P_5 -equicoverable graphs which contain cycles with length at least 5

FAN WU Department of Mathematics Tianjin University Jinnan District, 300354, Tianjin CHINA fanwutju@126.com YUQIN ZHANG *[†] Department of Mathematics Tianjin University Jinnan District, 300354, Tianjin CHINA yuqinzhang@tju.edu.cn

Abstract: A graph G is called H-equicoverable if every minimal H-covering of G is also a minimum H-covering of G. In this paper, we investigate the characterization of P_5 -equicoverable graphs which contain cycles with length at least 5 and give some results of P_k -equicoverable graphs.

Key–Words: P_5 -equicoverable, P_k -equicoverable, cycle, covering

1 Introduction

A graph G has order |V(G)| and size |E(G)|. If vertex v is an endpoint of an edge e, then v and e are incident. The degree of vertex v in a graph G, written $d_G(v)$ or d(v), is the number of edges incident to v. The path and circuit on k vertices are denoted by P_k and C_k , respectively. A star is a tree consisting of one vertex adjacent to all the others. The (n + 1)-vertex star is the biclique $K_{1,n}$.

A graph H is a subgraph of G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$. Suppose that E' is a nonempty subset of E. The subgraph of G whose vertex set is the set of ends of edges in E' and whose edge set is E' is called the subgraph of G induced by E' and is denoted by G[E']; G[E'] is an edge-induced subgraph of G.

The problem that we study stems from the research of *H*-decomposable graphs, randomly decomposable graphs and equipackable graphs. In 2008, Zhang introduced equicoverable graph which is the dual concept of the equipackable graph and characterized all P_3 -equicoverable graphs. In this paper, we investigate all P_5 -equicoverable graphs which don't contain 3-cycle or 4-cycle and contain at least one cycle with length at least 5. For further definitions and results, we can refer to [1],[2],[3],[4],[5],[6].

Let H be a subgraph of a graph G. An Hcovering of G is a set $L = H_1, H_2, \ldots, H_k$ of subgraphs of G, where each subgraph H_i isomorphic to H, and every edge of G appears in at least one member of L. A graph is called H-coverable if there exists an H-covering of G. An H-covering of G with k copies H_1, H_2, \ldots, H_k is called minimal if, for any $H_i, \bigcup_{i=1}^k H_i - H_i$ is not an *H*-covering of *G*. An *H*-covering of H_1, H_2, \ldots, H_k is called minimum if there exists no H-covering with less than k copies of H. A graph is called H-equicoverable if every minimal *H*-covering is also a minimum *H*-covering. Let C(G; H) denote the number of H in the minimal H-covering of G, or simply C(G) for short and let c(G; H) denote the number of H in the minimum *H*-covering of G, or simply c(G) for short. For convenience, we denote by $C_n \cdot P_k$ a graph obtained from a cycle C_n and a path P_k by identifying one vertex of the cycle C_n and an endpoint of the path P_k . And we denote by $C_n \cdot K_{1,k}$ a graph obtained from a cycle C_n and a star $K_{1,k}$ by identifying one vertex of the cycle C_n and a leaf of the star $K_{1,k}$.

Then we introduce a definition and a useful proposition:

Definition 1 [6] For a star $K_{1,k}$, we call the vertex of degree k center, and other vertices leaves. A kextendedstar that has one vertex of degree k which is also called center, k vertices of degree 2 and k leaves is a tree obtained by inserting a vertex of degree 2 into each edge of a star $K_{1,k}$. We denote it by S_k^* . A second order k-extendedstar is a tree obtained by inserting two vertices of degree 2 into each edge of a star $K_{1,k}$, we denote it by S_k^{2*} . Similarly, an n-th order k-extendedstar is a tree obtained by inserting n vertices of degree 2 into each edge of a star $K_{1,k}$, we denote it by S_k^{n*} .

In this paper, we denote by $C_n \cdot S_k^{n*}$ a graph obtained from a cycle C_n and an *n*-th order *k*extendedstar by identifying one vertex of the cycle C_n

^{*}Corresponding author.

[†]Foundation items: This research was supported by Natural Science Foundation of Hebei province(No.A20152023010), Natural Science Foundation of Tianjin(No.15JCYBJC19100), National Natural Science Foundation of China (No.11401430) and National Natural Science Foundation of China(No.61473337).

and the center of the *n*-th order *k*-extendedstar. We denote by $P_n \cdot K_{1,k}$ a graph obtained from a path P_n and a *k*-star by identifying one endpoint of the path P_n and one leaf of the *k*-star.

Proposition 2 A connected graph G is P_5 -coverable if and only if it has a subgraph P_5 except the kind of graphs in Figure 1.

Figure 1: graphs which are not P_5 -coverable

Lemma 3 If a connected graph G can be decomposed into several connected P_k -coverable graphs and at least one component is not P_k -equicoverable, G will not be P_k -equicoverable.

Theorem 4 [5] Path P_n is P_k -equicoverable if and only if $k \le n \le 2k$ or n = 3k - 1.

Theorem 5 [5] Cycle C_n is P_k -equicoverable if and only if

$$\begin{cases} k \le n \le \frac{3k-1}{2} \text{ or } n = 2k-1 \text{ if } k \text{ is odd,} \\ k \le n \le \frac{3k-2}{2} \text{ or } n = 2k-1 \text{ if } k \text{ is even.} \end{cases}$$

Lemma 6 S_k^{n*} is P_{n+2} -equicoverable and $c(S_k^{n*}; P_{n+2}) = C(S_k^{n*}; P_{n+2}) = k.$

Proof: S_k^{n*} can be obtained by identifying the endpoints of k copies of P_{n+2} . The S_k^{n*} contains a path of length at most 2n + 2, that is, P_{2n+3} . By Theorem 4, P_{2n+3} is P_{n+2} -equicoverable and $c(P_{2n+3}; P_{n+2}) = C(P_{2n+3}; P_{n+2}) = 2$. If k is even, $c(S_k^{n*}; P_{n+2}) = C(S_k^{n*}; P_{n+2}) = \frac{k}{2} \times 2 = k$; If k is odd, $c(S_k^{n*}; P_{n+2}) = C(S_k^{n*}; P_{n+2}) = \frac{k-1}{2} \times 2 + 1 = k$.

2 P₅-equicoverable graphs

First, we introduce P_5 -equicoverable paths and cycles.

Lemma 7 [5] The path P_n is P_5 -equicoverable if and only if n = 5, 6, 7, 8, 9, 10, 14.

Proof: By Theorem 4, we give the results. \Box

Lemma 8 [5] The cycle C_n is P_5 -equicoverable if and only if n = 5, 6, 7, 9.

Proof: We can refer to Theorem 5.
$$\Box$$

Lemma 9 *G* is a connected graph that is not a cycle. If *G* doesn't contain any 3-cycles or 4-cycles and contains a 5-cycle, *G* will not be P_5 -equicoverable unless *G* is $C_5 \cdot S_n^{3*}$ or *G* is obtained by adding *n* copies of $P_3 \cdot K_{1,t}(t \ge 3)$ to only one vertex of C_5 .

Proof: Case 1: G is obtained by adding copies of P_2 to the vertices of C_5 .

(1) If each vertex of C_5 can be added to at most one P_2 , G can only be one of the seven graphs shown in Figure 2. No matter which graph is in Figure 2, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable.

Figure 2: graphs obtained by adding at most one P_2

to each vertex of C_5

(2) If each vertex of C_5 can be added to any copies of P_2 . G is obtained by adding copies of P_2 to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs in Figure 2. If the number of the copies of P_2 added is n, we can get a minimal P_5 -covering whose covering number is $C(G_0) + n(\text{using } C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So Gis not P_5 -equicoverable.

Case 2: G is obtained by adding copies of P_3 to the vertices of C_5 .

Note that we identify the endpoint of each copy of P_3 with the vertices of C_5 , not the center vertex. Otherwise G is the same as one of the graph in Case 1.

(1)If each vertex of C_5 can be added to at most one P_3 , G can only be one of the seven graphs shown in Figure 3. No matter which graph is in Figure 3, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable.

Figure 3: graphs obtained by adding at most one P_3

to each vertex of C_5

(2) If each vertex of C_5 can be added to any copies of P_3 . G is obtained by adding copies of P_3 to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs in Figure 3. If the number of the copies of P_3 added is n, we can get a minimal P_5 -covering whose covering number is $C(G_0) + n(\text{using } C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So Gis not P_5 -equicoverable.

Case 3: G is obtained by adding copies of $K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

Note that we identify one of leaves of each copy of $K_{1,t}$ with the vertices of C_5 , not the center vertex. Otherwise G is the same as one of the graph in Case 1. (1) If each vertex of C_5 can be added to at most one $K_{1,t}$, G can only be one of the seven graphs shown in Figure 4. No matter which graph is in Figure 4, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 equicoverable.

Figure 4: graphs obtained by adding at most one $K_{1,t}$

to each vertex of C_5

(2) If each vertex of C_5 can be added to any copies of $K_{1,t}$. G is obtained by adding copies of $K_{1,t}$ to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs in Figure 4. If the number of the copies of $K_{1,t}$ added is n, we can get a minimal P_5 -covering whose covering number is $C(G_0) + n(t-1)$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and n(t-1)copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0) + n(t-1)$. By (1), each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5 -equicoverable.

Actually, this case is similar to Case 2.

Case 4: G is obtained by adding copies of P_2 and P_3 to the vertices of C_5 .

If only copies of P_2 or only copies of P_3 are added, G has been discussed in Case 1 or Case 2. Otherwise, we have:

(1) If each vertex of C_5 can be added to only one P_2 or one P_3 , G can only be one of the 24 graphs shown in Figure 5. No matter which graph is in Figure 5, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable.

Figure 5: graphs obtained by adding only one P_2 or

one P_3 to each vertex of C_5

(2) If each vertex of C_5 can be added to any copies of P_2 or P_3 . G is obtained by adding copies of P_2 and P_3 to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs in Figure 5. If the number of the copies of P_2 and P_3 added is n, we can get a minimal P_5 -covering whose covering number is $C(G_0) + n(\text{using } C(G_0) \text{ copies of } P_5 \text{ to cover the } G_0$ part and n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0)+n$. By (1), each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5 -equicoverable.

(3) If each vertex of C_5 can be added to at most one $P_2 \cdot P_3$, G can only be one of the seven graphs shown in Figure 6. No matter which graph is in Figure 6, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 equicoverable; If each vertex of C_5 can be added to any copies of $P_2 \cdot P_3$, G can be decomposed several components which can be P_5 -coverable. While there is at least one component which is similar to Case 1 or Case 4(2) not P_5 -equicoverable. G is not P_5 equicoverable.

Figure 6: graphs obtained by adding at most one

 $P_2 \cdot P_3$ to each vertex of C_5

Case 5: G is obtained by adding copies of P_2 and $K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

The case is similar to Case 4. G is not P_5 -equicoverable.

Case 6: G is obtained by adding copies of P_3 and $K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

The case is similar to Case 2. G is not P_5 -equicoverable.

Case 7: G is obtained by adding copies of P_2 and P_3 and $K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

The case is similar to Case 4. G is not P_5 -equicoverable.

Case 8: G is obtained by adding copies of P_4 to the vertices of C_5 .

(1) If each vertex of C_5 can be added to at most one P_4 , G can only be one of the seven graphs shown in Figure 7. No matter which graph is in Figure 7, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable.

Figure 7: graphs obtained by adding at most one

P_4 to each vertex of C_5

(2) If each vertex of C_5 can be added to any copies of P_4 . G is obtained by adding copies of P_4 to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs in Figure 7. If the number of the copies of P_4 added is n, we can get a minimal P_5 -covering whose covering number is $C(G_0) + n(\text{using } C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So Gis not P_5 -equicoverable.

Case 9: G is obtained by adding copies of P_2 and P_4 to the vertices of C_5 .

If only copies of P_2 or only copies of P_4 are added, G has been discussed in Case 1 or Case 8. Otherwise, we have:

(1) If each vertex of C_5 can be added to only one P_2 or one P_4 , G can only be one of 24 graphs similar

to Figure 5. No matter which graph is, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable.

(2) If each vertex of C_5 can be added to any copies of P_2 or P_4 . *G* is obtained by adding copies of P_2 and P_4 to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs in (1). If the number of the copies of P_2 and P_4 added is *n*, we can get a minimal P_5 covering whose covering number is $C(G_0) + n(\text{using } C(G_0) \text{ copies of } P_5$ to cover the G_0 part and *n* copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So *G* is not P_5 -equicoverable.

(3) If each vertex of C_5 can be added to at most one $P_2 \cdot P_4$, G can only be one of the seven graphs similar to Figure 6. No matter which graph is, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable. If each vertex of C_5 can be added to any copies of $P_2 \cdot P_4$, G can be obtained by adding copies of $P_2 \cdot P_4$ to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs above. If the sum of the number of the copies of $P_2 \cdot P_4$ added is n, we can get a minimal P_5 covering whose covering number is $C(G_0) + n(\text{using})$ $C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0) + n$. Each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5 -equicoverable.

Case 10: G is obtained by adding copies of P_3 and P_4 to the vertices of C_5 .

If only copies of P_3 or only copies of P_4 are added, G has been discussed in Case 2 or Case 8. Otherwise, we have:

(1)If each vertex of C_5 can be added to only one P_3 or one P_4 , G can only be one of the 24 graphs similar to Figure 5. No matter which graph is, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable.

(2) If each vertex of C_5 can be added to any copies of P_3 or P_4 . G is obtained by adding copies of P_3 and P_4 to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs above in (1). If the number of the copies of P_3 and P_4 added is n, we can get a minimal P_5 -covering whose covering number is $C(G_0) + n(\text{using } C(G_0) \text{ copies of } P_5 \text{ to cover the } G_0$ part and n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0)+n$. By (1), each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5 -equicoverable.

(3) If each vertex of C_5 can be added to at most one $P_3 \cdot P_4$, G can only be one of the seven graphs similar to Figure 6. No matter which graph is, a minimal P_5 -covering whose covering number C(G) is greater than the number of the minimum P_5 -covering c(G). So the graphs are not P_5 -equicoverable. If each vertex of C_5 can be added to any copies of $P_3 \cdot P_4$, G can be obtained by adding copies of $P_3 \cdot P_4$ to the vertices of the 5-cycle part of G_0 , where G_0 is one of the graphs above. If the number of the copies of $P_3 \cdot P_4$ added is n, we can get a minimal P_5 -covering whose covering number is $C(G_0) + 2n(\text{using } C(G_0) \text{ copies})$ of P_5 to cover the G_0 part and 2n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_0) + 2n$. Each of G_0 is not P_5 -equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5 -equicoverable.

Case 11: G is obtained by adding copies of P_2 , P_3 and P_4 to the vertices of C_5 .

 P_2 , P_3 and P_4 are all added to the vertices of C_5 , otherwise the cases has been discussed.

First, G can be obtained by adding copies of P_2 and P_3 to the vertices of C_5 and we denote it by G_{23} . Next we add P_4 to G_{23} . If the number of the copies of P_4 added is n, we can get a minimal P_5 covering whose covering number is $C(G_{23}) + n$ (using $C(G_{23})$ copies of P_5 to cover the G_{23} part and n copies of P_5 to cover other parts), while the number of the minimum P_5 -covering is at most $c(G_{23}) + n$. Each of G_{23} is not P_5 -equicoverable by Case 4, then $C(G_{23}) > c(G_{23})$. So G is not P_5 -equicoverable.

Case 12: G is obtained by adding copies of P_4 and $K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

The case is similar to Case 10. G is not P_5 -equicoverable.

Case 13: G is obtained by adding copies of P_2 , P_4 and $K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

The case is similar to Case 11. G is not P_5 -equicoverable.

Case 14: G is obtained by adding copies of P_3 , P_4 and $K_{1,t}$ to the vertices of C_5 .

The case is similar to Case 10. G is not P_5 -equicoverable.

Case 15: G is obtained by adding copies of P_2 , P_3 , P_4 and $K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

The case is similar to Case 11. G is not P_5 -equicoverable.

Case 16: G is obtained by adding copies of P_5 to the vertices of C_5 .

(1) If we add n copies of P_5 to only one vertex of C_5 , both the minimal P_5 -covering number and the minimum P_5 -covering number are n + 2. So it is P_5 equicoverable. We denote the graph by $C_5 \cdot S_n^{3*}$.

(2) If we add n copies of P_5 to at least two vertices of C_5 , there exists a minimal P_5 -covering number is

n+3 and the minimum P_5 -covering number is n+2. Obviously, $c(G) \neq C(G)$, G is not P_5 -equicoverable.

Case 17: G is obtained by adding copies of $P_2 \cdot K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

The case is similar to Case 8. G is not P_5 -equicoverable.

Case 18: G is obtained by adding copies of $P_3 \cdot K_{1,t}$ ($t \ge 3$) to the vertices of C_5 .

We identify one endpoint of P_3 with one of the vertices of C_5 .

(1) If we add *n* copies of $P_3 \cdot K_{1,t}$ ($t \ge 3$) to only one vertex of C_5 , both the minimal P_5 -covering number and the minimum P_5 -covering number are n(t-1) + 2. So it is P_5 -equicoverable.

(2) If we add n copies of $P_3 \cdot K_{1,t}$ $(t \ge 3)$ to at least two vertices of C_5 , there exists a minimal P_5 -covering number is n(t-1) + 3 and the minimum P_5 -covering number is n(t-1) + 2. Obviously, $c(G) \ne C(G)$, G is not P_5 -equicoverable.

Case 19: G is a graph not contained in Case 1-18.

Each G can be decomposed into two connected components: a graph G_0 which is not P_5 -equicoverable contained in Case 1-18 and a graph which is P_5 -coverable. By Lemma 3, G is not P_5 -equicoverable.

In summary, G is not P_5 -equicoverable unless G is $C_5 \cdot S_n^{3*}$ or G is obtained by adding n copies of $P_3 \cdot K_{1,t} (t \ge 3)$ to only one vertex of C_5 .

Next we consider graphs that contains a cycle with length larger than 5.

Lemma 10 $C_n \cdot P_2 (n \ge 6)$ is P_5 -equicoverable if and only if n = 8.

Proof: (1) If C_n is P_5 -equicoverable, we have n = 6, 7, 9. Because $C(C_n \cdot P_2; P_5) > c(C_n \cdot P_2; P_5)(n = 6, 7, 9), C_6 \cdot P_2$ and $C_7 \cdot P_2$ and $C_9 \cdot P_2$ are not P_5 -equicoverable.

(2)If C_n is not P_5 -equicoverable, we have $n \neq 6, 7, 9$. It is easy to find that $C(C_8 \cdot P_2; P_5) = c(C_8 \cdot P_2; P_5) = 3$. $C_8 \cdot P_2$ is P_5 -equicoverable. For $n \geq 10$, C_n is not P_5 -equicoverable. We can use $C(C_n)$ copies of P_5 to cover the C_n part and one copy of P_5 to cover the else. Also, we can use $c(C_n)$ copies of P_5 to cover the C_n part and one copy of P_5 to cover the else. While $c(C_n \cdot P_2) \leq c(C_n) + 1 < C(C_n) + 1$, G is not P_5 -equicoverable. \Box

Lemma 11 $C_n \cdot P_3 (n \ge 6)$ is P_5 -equicoverable if and only if n = 7.

Proof: (1)If C_n is P_5 -equicoverable, we have n = 6, 7, 9. Because $C(C_n \cdot P_3; P_5) > c(C_n \cdot P_3; P_5)(n = 6, 9), C_6 \cdot P_3$ and $C_9 \cdot P_3$ are not P_5 -equicoverable. While $C(C_7 \cdot P_3; P_5) = c(C_7 \cdot P_3; P_5) = 3$. $C_7 \cdot P_3$ is P_5 -equicoverable.

(2) If C_n is not P_5 -equicoverable, we have $n \neq 6, 7, 9$. It is easy to find that $C(C_8 \cdot P_3; P_5) > c(C_8 \cdot P_3; P_5)$. $C_8 \cdot P_3$ is not P_5 -equicoverable. For $n \geq 10$, C_n is not P_5 -equicoverable. We can use $C(C_n)$ copies of P_5 to cover the C_n part and one copy of P_5 to cover the else. Also, we can use $c(C_n)$ copies of P_5 to cover the C_n part and one copy of P_5 to cover the else. While $c(C_n \cdot P_3) \leq c(C_n) + 1 < C(C_n) + 1, G$ is not P_5 -equicoverable. \Box

Lemma 12 $C_n \cdot P_4 (n \ge 6)$ is P_5 -equicoverable if and only if n = 6.

Proof: (1)If C_n is P_5 -equicoverable, we have n = 6, 7, 9. Because $C(C_n \cdot P_4; P_5) > c(C_n \cdot P_4; P_5)(n = 7, 9), C_7 \cdot P_4$ and $C_9 \cdot P_4$ are not P_5 -equicoverable. While $C(C_6 \cdot P_4; P_5) = c(C_6 \cdot P_4; P_5) = 3$. $C_6 \cdot P_4$ is P_5 -equicoverable.

(2) If C_n is not P_5 -equicoverable, we have $n \neq 6, 7, 9$. It is easy to find that $C(C_8 \cdot P_4; P_5) > c(C_8 \cdot P_4; P_5)$. $C_8 \cdot P_4$ is not P_5 -equicoverable. For $n \geq 10$, C_n is not P_5 -equicoverable. We can use $C(C_n)$ copies of P_5 to cover the C_n part and one copy of P_5 to cover the else. Also, we can use $c(C_n)$ copies of P_5 to cover the C_n part and one copy of P_5 to cover the else. While $c(C_n \cdot P_4) \leq c(C_n) + 1 < C(C_n) + 1, G$ is not P_5 -equicoverable. \Box

Lemma 13 $C_n \cdot P_5(n \ge 6)$ is not P_5 -equicoverable.

Lemma 14 $C_n \cdot K_{1,t}$ $(n \ge 4, t \ge 3)$ is not P_5 -equicoverable.

Lemma 15 $C_n \cdot P_2 \cdot K_{1,t}$ $(n \geq 4)$ is not P_5 -equicoverable.

Lemma 16 $C_n \cdot P_3 \cdot K_{1,t} (n \ge 6)$ is not P_5 -equicoverable

Lemma 17 *G* is a connected graph that is not a cycle. If *G* doesn't contain cycles with length smaller than 6 and contains a 6-cycle, *G* is P_5 -equicoverable if and only if *G* is $C_6 \cdot P_4$.

Proof: Case 1: G is obtained by adding copies of P_2 to the vertices of C_6 .

(1) If we add one P_2 to only one vertex of C_6 , by Lemma 10, it is not P_5 -equicoverable.

(2) If we add $n(n \ge 2)$ copies of P_2 to only one vertex of C_6 , there will be a minimal P_5 -covering whose covering number is n + 2. While the number of the minimum P_5 -covering number is less than or equal to n + 1.

(3) If we add $n(n \ge 2)$ copies of P_2 to at least two vertices of C_6 and each vertex of C_6 can be added to at most one P_2 , G must be one of the eleven graphs

shown in Figure 7. For each graph which contains a 6-cycle, we can blow up a vertex that no P_2 is added to of C_6 to two vertices. As a consequence, the original graph with a 6-cycle turns out to be a tree. A blowing up that makes the result tree not P_5 -equicoverable must exist. So G is not P_5 -equicoverable. For example, we blow up v_1 of the left graph to two vertices v_2 and v_3 of the right graph in Figure 8. Obviously, it's not P_5 -equicoverable.

Figure 7: graphs obtained by adding $n(n \ge 2)$ copies of P_2 to at least two vertices of C_6 can be added to at

Figure 8: v_1 blown up to two vertices v_2 and v_3

(4) If we add $n(n \ge 2)$ copies of P_2 to at least two vertices of C_6 and each vertex of C_6 can be added to any copies of P_2 . Without loss of generality, suppose G is obtained by adding m copies of P_2 to G_0 , where G_0 is one of graphs above in (3). Then there exists a minimal P_5 -covering whose covering number is $C(G_0) + m$. We can use $C(G_0)$ copies of P_5 to cover the G_0 part and use m copies of P_5 to cover other parts. While the number of the minimum P_5 -covering number is at most $c(G_0) + m$. As we all know, for each G_0 , there exists a minimal P_5 -covering whose $C(G_0) > c(G_0)$, then it is not P_5 -equicoverable.

Case 2: G is obtained by adding copies of P_3 to the vertices of C_6 .

(1)If we add one P_3 to only one vertex of C_6 , by Lemma 11, it is not P_5 -equicoverable.

(2) If we add $n(n \ge 2)$ copies of P_3 to only one vertex of C_6 , there will be a minimal P_5 -covering whose covering number is n + 2. While the number of the minimum P_5 -covering number is less than or equal to n + 1.

(3) If we add $n(n \ge 2)$ copies of P_3 to at least two vertices of C_6 and each vertex of C_6 can be added to at most one P_3 , G must be one of the eleven graphs similar to Figure 7. For each graph which contains a 6-cycle, we can blow up a vertex that no P_3 is added to of C_6 to two vertices. As a consequence, the original graph with a 6-cycle turns out to be a tree. A blowing up that makes the result tree not P_5 -equicoverable must exist. So G is not P_5 -equicoverable.

(4) If we add $n(n \ge 2)$ copies of P_3 to at least two vertices of C_6 and each vertex of C_6 can be added to any copies of P_3 . Without loss of generality, suppose G is obtained by adding m copies of P_3 to G_0 , where G_0 is one of graphs above in (3). Then there exists a minimal P_5 -covering whose covering number is $C(G_0)+m$. We can use $C(G_0)$ copies of P_5 to cover the G_0 part and use m copies of P_5 to cover other parts. While the number of the minimum P_5 -covering number is at most $c(G_0) + m$. As we all know, for each G_0 , there exists a minimal P_5 -covering whose $C(G_0) > c(G_0)$, then it is not P_5 -equicoverable.

Case 3: G is obtained by adding copies of $K_{1,t}(t \ge 3)$ to the vertices of C_6 .

Similar to Case 2, G is not P_5 -equicoverable.

Case 4: G is obtained by adding copies of P_4 to the vertices of C_6 .

(1) If we add one P_4 to only one vertex of C_6 , by Lemma 12, it is P_5 -equicoverable.

(2)The following proof is similar to (2),(3),(4) in Case 2, G is not P_5 -equicoverable.

Case 5: G is obtained by adding copies of $P_2, P_3, P_4, K_{1,t} (t \ge 3)$ to the vertices of C_6 .

There are eleven subcases: G is obtained by adding copies of at least two of $P_2, P_3, P_4, K_{1,t}$ ($t \ge 3$). Similar to the proof process of Case 2, G is not P_5 -equicoverable.

Case 6: G is obtained by adding copies of P_5 to the vertices of C_6 .

(1) If we add one P_5 to only one vertex of C_6 , by Lemma 13, it is not P_5 -equicoverable.

(2) If G is not the graph in (1), G can be decomposed into two connected components: a graph which is not P_5 -equicoverable and a P_5 -coverable graph. By Lemma 3, G is not P_5 -equicoverable.

Case 7: G is obtained by adding copies of P_4 and P_5 to the vertices of C_6 .

If only copies of P_4 or only copies of P_5 are added, G has been discussed in previous. Otherwise, similar to Case 4 of Lemma 9, G is not P_5 -equicoverable.

Case 8: G is a graph not contained in Case 1-7.

We decompose G into two connected components: a graph G_0 contained in Case 1-7 and a graph which is P_5 -coverable. G_0 is not P_5 -equicoverable, by Lemma 3, G is not P_5 -equicoverable.

In summary, G is not P_5 -equicoverable unless it is $C_6 \cdot P_4$.

Lemma 18 *G* is a connected graph that is not a cycle. If *G* doesn't contain cycles with length smaller than 7 and contains a 7-cycle, *G* is P_5 -equicoverable if and only if *G* is $C_7 \cdot P_3$.

Lemma 19 *G* is a connected graph that is not a cycle. If *G* doesn't contain cycles with length smaller than 8 and contains a 8-cycle, *G* is P_5 -equicoverable if and only if *G* is $C_8 \cdot P_2$.

Lemma 20 *G* is a connected graph that is not a cycle. If *G* doesn't contain cycles with length smaller than 9, *G* is not P_5 -equicoverable.

Proof: Case 1: If G is one of the graphs in Lemma 10-Lemma 16, G is not P_5 -equicoverable.

Case 2: If G is not a graph in Case 1, according to the proof process of Lemma 17, G can be decomposed into connected components: a tree which is not P_5 -equicoverable and P_5 -coverable graphs.

In the end, we conclude the main results: A connected graph G is P_5 -equicoverable if and only if G satisfies one of the following:

Theorem 21 Let G be a connected graph that doesn't contain 3-cycles or 4-cycles and contains a cycle with length at least 5. Then G is P_5 -equicoverable if and only if either of the following holds:

(1)G is a cycle $C_n (n = 5, 6, 7, 9);$ (2)G is $C_5 \cdot S_n^{3*} (n \ge 1);$ (3)G is obtained by adding n copies of $P_3 \cdot K_{1,t}(t \ge 3)$ to only one vertex of C_5 .

 $\begin{array}{l} (4)G \ is \ C_6 \cdot P_4. \\ (5)G \ is \ C_7 \cdot P_3. \\ (6)G \ is \ C_8 \cdot P_2. \end{array}$

For disconnected graphs, we have:

Theorem 22 A graph G that doesn't contain 3-cycles or 4-cycles and contains at least one cycle with length larger than 4 is P_5 -equicoverable if and only if each component of G is P_5 -equicoverable.

3 Results of *P_k*-equicoverable graphs

Theorem 23 $C_n \cdot P_2$ is P_k -equicoverable if and only if n = k - 1 or n = 2k - 2.

Proof:

(1) When $n \leq k - 2$, $C_n \cdot P_2$ doesn't contain the subgraph of P_k . Then it is not P_k -equicoverable.

(2) When n = k - 1, $C_n \cdot P_2$ is P_k -equicoverable and $C(C_n \cdot P_2; P_k) = c(C_n \cdot P_2; P_k) = 2$.

(3) When $k \leq n \leq 2k - 3$, it is easy to find $c(C_n \cdot P_2; P_k) = 2$. Conveniently, denote the edges of $C_n \cdot P_2$ by $e_0, e_1, \dots e_n$. There exits a minimal P_k -covering as following: we denote it by $H = \{H_1, H_2, H_3\}$,

$$\begin{cases} H_1 = \{e_0, e_1, e_2, \cdots, e_{k-2}\}, \\ H_2 = \{e_n, e_1, e_2, \cdots, e_{k-2}\}, \\ H_3 = \{e_{k-1}, e_k, e_{k+1}, \cdots, e_{n-1}\}. \end{cases}$$

Then *H* is a minimal P_k -covering instead of the minimum P_k -covering of C_n . It is not P_k -equicoverable.

(4) When n = 2k-2, $C_n \cdot P_2$ is P_k -equicoverable. It is clear that $c(C_n \cdot P_2; P_k) = 3$. We denote the vertices of $C_n \cdot P_2$ by $v_0, v_1, v_2, \cdots, v_{2k-2}$. Generally speaking, suppose that there exists a copy of P_k covering the edge v_1v_2 , which is denoted by $H_0 = \{v_1v_2, v_2v_3, \cdots, v_{k-1}v_k\}$. Then there also exists a copy of P_k covering the edge v_kv_{k+1} , which is denoted by $H_i = \{v_iv_{i+1}, v_{i+1}v_{i+2}, \cdots, v_{i+k-2}v_{i+k-1}\}(2 \le i \le k-1)$. Similarly, there must be a copy of P_k covering the edge v_1v_0 , which is denoted by $H_1 = \{v_{k+1}v_{k+2}, v_{k+2}v_{k+3}, \cdots, v_{2k-3}v_{2k-2}, v_{2k-2}v_1, v_1v_0\}$. And by the definition of the equicoverable, $\{H_0, H_i, H_1 | 2 \le i \le k-1\}$ is the family of the minimal P_k -covering of $C_n \cdot P_2$.(or

$$\begin{cases} H_0 = \{v_0v_1, v_1v_2, v_2v_3, \cdots, v_{k-2}v_{k-1}\}, \\ H_i = \{v_iv_{i+1}, v_{i+1}v_{i+2}, \cdots, v_{i+k-2}v_{i+k-1}\} \\ 2 \le i \le k-1, \\ H_1 = \{v_{k+1}v_{k+2}, v_{k+2}v_{k+3}, \cdots, v_{2k-3}v_{2k-2}, \\ v_{2k-2}v_1, v_1v_0\}. \end{cases}$$

(5) When n = 3k - 3, it is easy to find $c(C_n \cdot P_2; P_k) = 4$. We denote the edges of $C_n \cdot P_2$ by $e_0, e_1, \dots, e_{3k-3}$. There exits a minimal P_k -covering as following: we denote it by $H = \{H_1, H_2, H_3, H_4, H_5\}$,

$$\begin{cases} H_1 = \{e_0, e_1, e_2, \cdots, e_{k-2}\}, \\ H_2 = \{e_1, e_2, \cdots, e_{k-1}\}, \\ H_3 = \{e_k, e_{k+1}, \cdots, e_{2k-2}\}, \\ H_4 = \{e_{k+1}, e_{k+2}, \cdots, e_{2k-1}\}, \\ H_5 = \{e_{2k}, e_{2k+1}, \cdots, e_{3k-3}, e_1\}. \end{cases}$$

So it is not P_k -equicoverable.

(6) When $2k - 1 \le n \le 3k - 4$ and $n \ge 3k - 2$, $C_n \cdot P_2$ is not P_k -equicoverable by Theorem 4. \Box

Corollary 24 $C_n \cdot P_3 (n \ge k+1)$ is P_k -equicoverable if and only if n = 2k - 3.

Corollary 25 $C_n \cdot P_4 (n \ge k+1)$ is P_k -equicoverable if and only if n = 2k - 4.

Corollary 26 $C_n \cdot P_5 (n \ge k+1)$ is P_k -equicoverable if and only if n = 2k - 5.

Theorem 27 $C_n \cdot P_k (n \ge k+1, k \ge 6)$ is not P_k -equicoverable.

Proof:

(1) When $k + 1 \le n \le 2k - 2$ and $n \ge 2k$, it is easy to come to the conclusion according to Theorem 5.

(2) When n = 2k - 1, $c(C_n \cdot P_k; P_k) = 4$. We denote its edges by $e_{p1}, e_{p2}, \cdots, e_{p(k-1)}, e_{c1}, e_{c2}, \cdots, e_{c(2k-1)}$. There exits a minimal P_k -covering as following: we denote it by $H = \{H_1, H_2, H_3, H_4, H_5\}$,

$$\begin{cases} H_1 = \{e_{c1}, e_{p1}, e_{p2}, \cdots, e_{p(k-2)}\}, \\ H_2 = \{e_{c(2k-1)}, e_{p1}, \cdots, e_{p(k-2)}\}, \\ H_3 = \{e_{p1}, e_{p2}, \cdots, e_{p(k-1)}\}, \\ H_4 = \{e_{c2}, e_{c3}, \cdots, e_{ck}\}, \\ H_5 = \{e_{ck}, e_{c(k+1)}, \cdots, e_{c(2k-2)}\}. \end{cases}$$

So it is also not P_k -equicoverable.

Corollary 28 $C_n \cdot K_{1,t}$ $(n \ge k - 1, t \ge 3)$ is not P_k -equicoverable.

Theorem 29 $C_n \cdot S_m^{(k-2)*}$ is P_k -equicoverable if and only if $3 \le n \le k$ and c(G) = C(G) = m + 2.

Proof: (1)When $n \ge k + 1$, it is not P_k -equicoverable by Theorem 27.

(2)When $3 \le n \le k-1$, the subgraph C_n doesn't contain P_k . There must be m copies of P_k covering the part of $S_m^{(k-2)*}$; The else can be covered by using only two copies of P_k . It is P_k -equicoverable and c(G) = C(G) = m + 2.

(3) When n = k, the $S_m^{(k-2)*}$ part must be covered by m copies of P_k . We can only use two copies of P_k to cover the else C_n part. Then the $C_n \cdot S_m^{(k-2)*}$ is P_k -equicoverable.

The next comment follows immediately from Theorem 29.

Corollary 30 $C_n \cdot P_{k-2} \cdot K_{1,t}$ is P_k -equicoverable if and only if $3 \le n \le k$.

References:

- Y. Q. Zhang, P₃-equicoverable graphs: Reasearch on H-equicoverable graphs. Discrete Applied Mathematics, Vol.156(5), 2008, pp. 647-661.
- [2] S. Ruiz, Randomly decomposable graphs, Discrete Math, Vol.57(1/2), 1985, pp. 123-128.
- [3] Y. Q. Zhang and Y. J. Sun, H-equipackable paths and cycles for $H = P_4$ and $H = M_3$, Ars Combinatoria, Vol.93, 2009, pp. 387-391.
- [4] Y. Q. Zhang, W. H. Lan, Some special M_2 equicoverable graphs(in Chinese), Journal of Tianjin University, Vol.42, 2009, pp. 83-85.
- [5] L. D. Zhang, C. F. Zhou, Y.Q.Zhang, Two kinds of equicoverable paths and cycles, Ars Combinatoria, vol.118, 2015, pp. 109-118.
- [6] Q.R. Wang, T.P. Shuai, W.B. Ai, J.H. Yuan, P₄equicoverable graphs which contains cycles with length at least 4 received by Discrete Mathematics, Algorithms and Applications.