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Abstract: In this paper, we proposed a numerical integration method for the solution of singularly perturbed delay
differential equation with dual layer behaviour. In this method, an asymptotically equivalent first order neutral type
delay differential equation is obtained from the second order singularly perturbed delay differential equation and
employed Trapezoidal rule on it. Then, linear interpolation is used to get three term recurrence relation which is
solved by discrete invariant imbedding algorithm. Numerical illustrations for various values of the delay parameter
and perturbation parameter are presented to validate the proposed method. Convergence of the proposed method
is also analyzed.
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1 Introduction
Singularly perturbed differential-difference equation-
s(SPDDEs) with negative shifts, popularly know as,
delay differential equations are special cases of func-
tional differential equations, where the evolution of a
system at certain time, depends on the present state
of the system as well as the state of the system at an
earlier time. For example, in the predator-prey model
[17], the birth of predators is affected by prior level-
s of predator prey model along with its recent level-
s. The manner in which these differential-difference
equations analyze bio system dynamics [2, 3] and
many more [4, 12, 13, 19], has been and remain-
s an active area of research. In a series of papers
published by Lange and Miura [14, 16] on singular-
ly perturbed differential-difference equations, detailed
studied is carried out on the solutions of SPDDEs ex-
hibiting rapid oscillations, resonance behaviour, turn-
ing point behaviour and boundary and interior layer
behaviour. Kadalbajoo and Kumar [8] and Kadalba-
joo and Sharma [10, 11] proposed numerical methods
based on finite differences for singularly perturbed de-
lay differential difference equations. Amiraliyeva et
al. [1] constructed an exponentially fitted finite differ-
ence scheme in an equidistant mesh, which gives first
order uniform convergence, for singularly perturbed
delay initial value problems. Ramesh and Kadalba-
joo [9] proposed a numerical algorithm for singu-
larly perturbed linear second order reaction-diffusion

boundary value problems with small shifts. Pratima
and Sharma [18] described a numerical method based
on fitted operator finite difference, namely the Il’in
Allen-Southwell fitting for the singularly perturbed
delay differential equations with turning points. Sou-
janya et al. [20] proposed an exponentially Fitted non
symmetric finite difference method to solve a class of
singular perturbation problems. Chunfang Miao and
Yunquan [21] investigated the global asymptotic sta-
bility of second-order neutral type Cohen-Grossberg
neural networks with time-varying delays. Aleksey A.
Kabanov, discussed the synthesis of composite control
for nonlinear singularly perturbed system using feed-
back linearization method.

With this motivation, in the present paper we pro-
posed a numerical integration method for the solu-
tion of singularly perturbed delay differential equa-
tions with dual layer behaviour. In section 2, the nu-
merical scheme to solve the singularly perturbed de-
lay differential equations with dual layer is discussed.
Convergence of the numerical method is analyzed in
section 3. Numerical illustrations and results to sup-
port the method are given in section 4. Finally, the
conclusions are given in section 5.

2 Description of the method
To discuss our method, we considered singularly per-
turbed delay differential equation of the form:
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εy′′(x) + a(x)y(x− δ) + b(x)y(x) = f(x) (1)

with boundary conditions

y(0) = ϕ(x) ; δ ≤ x ≤ 0, y(1) = β (2)

where ε is a small positive perturbation parameter,
0 < ε << 1 and δ is also small positive shifting
parameter, 0 < δ < 1; a(x), b(x), f(x) and ϕ(x) are
bounded continuous functions in (0, 1) and β is finite
constant. If a(x) + b(x) ≤ 0 then the solution of the
(1)-(2) exhibits boundary layer on both ends of the
interval [0, 1] and for a(x) + b(x) > 0, the solution
of (1)-(2) exhibits oscillatory behaviour. The bound-
ary value problem considered here is of the reaction-
diffusion type, so there will be two boundary layers at
both the end points i.e., at x = 0 and x = 1.

Discretizing the interval [0, 1] into N equal parts
with mesh size h, let 0 = x0, x1, ..., xN = 1 be the
mesh points. Then we have xi = ih for i = 0, 1, , N .
Since the problem exhibits two boundary layers, we
divide the interval [0, 1] into two sub intervals

[
0, 11
]

and
[
1
2 , 1
]
. We choose l such that xl/2 = 1

2 . In the
interval

[
0, 12
]

the boundary layer will be on the left
hand side i.e., at x = 0 and in the interval

[
1
2 , 1
]

the
boundary layer will be on the right hand side i.e., x =
1. Hence, we derive the numerical method for both
left-end and right-end layers.

In the interval
[
0, 12
]
, using Taylor series expan-

sion in the neighbourhood of the point x, we have

y′ (x− ε) ≈ y′(x)− εy′′(x) (3)

and consequently, Eq.(1) is replaced by the following
approximate first order differential equation with a s-
mall deviating argument:

y′(x) + b(x)y(x)
= f(x) + y′(x− ε)− a(x)y(x− δ) (4)

The transition from Eq.(1) to Eq.(4) is admitted, be-
cause of the condition that ε is small. This replace-
ment is significant from the computational point of
view. For details on the validity of this transition one
can refer Elsgolts and Norkin [7]. Here, for consoli-
dation of our ideas of the method we assume the a(x)
and b(x) are constants. We now apply an integrating
factor ebx on Eq.(4) (as in Brian J. McCartin [5]):

d

dx

{
ebxy(x)

}
= ebx

{
f(x) + y′(x− ε)− ay(x− δ)

}
(5)

Now integrating Eq.(5) in the interval [0, 1], with re-
spect to x from xi to xi+1 , we get:

∫ xi+1

xi

d

dx

(
ebxy(x)

)
=

xi+1∫
xi

ebxy′(x− ε)dx

−
xi+1∫
xi

aebxy(x− δ)dx+

xi+1∫
xi

ebxf(x)dx

ebxi+1yi+1 − ebxiyi = ebxi+1y(xi+1 − ε)

−ebxiy(xi − ε)− b

xi+1∫
xi

ebxy(x− ε)dx

−
xi+1∫
xi

aebxy(x− δ)dx+

xi+1∫
xi

ebxf(x)dx

By employing Trapezoidal rule to evaluate the inte-
grals, we get

ebi+1xi+1yi+1 − ebixiyi
= ebi+1xi+1y(xi+1 − ε)− ebixiy(xi − ε)

− bh

2

(
ebixiy(xi − ε) + ebi+1xi+1y(xi+1 − ε)

)
− h

2

(
ebixia(xi)y(xi−δ)+ebi+1xi+1a(xi+1)y(xi+1−δ)

)
+

h

2

(
ebi+1xi+1f(xi+1) + ebixif(xi)

)
(6)

By Taylor series expansion and then approximating
y′(x) by linear interpolation, we obtain:

y(xi − δ) ≈ y(xi)− δy′(xi)

=

(
1− δ

h

)
yi +

δ

h
yi−1 (7)

y(xi+1 − δ) ≈ y(xi+1)− δy′(xi+1)

=

(
1− δ

h

)
yi+1 +

δ

h
yi (8)

y(xi − ε) ≈ y(xi)− εy′(xi)

=
(
1− ε

h

)
yi +

ε

h
yi−1 (9)

y(xi+1 − ε) ≈ y(xi+1)− εy′(xi+1)

=
(
1− ε

h

)
yi+1 +

ε

h
yi (10)

Using Eqs.(7)-(10) in Eq.(6) and rearranging the
terms, we get(

ebi+1h−ebi+1h
(
1−ε
h

)
+ebi+1h

bi+1h

2

(
1− ε

h

))
yi+1

+

(
ebi+1h

hai+1

2

(
1− δ

h

))
yi+1(

1 + ebi+1h
ε

h
− bi+1h

2

(
1− ε

h

)
− bi+1ε

2

)
yi
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−
(
hai
2

(
1− δ

h

)
− ebi+1h

δai+1

2

)
yi

−
(
ε

h
+
bi+1ε

2
+
δai
2

)
yi−1

=
h

2
(fi + ebi+1hfi+1) (11)

Eq. (11) can be written as a three term recurrence
relation of the form

Eiyi−1 −Fiyi +Giyi+1 = Hi ; i = 1, 2, .., l/2− 1.

where

Ei =
ε

h
+
bi+1ε

2
+
δai
2

Fi = 1 + ebi+1h
ε

h
− bi+1h

2

(
1− ε

h

)
− bi+1ε

2

−hai
2

(
1− δ

h

)
− ebi+1h

δai+1

2

Gi = ebi+1h − ebi+1h
(
1− ε

h

)
+ebi+1h

bi+1h

2

(
1− ε

h

)
+ ebi+1h

hai+1
2

(
1− δ

h

)
Hi = fi + ebi+1hfi+1

Now, in the interval
[
1
2 , 1
]
, by Taylor series expansion

in the neighbourhood of the point x, we have

y′ (x+ ε) ≈ y′(x) + εy′′(x) (12)

and consequently, Eq.(1) is replaced by the following
approximate first order differential equation with a s-
mall deviating argument:

y′(x)− b(x)y(x)
= y′(x+ ε) + a(x)y(x− δ)− f(x) (13)

We now apply an integrating factor e−bx on Eq.(13):

d

dx

{
e−bxy(x)

}
= e−bx

(
y′(x+ ε)

)
+e−bx (a(x)y(x− δ)− f(x)) (14)

In the interval
[

1
2 , 1

]
, integrating Eq.(14) with re-

spect to x from xi−1 to xi , we get∫ xi

xi−1

d

dx

(
e−bxy(x)

)
=

∫ xi

xi−1

e−bxy′(x+ ε)dx

+

∫ xi

xi−1

ae−bxy(x− δ)dx−
∫ xi

xi−1

e−bxf(x)dx

e−bixiy(xi)−e−bi−1xi−1y(xi−1) = e−bixiy(xi + ε)

−e−bi−1xi−1y(xi−1 + ε) + b

∫ xi

xi−1

e−bxy(x+ε)dx

+a

∫ xi

xi−1

e−bxy(x− δ)dx−
∫ xi

xi−1

e−bxf(x)dx

By employing Trapezoidal rule to evaluate the in-
tegrals, we get

e−bxiy(xi)− e−bxi−1y(xi−1) = e−bxiy(xi + ε)

−e−bxi−1y(xi−1 + ε) +
bi−1h

2
e−bxi−1y(xi−1 + ε)

+
bih

2
e−bxiy(xi + ε) + aie

−bxiy(xi − δ)

−ai−1e
−bxi−1y(xi−1 − δ) +

aibih

2
e−bxiy(xi − δ)

+
ai−1bi−1h

2
e−bxi−1y(xi−1 − δ)

−h
2
e−bxif(xi)− e−bxi−1f(xi−1) (15)

By Taylor series expansion and then approximat-
ing y′(x) by linear interpolation, we obtain:

y(xi − δ) ≈ y(xi)− δy′(xi)

=

(
1 +

δ

h

)
yi −

δ

h
yi+1 (16)

y(xi−1 − δ) ≈ y(xi−1)− δy′(xi−1)

=

(
1 +

δ

h

)
yi−1 −

δ

h
yi (17)

y(xi + ε) ≈ y(xi) + εy′(xi)

=
(
1− ε

h

)
yi +

ε

h
yi+1 (18)

y(xi−1 + ε) ≈ y(xi−1) + εy′(xi−1)

=
(
1− ε

h

)
yi−1 +

ε

h
yi (19)

Using Eqs.(16)-(19) in Eq.(15) and rearranging the
terms, we get

(
− ε

h
− bi−1h

2

(
1− ε

h

)
− hai−1

2
− δai−1

2

)
yi−1

−
(
−ε
h
e−bih+

ε

h
+
bi−1ε

2
+
bih

2

(
1− ε

h

)
e−bih

)
yi

−
(
−δai−1

2
+
hai−1

2
e−bih +

δai−1

2
e−bih

)
yi

+

(
− ε

h
e−bih − εbi

h
e−bih +

δai
h
e−bih

)
yi+1

= −h
2
(fi−1 + e−bihfi) (20)

Eq. (20) can be written as a three term recurrence
relation of the form:

Eiyi−1−Fiyi+Giyi+1 = Hi ; i =
1

2
+1,

1

2
+2, , N−1
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where

Ei = − ε

h
− bi−1h

2

(
1− ε

h

)
− hai−1

2
− δai−1

2

Fi = −ε
h
e−bih+

ε

h
+
bi−1ε

2
+
bih

2

(
1−ε
h

)
e−bih

−δai−1

2
+
hai−1

2
e−bih +

δai−1

2
e−bih

Gi = − ε

h
e−bih − εbi

h
e−bih +

δai
h
e−bih

Hi = −h
2

[
fi−1 + e−bihfi

]
We now have from Eq.(11) in

[
0, 12
]

for i =

1, 2, , l/2 − 1; and Eq.(20) in
[
1
2 , 1
]

for i = l/2 +
1, l/2 + 2, , N − 1; a system of (N − 2) equations
with (N + 1) unknowns. From the given boundary
conditions (2), we get two more equations.

We need one more equation to solve for the un-
knowns y0, y1, .....yN . To get this equation we consid-
ered the reduced problem of Eq.(1) by setting ε = 0
i.e.,

a(x)y(x− δ) + b(x)y(x) = f(x) (21)

which does not satisfy both the boundary conditions.
At x = xl/2 =

1
2 , Eq.(21) becomes

a(xl/2)y(xl/2 − δ) + b(xl/2)y(xl/2) = f(xl/2) (22)

By Taylor series expansion, we have

y(xl/2 − δ) ≈ y(xl/2)− δy′(xl/2)

= yl/2 − δ

(
yl/2+1 − yl/2−1

2h

)
(23)

Substituting (23) in Eq.(22) and by simplifying, we
get

al/2δ

2h
yl/2−1 +

(
al/2 + bl/2

)
yl/2

−
al/2δ

2h
yl/2+1 = fl/2 (24)

With this equation, we now have (N +1) equations to
solve for the (N+1) unknowns y0, y1, ...yN . Now we
solve this tri diagonal system using discrete invariant
imbedding algorithm.

3 Error analysis
Writing the tri-diagonal system (11) in matrix-vector
form, we get

AY = C (25)

in which A = (mij) , 1 ≤ i, j ≤ l/2 − 1 is a tri
diagonal matrix of order N − 1 , with

mii+1 = −εebi+1h − ebi+1h
bi+1h

2

2
+ ebi+1h

bi+1hε

2

−ebi+1h
h2ai+1

2
+ ebi+1h

δhai+1

2
,

mii = ebi+1hε+ ε− bi+1h
2

2
− h2ai

2
+
hδai
2

−ebi+1h
δhai+1

2
,

mii−1 = −ε− εhbi+1

2
− δhai

2

and C = (di) is a column vector with

di = −h
2

2

(
fi + ebi+1hfi+1

)
, i = 1, 2, ...l/2− 1

with local truncation error

Ti(hi) = h2
[
1

2
((2ε+δ)ai+εbi) y

′′
i−

ε

2
y′′′i

]
+O(h3)

(26)
Writing the tri-diagonal system (20) in matrix-vector
form, we get

AY = C (27)

in which A = (mij) , l/2 + 1 ≤ i, j ≤ N − 1 is a
tri-diagonal matrix of order N − 1 , with

mii+1 = εe−bih +
εhbi
2
e−bih − δhai

2
e−bih

mii = −εe−bih − ε+
εhbi−1

2
+
bih

2

2
e−bih

−εhbi
2
e−bih− δhai−1

2
+
h2ai
2
e−bih +

hδai
2

e−bih,

mii−1 = ε+
h2bi−1
2

−hεbi−1
2

+
h2ai−1

2
+
hδai−1

2

and C = (di) is a column vector with

di =
h2

2

(
fi−1 + e−bihfi

)
, i = l/2 + 1, ..., N − 1

with local truncation error

Ti(h) =
h2

2

[
((−2ε−δ)ai−εbi) y′′i+εy′′′i

]
+O(h3)

(28)
and Y = (y0, y1, y2, ..., yN )t.

Also we have

AY − T (h) = C (29)

where Y = (y0 , y1 , y2 , ...., yN )t denotes the actual
solution and T (h) = (T1(h), T2(h), ...., TN (h))t is
the local truncation error.
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From (27) and (29), we get

A
(
Y − Y

)
= T (h) (30)

Thus the error equation is

AE = T (h) (31)

where E = Y − Y = (e0, e1, e2, ..., eN )t .
Clearly, we have

Si =

N−1∑
j=1

mij = h
1

2
− bi+1(1− ebi+1h) +O(h2)

= hBi
′, for i = 1(1)l/2− 1

where B′
i =

[
1
2

(
−bi+1(1− ebi+1h)

)]
;

Si = h (an + bn) +O(h2) = hB′′
i, for i = l/2

where B′′
i = (an + bn);

Si =

N−1∑
j=1

mij

= h

[
1

2

(
2aie

−bih + 2ai−1 + bi − bi−1

)]
+O(h2)

= hB′′′
i for i = l/2 + 1(1)N − 1

where B′′′
i =

[
1
2

(
2aie

−bih + 2ai−1 + bi − bi−1

)]
.

We can choose h such that the matrix A is irre-
ducible and monotone [19]. It follows that A−1 exists
and its elements are non negative. Hence from Eq.
(31), we get

E = A−1T (h) (32)

Also from the theory of matrices we have

N−1∑
i=1

m k,iSi = 1, k = 1(1)N − 1 (33)

wherem k,i is (k, i) element of the matrixA−1, there-
fore

N−1∑
i=1

m k,i ≤
1

minSi
1≤i≤N−1

=
1

hBi0

≤ 1

h |Bi0 |
(34)

for some i0 between 1 and N − 1 and

Bi0 =

 B′
i, i = 1(1)l/2− 1

B′′
i, i = l/2

B′′′
i, i = l/2 + 1(1)N − 1

From (31), (32), (33) and (34), we get

ej =
N−1∑
i=1

m̄k.i Ti(h), j = 1(1)N − 1 (35)

which implies

ej ≤
khi
|Bi0|

, j = 1(1)N − 1 (36)

where k is a constant independent of h. Therefore
from (36) we have,

∥E∥ = O (h)

Hence our method gives first order convergence for
uniform mesh.

4 Numerical Experiments
To validate the computational efficiency of the
scheme, we have applied it to four cases of the prob-
lems of the form:

εy′′(x)+a(x)y(x−δ)+b(x)y(x) = f(x), ∀x ∈ (0, 1)

subject to the interval and boundary conditions

y(x) = ϕ(x), on -δ ≤ x ≤ 0

y(x) = γ(x), on 1 ≤ x ≤ 1 + η

The exact solution of such boundary value prob-
lems having constant coefficients (i.e. a(x) = a,
b(x) = b, c(x) = c, ϕ(x) = ϕ and γ(x) = γ are
constants) is given by

y(x) =

[
((1− a− b) exp(m2)− 1) exp(m1x)
−((1− a− b) exp(m1)− 1) exp(m2x)

]
(a+ b)(exp(m1)− exp(m2))

where

m1 =

(
aδ +

√
a2δ2 − 4ε2(a+ b)

)
2ε2

,

m2 =

(
aδ −

√
a2δ2 − 4ε2(a+ b)

)
2ε2

.

The maximum absolute errors for the examples with
variable coefficients are calculated using the double
mesh principle [6], EN = max

0≤i≤N

∣∣yNi − y2N2i
∣∣.

Example 1. Consider singularly perturbed delay dif-
ferential equation with layer behaviour:

ε2y′′(x)− 2y(x− δ)− y(x) = 1

under the interval with boundary conditions y(0) = 1,
−δ ≤ x ≤ 0 and y(1) = 0.
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The maximum absolute errors are presented in
Table 1(a) and Table 1(b) for different values of ε and
for different values of δ. Also, the computed solution-
s for ε = 0.1, 0.01 and for different values of δ are
plotted in Figures 1 and 2.

Table 1a: Maximum absolute errors of
Example 1 for different values of δ and ε = 0.1

δ/h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

0.0ε 0.0199215 0.0020621 0.0005333 0.0005366
0.3ε 0.0198840 0.0020683 0.0005328 0.0005362
0.6ε 0.0198326 0.0020739 0.0005324 0.0005358
0.9ε 0.0197671 0.0020789 0.0005320 0.0005355

Table 1b: Maximum absolute errors of
Example 1 for different values of δ and ε = 0.01

δ/h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

0.0ε 0.1301282 0.0200896 0.0021110 0.0002117
0.3ε 0.1298531 0.0200858 0.0021110 0.0002117
0.6ε 0.1295761 0.0200818 0.0021109 0.0002117
0.9ε 0.1292971 0.0200777 0.0021109 0.0002117

Figure 1: Numerical solution of Example 1 for ε =
0.1 with different values of δ

Example 2. Consider singularly perturbed delay dif-
ferential equation with layer behaviour:

ε2y′′(x) + 0.25y(x− δ)− y(x) = 1

with y(0) = 1,−δ ≤ x ≤ 0, y(1) = 0.

The maximum absolute errors are presented in
Table 2 for different values of δ . Also, the computed
solutions for ε=0.1, 0.01 and for different values of δ
are plotted in Figures 3 and 4.

Figure 2: Numerical solution of Example 1 for ε =
0.01 with different values of δ

Figure 3: Numerical solution of Example 2 for ε =
0.1 with different values of δ

Figure 4: Numerical solution of Example 2 for ε =
0.01 with different values of δ
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Table 2: Maximum absolute errors of
Example 2 for ε = 0.01

δ/h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

0.0ε 0.1432048 0.0180800 0.0018807 0.000216
0.3ε 0.1432163 0.0180806 0.0018807 0.000216
0.6ε 0.1432277 0.0180811 0.0018807 0.000216
0.9ε 0.1432390 0.0180816 0.0018807 0.000216

Example 3. Consider singularly perturbed delay dif-
ferential equation with layer behaviour

ε2y′′(x)− y(x− δ) + 0.5y(x) = 0

with y(0) = 1,−δ ≤ x ≤ 0, y(1) = 1.

The maximum absolute errors are presented in
Table 3 for different values of δ. Also, the comput-
ed solutions for ε=0.01 and for different values of δ
are plotted in Figure 5.

Table 3: Maximum absolute errors of
Example 3 for ε = 0.01

δ/h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

0.0ε 0.0513942 0.0063602 0.0006534 0.0000696
0.3ε 0.0514638 0.0063604 0.0006534 0.0000696
0.6ε 0.0515325 0.0063606 0.0006534 0.0000696
0.9ε 0.0516006 0.0063607 0.0006534 0.0000696

Figure 5: Numerical solution of Example 3 for ε =
0.01 with different values of δ

Example 4. Consider singularly perturbed delay dif-
ferential equation with variable coefficient and layer
behaviour

ε2y′′(x)− exy(x− δ)− y(x) = 0

with y(0) = 1,−δ ≤ x ≤ 0, y(1) = 1.

The maximum absolute errors are presented in
Tables 4 and 5 for different values of δ. Also, the
computed solutions for ε=0.1 and for different values
of δ are plotted in Figure 6.

Table 4: Maximum absolute errors of
Example 4 for ε = 0.01

δ/h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

0.0ε 0.0079181 0.0008643 0.0000872 0.0000087
0.3ε 0.0079374 0.0008641 0.0000871 0.0000087
0.6ε 0.0079644 0.0008635 0.0000870 0.0000087
0.9ε 0.0079832 0.0008626 0.0000869 0.0000087

Table 5: Maximum absolute errors of
Example 4 for ε = 0.01

δ/h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

0.0ε 0.043379 0.0080557 0.0008766 0.0000884
0.3ε 0.043535 0.0080570 0.0008766 0.0000884
0.6ε 0.043689 0.0080582 0.0008766 0.0000884
0.9ε 0.043842 0.0080593 0.0008766 0.0000884

Figure 6: Numerical solution of Example 4 for ε =
0.1 with different values of δ

5 Discussions and Conclusion
We have proposed a numerical integration method to
solve singularly perturbed delay differential equations
with dual layer behaviour. In general, numerical solu-
tion of second order differential equation will be more
difficult than numerical solution of first order differen-
tial equation. Hence, in this method, we have replaced
the second order singularly perturbed delay differen-
tial equation to first order neutral type delay differen-
tial equation and employed the Trapezoidal rule of nu-
merical integration. Then, linear interpolation is used
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to get three term recurrence relation which is solved
easily by discrete invariant imbedding algorithm. The
method is demonstrated by implementing it on model
examples by taking various values for the delay pa-
rameter and perturbation parameter. The maximum
absolute errors in the solution are presented in tables
to support the method. From the graphs 1-7, it is ob-
served that as the delay parameter increases, the thick-
ness of the left end boundary layer decreases while
that of the right end boundary layer increases.

References:

[1] I.–G. Amiraliyeva, F. Erdogan, G.–M. Ami-
raliyev, A uniform numerical method for deal-
ing with a singularly perturbed delay initial val-
ue problem, Applied Mathematics Letters., 23,
2010, pp. 1221C1225.

[2] O. Arino, M.–L. Hbid, E. Ait Dads, Delay Dif-
ferential Equations and Applications, Springer,
The Netherlands, 2006.

[3] A. Asachenkov, G. Marchuk, R. Mohler, S.
Zuew, Disease Dynamics, Birkhauser, Boston,
1994.

[4] R. Bellman, K.–L. Cooke, Differential Dif-
ference Equations, Academic Press, New York,
1963.

[5] Brian J. McCartin, Exponentially fitting of
the delayed recruitment/renewal equation, Jour-
nal of Computational and Applied Mathematics,
136, 2001, pp. 343C356.

[6] E.–P. Doolan, J.–J.–H. Miller, W.–H.–A.
Schilders, Uniform Numerical Methods for
Problems with Initial and Boundary Layers,
Boole Press, Dublin, 1980.

[7] L.–E. Els’golts, S.–B. Norkin, Introduction to
the Theory and Application of Differential E-
quations with Deviating Arguments, Academic
Press, Mathematics in Science and Engineering,
1973.

[8] M.–K. Kadalbajoo, D. Kumar, Numeri-
cal approximations for singularly perturbed
differential-difference BVPs with layer and os-
cillatory behavior, J. Numer. Math., 20, 2012,
pp. 33C53.

[9] M.–K. Kadalbajoo, V.–P. Ramesh, Hybrid
method for numerical solution of singularly per-
turbed delay differential equations, Appl. Math.
Comput., 187, 2007, pp. 797C814.

[10] M.–K. Kadalbajoo, K.–K. Sharma, Numeri-
cal Analysis of Boundary-Value of Problems for

Singularly-Perturbed DifferentialCDifference E-
quations with Small Shifts Mixed Type, Jour-
nal Optimization Theory and Applications, 115,
2002, pp. 145-63.

[11] M.–K. Kadalbajoo, K.–K. Sharma, An Ex-
ponentially Fitted Finite Difference Scheme for
solving Boundary-Value Problems for Singular-
ly Perturbed Differential Difference Equations:
Small Shifts of Mixed Type with Layer Behav-
ior, Journal of Computational Analysis and Ap-
plications, 8, 2006, pp. 151-171.

[12] V. Kolmanovskii, A. Myshkis, Applied Theory
of Functional Differential Equations, 85, Math-
ematics and its Applications, Kluwer Academic
Publishers Group, Dordrecht, 1992.

[13] Y. Kuang, Delay Differential Equations with
Applications in Population Dynamics, Vol.191,
Mathematics in Science and Engineering, Aca-
demic Press Inc., Boston, MA, 1993.

[14] C.–G. Lange, R.–M. Miura, Singular Perturba-
tion Analysis of Boundary-Value Problems for
Differential-Difference Equations. v. small shift-
s with layer behavior, SIAM Journal on Applied
Mathematics, 54, 1994, pp. 249C272.

[15] C.–G. Lange, R.–M. Miura, Singular Perturba-
tion Analysis of Boundary-Value Problems for
Differential-Difference Equations II. Rapid Os-
cillations and Resonances, SIAM Journal on Ap-
plied Mathematics, 45, 1985, pp. 687-707.

[16] C.–G. Lange, R.–M. Miura, Singular Pertur-
bation Analysis of Boundary-Value Problems
for Differential-Difference Equations III. Turn-
ing Point Problems, SIAM Journal on Applied
Mathematics, 45, 1985, pp. 708-734.

[17] A. Martin, S. Raun, Predetor-prey models with
delay and prey harvesting, J. Math. Bio., 43,
2001, pp. 247-267.

[18] R. Pratima, K.–K. Sharma, Numerical analysis
of singularly perturbed delay differential turning
point problem, Applied Mathematics and Com-
putation, 218, 2011, pp. 3483C3498.

[19] R.–B. Stein, A theoretical analysis of neuronal
variability, Biophys. J., 5, 1965, pp. 173C194.

[20] GBSL. Soujanya, K. Phaneendra, Y.–N. Red-
dy, An Exponentially Fitted Non Symmetric Fi-
nite Difference Method for Singular Perturba-
tion Problems, WSEAS Transactions on Mathe-
matics, 12(7), 2013, pp. 767-776.

[21] K.E. Yunquan, Chunfang Miao, Global asymp-
totic stability for second-order neutral type
Cohen-Grossberg neural networks with time de-
lays, WSEAS Transactions on Mathematics, 13,
2014, pp. 973-982.

WSEAS TRANSACTIONS on MATHEMATICS Ch. Lakshmi Sirisha, Y. N. Reddy

E-ISSN: 2224-2880 101 Volume 16, 2017



[22] Aleksey A. Kabanov, Composite Control for
Nonlinear Singularly Perturbed Systems Based
on Feedback Linearization Method, WSEAS
Transactions on Systems, 14, 2015, pp. 215-
221.

WSEAS TRANSACTIONS on MATHEMATICS Ch. Lakshmi Sirisha, Y. N. Reddy

E-ISSN: 2224-2880 102 Volume 16, 2017




