering number are $n(t-1)+2$. So it is P_{5}-equicoverable.
(2)If we add n copies of $P_{3} \cdot K_{1, t}(t \geq 3)$ to at least two vertices of C_{5}, there exists a minimal P_{5}-covering number is $n(t-1)+3$ and the minimum P_{5}-covering number is $n(t-1)+2$. Obviously, $c(G) \neq C(G), G$ is not P_{5}-equicoverable.

Case 19: G is a graph not contained in Case 1-18.
Each G can be decomposed into two connected components: a graph G_{0} which is not $P_{5^{-}}$ equicoverable contained in Case 1-18 and a graph which is P_{5}-coverable. By Lemma 3, G is not P_{5} equicoverable.

In summary, G is not P_{5}-equicoverable unless G is $C_{5} \cdot S_{n}^{3 *}$ or G is obtained by adding n copies of $P_{3} \cdot K_{1, t}(t \geq 3)$ to only one vertex of C_{5}.

Next we consider graphs that contains a cycle with length larger than 5 .

Lemma $10 C_{n} \cdot P_{2}(n \geq 6)$ is P_{5}-equicoverable if and only if $n=8$.

Proof: (1)If C_{n} is P_{5}-equicoverable, we have $n=6,7,9$. Because $C\left(C_{n} \cdot P_{2} ; P_{5}\right)>c\left(C_{n}\right.$. $\left.P_{2} ; P_{5}\right)(n=6,7,9), C_{6} \cdot P_{2}$ and $C_{7} \cdot P_{2}$ and $C_{9} \cdot P_{2}$ are not P_{5}-equicoverable.
(2)If C_{n} is not P_{5}-equicoverable, we have $n \neq$ $6,7,9$. It is easy to find that $C\left(C_{8} \cdot P_{2} ; P_{5}\right)=c\left(C_{8}\right.$. $\left.P_{2} ; P_{5}\right)=3 . C_{8} \cdot P_{2}$ is P_{5}-equicoverable. For $n \geq$ $10, C_{n}$ is not P_{5}-equicoverable. We can use $C\left(C_{n}\right)$ copies of P_{5} to cover the C_{n} part and one copy of P_{5} to cover the else. Also, we can use $c\left(C_{n}\right)$ copies of P_{5} to cover the C_{n} part and one copy of P_{5} to cover the else. While $c\left(C_{n} \cdot P_{2}\right) \leq c\left(C_{n}\right)+1<C\left(C_{n}\right)+1, G$ is not P_{5}-equicoverable.

Lemma $11 C_{n} \cdot P_{3}(n \geq 6)$ is P_{5}-equicoverable if and only if $n=7$.

Proof: (1)If C_{n} is P_{5}-equicoverable, we have $n=6,7,9$. Because $C\left(C_{n} \cdot P_{3} ; P_{5}\right)>c\left(C_{n}\right.$. $\left.P_{3} ; P_{5}\right)(n=6,9), C_{6} \cdot P_{3}$ and $C_{9} \cdot P_{3}$ are not P_{5}-equicoverable. While $C\left(C_{7} \cdot P_{3} ; P_{5}\right)=c\left(C_{7}\right.$. $\left.P_{3} ; P_{5}\right)=3 . C_{7} \cdot P_{3}$ is P_{5}-equicoverable.
(2)If C_{n} is not P_{5}-equicoverable, we have $n \neq$ $6,7,9$. It is easy to find that $C\left(C_{8} \cdot P_{3} ; P_{5}\right)>c\left(C_{8}\right.$. $\left.P_{3} ; P_{5}\right) . C_{8} \cdot P_{3}$ is not P_{5}-equicoverable. For $n \geq$ $10, C_{n}$ is not P_{5}-equicoverable. We can use $C\left(C_{n}\right)$ copies of P_{5} to cover the C_{n} part and one copy of P_{5} to cover the else. Also, we can use $c\left(C_{n}\right)$ copies of P_{5} to cover the C_{n} part and one copy of P_{5} to cover the else. While $c\left(C_{n} \cdot P_{3}\right) \leq c\left(C_{n}\right)+1<C\left(C_{n}\right)+1, G$ is not P_{5}-equicoverable.

Lemma $12 C_{n} \cdot P_{4}(n \geq 6)$ is P_{5}-equicoverable if and only if $n=6$.

Proof: (1)If C_{n} is P_{5}-equicoverable, we have $n=6,7,9$. Because $C\left(C_{n} \cdot P_{4} ; P_{5}\right)>c\left(C_{n}\right.$. $\left.P_{4} ; P_{5}\right)(n=7,9), C_{7} \cdot P_{4}$ and $C_{9} \cdot P_{4}$ are not P_{5}-equicoverable. While $C\left(C_{6} \cdot P_{4} ; P_{5}\right)=c\left(C_{6}\right.$. $\left.P_{4} ; P_{5}\right)=3 . C_{6} \cdot P_{4}$ is P_{5}-equicoverable.
(2)If C_{n} is not P_{5}-equicoverable, we have $n \neq$ $6,7,9$. It is easy to find that $C\left(C_{8} \cdot P_{4} ; P_{5}\right)>c\left(C_{8}\right.$. $\left.P_{4} ; P_{5}\right) . C_{8} \cdot P_{4}$ is not P_{5}-equicoverable. For $n \geq$ $10, C_{n}$ is not P_{5}-equicoverable. We can use $C\left(C_{n}\right)$ copies of P_{5} to cover the C_{n} part and one copy of P_{5} to cover the else. Also, we can use $c\left(C_{n}\right)$ copies of P_{5} to cover the C_{n} part and one copy of P_{5} to cover the else. While $c\left(C_{n} \cdot P_{4}\right) \leq c\left(C_{n}\right)+1<C\left(C_{n}\right)+1, G$ is not P_{5}-equicoverable.

Lemma $13 C_{n} \cdot P_{5}(n \geq 6)$ is not P_{5}-equicoverable.
Lemma $14 C_{n} \cdot K_{1, t}(n \geq 4, t \geq 3)$ is not $P_{5^{-}}$ equicoverable.

Lemma $15 C_{n} \cdot P_{2} \cdot K_{1, t}(n \geq 4)$ is not P_{5} equicoverable.

Lemma $16 C_{n} \cdot P_{3} \cdot K_{1, t}(n \geq 6)$ is not P_{5} equicoverable

Lemma $17 G$ is a connected graph that is not a cycle. If G doesn't contain cycles with length smaller than 6 and contains a 6-cycle, G is P_{5}-equicoverable if and only if G is $C_{6} \cdot P_{4}$.

Proof: Case 1: G is obtained by adding copies of P_{2} to the vertices of C_{6}.
(1)If we add one P_{2} to only one vertex of C_{6}, by Lemma 10, it is not P_{5}-equicoverable.
(2)If we add $n(n \geq 2)$ copies of P_{2} to only one vertex of C_{6}, there will be a minimal P_{5}-covering whose covering number is $n+2$. While the number of the minimum P_{5}-covering number is less than or equal to $n+1$.
(3)If we add $n(n \geq 2)$ copies of P_{2} to at least two vertices of C_{6} and each vertex of C_{6} can be added to at most one P_{2}, G must be one of the eleven graphs
shown in Figure 7. For each graph which contains a 6-cycle, we can blow up a vertex that no P_{2} is added to of C_{6} to two vertices. As a consequence, the original graph with a 6 -cycle turns out to be a tree. A blowing up that makes the result tree not P_{5}-equicoverable must exist. So G is not P_{5}-equicoverable. For example, we blow up v_{1} of the left graph to two vertices v_{2} and v_{3} of the right graph in Figure 8. Obviously, it's not P_{5}-equicoverable.

Figure 7: graphs obtained by adding $n(n \geq 2)$ copies of P_{2} to at least two vertices of C_{6} can be added to at most one P_{2}

Figure 8: v_{1} blown up to two vertices v_{2} and v_{3}
(4)If we add $n(n \geq 2)$ copies of P_{2} to at least two vertices of C_{6} and each vertex of C_{6} can be added
to any copies of P_{2}. Without loss of generality, suppose G is obtained by adding m copies of P_{2} to G_{0}, where G_{0} is one of graphs above in (3). Then there exists a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+m$. We can use $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and use m copies of P_{5} to cover other parts. While the number of the minimum P_{5}-covering number is at most $c\left(G_{0}\right)+m$. As we all know, for each G_{0}, there exists a minimal P_{5}-covering whose $C\left(G_{0}\right)>c\left(G_{0}\right)$, then it is not P_{5}-equicoverable.

Case 2: G is obtained by adding copies of P_{3} to the vertices of C_{6}.
(1)If we add one P_{3} to only one vertex of C_{6}, by Lemma 11, it is not P_{5}-equicoverable.
(2)If we add $n(n \geq 2)$ copies of P_{3} to only one vertex of C_{6}, there will be a minimal P_{5}-covering whose covering number is $n+2$. While the number of the minimum P_{5}-covering number is less than or equal to $n+1$.
(3)If we add $n(n \geq 2)$ copies of P_{3} to at least two vertices of C_{6} and each vertex of C_{6} can be added to at most one P_{3}, G must be one of the eleven graphs similar to Figure 7. For each graph which contains a 6 -cycle, we can blow up a vertex that no P_{3} is added to of C_{6} to two vertices. As a consequence, the original graph with a 6 -cycle turns out to be a tree. A blowing up that makes the result tree not P_{5}-equicoverable must exist. So G is not P_{5}-equicoverable.
(4)If we add $n(n \geq 2)$ copies of P_{3} to at least two vertices of C_{6} and each vertex of C_{6} can be added to any copies of P_{3}. Without loss of generality, suppose G is obtained by adding m copies of P_{3} to G_{0}, where G_{0} is one of graphs above in (3). Then there exists a minimal P_{5}-covering whose covering number is $C\left(G_{0}\right)+m$. We can use $C\left(G_{0}\right)$ copies of P_{5} to cover the G_{0} part and use m copies of P_{5} to cover other parts. While the number of the minimum P_{5}-covering number is at most $c\left(G_{0}\right)+m$. As we all know, for each G_{0}, there exists a minimal P_{5}-covering whose $C\left(G_{0}\right)>c\left(G_{0}\right)$, then it is not P_{5}-equicoverable.

Case 3: G is obtained by adding copies of $K_{1, t}(t \geq 3)$ to the vertices of C_{6}.

Similar to Case 2, G is not P_{5}-equicoverable.
Case 4: G is obtained by adding copies of P_{4} to the vertices of C_{6}.
(1)If we add one P_{4} to only one vertex of C_{6}, by Lemma 12, it is P_{5}-equicoverable.
(2)The following proof is similar to (2),(3),(4) in Case 2, G is not P_{5}-equicoverable.

Case 5: G is obtained by adding copies of $P_{2}, P_{3}, P_{4}, K_{1, t}(t \geq 3)$ to the vertices of C_{6}.

There are eleven subcases: G is obtained by adding copies of at least two of $P_{2}, P_{3}, P_{4}, K_{1, t}(t \geq$ 3). Similar to the proof process of Case $2, G$ is not P_{5}-equicoverable.

Case 6: G is obtained by adding copies of P_{5} to the vertices of C_{6}.
(1)If we add one P_{5} to only one vertex of C_{6}, by Lemma 13, it is not P_{5}-equicoverable.
(2)If G is not the graph in (1), G can be decomposed into two connected components: a graph which is not P_{5}-equicoverable and a P_{5}-coverable graph. By Lemma 3, G is not P_{5}-equicoverable.

Case 7: G is obtained by adding copies of P_{4} and P_{5} to the vertices of C_{6}.

If only copies of P_{4} or only copies of P_{5} are added, G has been discussed in previous. Otherwise, similar to Case 4 of Lemma $9, G$ is not P_{5} equicoverable.

Case 8: G is a graph not contained in Case 1-7.
We decompose G into two connected components: a graph G_{0} contained in Case 1-7 and a graph which is P_{5}-coverable. G_{0} is not P_{5}-equicoverable, by Lemma 3, G is not P_{5}-equicoverable.

In summary, G is not P_{5}-equicoverable unless it is $C_{6} \cdot P_{4}$.

Lemma $18 G$ is a connected graph that is not a cycle. If G doesn't contain cycles with length smaller than 7 and contains a 7 -cycle, G is P_{5}-equicoverable if and only if G is $C_{7} \cdot P_{3}$.

Lemma 19 G is a connected graph that is not a cycle. If G doesn't contain cycles with length smaller than 8 and contains a 8 -cycle, G is P_{5}-equicoverable if and only if G is $C_{8} \cdot P_{2}$.

Lemma $20 G$ is a connected graph that is not a cycle. If G doesn't contain cycles with length smaller than 9 , G is not P_{5}-equicoverable.

Proof: Case 1: If G is one of the graphs in Lemma 10-Lemma 16, G is not P_{5}-equicoverable.

Case 2: If G is not a graph in Case 1, according to the proof process of Lemma 17, G can be decomposed into connected components: a tree which is not P_{5} equicoverable and P_{5}-coverable graphs.

In the end, we conclude the main results: A connected graph G is P_{5}-equicoverable if and only if G satisfies one of the following:

Theorem 21 Let G be a connected graph that doesn't contain 3-cycles or 4 -cycles and contains a cycle with length at least 5 . Then G is P_{5}-equicoverable if and only if either of the following holds:
(1) G is a cycle $C_{n}(n=5,6,7,9)$;
(2) G is $C_{5} \cdot S_{n}^{3 *}(n \geq 1)$;
(3) G is obtained by adding n copies of P_{3}. $K_{1, t}(t \geq 3)$ to only one vertex of C_{5}.
(4) G is $C_{6} \cdot P_{4}$.
(5) G is $C_{7} \cdot P_{3}$.
(6) G is $C_{8} \cdot P_{2}$.

For disconnected graphs, we have:
Theorem 22 A graph G that doesn't contain 3-cycles or 4-cycles and contains at least one cycle with length larger than 4 is P_{5}-equicoverable if and only if each component of G is P_{5}-equicoverable.

3 Results of P_{k}-equicoverable graphs

Theorem $23 C_{n} \cdot P_{2}$ is P_{k}-equicoverable if and only if $n=k-1$ or $n=2 k-2$.

Proof:

(1)When $n \leq k-2, C_{n} \cdot P_{2}$ doesn't contain the subgraph of P_{k}. Then it is not P_{k}-equicoverable.
(2)When $n=k-1, C_{n} \cdot P_{2}$ is P_{k}-equicoverable and $C\left(C_{n} \cdot P_{2} ; P_{k}\right)=c\left(C_{n} \cdot P_{2} ; P_{k}\right)=2$.
(3)When $k \leq n \leq 2 k-3$, it is easy to find $c\left(C_{n} \cdot P_{2} ; P_{k}\right)=2$. Conveniently, denote the edges of $C_{n} \cdot P_{2}$ by $e_{0}, e_{1}, \cdots e_{n}$. There exits a minimal P_{k}-covering as following: we denote it by $H=$ $\left\{H_{1}, H_{2}, H_{3}\right\}$,

$$
\left\{\begin{array}{l}
H_{1}=\left\{e_{0}, e_{1}, e_{2}, \cdots, e_{k-2}\right\} \\
H_{2}=\left\{e_{n}, e_{1}, e_{2}, \cdots, e_{k-2}\right\} \\
H_{3}=\left\{e_{k-1}, e_{k}, e_{k+1}, \cdots, e_{n-1}\right\}
\end{array}\right.
$$

Then H is a minimal P_{k}-covering instead of the minimum P_{k}-covering of C_{n}. It is not $P_{k^{-}}$ equicoverable.
(4)When $n=2 k-2, C_{n} \cdot P_{2}$ is P_{k}-equicoverable. It is clear that $c\left(C_{n} \cdot P_{2} ; P_{k}\right)=3$. We denote the vertices of $C_{n} \cdot P_{2}$ by $v_{0}, v_{1}, v_{2}, \cdots, v_{2 k-2}$. Generally speaking, suppose that there exists a copy of P_{k} covering the edge $v_{1} v_{2}$, which is denoted by $H_{0}=\left\{v_{1} v_{2}, v_{2} v_{3}, \cdots, v_{k-1} v_{k}\right\}$. Then there also exists a copy of P_{k} covering the edge $v_{k} v_{k+1}$, which is denoted by $H_{i}=\left\{v_{i} v_{i+1}, v_{i+1} v_{i+2}, \cdots, v_{i+k-2} v_{i+k-1}\right\}(2 \leq$ $i \leq k-1$). Similarly, there must be a copy of P_{k} covering the edge $v_{1} v_{0}$, which is denoted by $H_{1}=$ $\left\{v_{k+1} v_{k+2}, v_{k+2} v_{k+3}, \cdots, v_{2 k-3} v_{2 k-2}, v_{2 k-2} v_{1}, v_{1} v_{0}\right\}$. And by the definition of the equicoverable, $\left\{H_{0}, H_{i}, H_{1} \mid 2 \leq i \leq k-1\right\}$ is the family of the minimal P_{k}-covering of $C_{n} \cdot P_{2}$. (or

$$
\left\{\begin{aligned}
H_{0}= & \left\{v_{0} v_{1}, v_{1} v_{2}, v_{2} v_{3}, \cdots, v_{k-2} v_{k-1}\right\} \\
H_{i}= & \left\{v_{i} v_{i+1}, v_{i+1} v_{i+2}, \cdots, v_{i+k-2} v_{i+k-1}\right\} \\
& 2 \leq i \leq k-1 \\
H_{1}= & \left\{v_{k+1} v_{k+2}, v_{k+2} v_{k+3} \cdots, v_{2 k-3} v_{2 k-2}\right. \\
& \left.v_{2 k-2} v_{1}, v_{1} v_{0}\right\}
\end{aligned}\right.
$$

As a result, the number of minimal P_{k}-covering of $C_{n} \cdot P_{2}$ is only 3. $C_{n} \cdot P_{2}$ is P_{k}-equicoverable.
(5)When $n=3 k-3$, it is easy to find $c\left(C_{n} \cdot P_{2} ; P_{k}\right)=4$. We denote the edges of $C_{n} \cdot P_{2}$ by $e_{0}, e_{1}, \cdots, e_{3 k-3}$. There exits a minimal P_{k}-covering as following: we denote it by $H=$ $\left\{H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$,

$$
\left\{\begin{array}{l}
H_{1}=\left\{e_{0}, e_{1}, e_{2}, \cdots, e_{k-2}\right\} \\
H_{2}=\left\{e_{1}, e_{2}, \cdots, e_{k-1}\right\} \\
H_{3}=\left\{e_{k}, e_{k+1}, \cdots, e_{2 k-2}\right\} \\
H_{4}=\left\{e_{k+1}, e_{k+2}, \cdots, e_{2 k-1}\right\} \\
H_{5}=\left\{e_{2 k}, e_{2 k+1}, \cdots, e_{3 k-3}, e_{1}\right\}
\end{array}\right.
$$

So it is not P_{k}-equicoverable.
(6)When $2 k-1 \leq n \leq 3 k-4$ and $n \geq 3 k-2$, $C_{n} \cdot P_{2}$ is not P_{k}-equicoverable by Theorem 4.

Corollary $24 C_{n} \cdot P_{3}(n \geq k+1)$ is P_{k}-equicoverable if and only if $n=2 k-3$.

Corollary $25 C_{n} \cdot P_{4}(n \geq k+1)$ is P_{k}-equicoverable if and only if $n=2 k-4$.

Corollary $26 C_{n} \cdot P_{5}(n \geq k+1)$ is P_{k}-equicoverable if and only if $n=2 k-5$.

Theorem $27 C_{n} \cdot P_{k}(n \geq k+1, k \geq 6)$ is not $P_{k^{-}}$ equicoverable.

Proof:

(1)When $k+1 \leq n \leq 2 k-2$ and $n \geq 2 k$, it is easy to come to the conclusion according to Theorem 5.
(2)When $n=2 k-1, \quad c\left(C_{n}\right.$. $\left.P_{k} ; P_{k}\right)=4 . \quad$ We denote its edges by $e_{p 1}, e_{p 2}, \cdots, e_{p(k-1)}, e_{c 1}, e_{c 2}, \cdots, e_{c(2 k-1)}$. There exits a minimal P_{k}-covering as following: we denote it by $H=\left\{H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$,

$$
\left\{\begin{array}{l}
H_{1}=\left\{e_{c 1}, e_{p 1}, e_{p 2}, \cdots, e_{p(k-2)}\right\} \\
H_{2}=\left\{e_{c(2 k-1)}, e_{p 1}, \cdots, e_{p(k-2)}\right\} \\
H_{3}=\left\{e_{p 1}, e_{p 2}, \cdots, e_{p(k-1)}\right\} \\
H_{4}=\left\{e_{c 2}, e_{c 3}, \cdots, e_{c k}\right\} \\
H_{5}=\left\{e_{c k}, e_{c(k+1)}, \cdots, e_{c(2 k-2)}\right\}
\end{array}\right.
$$

So it is also not P_{k}-equicoverable.
Corollary $28 C_{n} \cdot K_{1, t}(n \geq k-1, t \geq 3)$ is not $P_{k^{-}}$ equicoverable.

Theorem $29 C_{n} \cdot S_{m}^{(k-2) *}$ is P_{k}-equicoverable if and only if $3 \leq n \leq k$ and $c(G)=C(G)=m+2$.

Proof: (1)When $n \geq k+1$, it is not $P_{k^{-}}$ equicoverable by Theorem 27.
(2)When $3 \leq n \leq k-1$, the subgraph C_{n} doesn't contain P_{k}. There must be m copies of P_{k} covering the part of $S_{m}^{(k-2) *}$; The else can be covered by using only two copies of P_{k}. It is P_{k}-equicoverable and $c(G)=C(G)=m+2$.
(3)When $n=k$, the $S_{m}^{(k-2) *}$ part must be covered by m copies of P_{k}. We can only use two copies of P_{k} to cover the else C_{n} part. Then the $C_{n} \cdot S_{m}^{(k-2) *}$ is P_{k}-equicoverable.

The next comment follows immediately from Theorem 29.

Corollary $30 C_{n} \cdot P_{k-2} \cdot K_{1, t}$ is P_{k}-equicoverable if and only if $3 \leq n \leq k$.

References:

[1] Y. Q. Zhang, P_{3}-equicoverable graphs: Reasearch on H-equicoverable graphs. Discrete Applied Mathematics, Vol.156(5), 2008, pp. 647-661.
[2] S. Ruiz, Randomly decomposable graphs, Discrete Math, Vol.57(1/2), 1985, pp. 123-128.
[3] Y. Q. Zhang and Y. J. Sun, H-equipackable paths and cycles for $H=P_{4}$ and $H=M_{3}$, Ars Combinatoria, Vol.93, 2009, pp. 387-391.
[4] Y. Q. Zhang, W. H. Lan, Some special M_{2-} equicoverable graphs(in Chinese), Journal of Tianjin University, Vol.42, 2009, pp. 83-85.
[5] L. D. Zhang, C. F. Zhou, Y.Q.Zhang, Two kinds of equicoverable paths and cycles, Ars Combinatoria, vol.118, 2015, pp. 109-118.
[6] Q.R. Wang, T.P. Shuai, W.B. Ai, J.H. Yuan, $P_{4}{ }^{-}$ equicoverable graphs which contains cycles with length at least 4 received by Discrete Mathematics, Algorithms and Applications.

[^0]: * Corresponding author.
 ${ }^{\dagger}$ Foundation items: This research was supported by Natural Science Foundation of Hebei province(No.A20152023010), Natural Science Foundation of Tianjin(No.15JCYBJC19100), National Natural Science Foundation of China (No.11401430) and National Natural Science Foundation of China(No.61473337).

