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Abstract:This paper is considered with the problem of robust absolute stability of neutral type Lur’e systems with
mixed time-varying delays. By constructing an new augmented Lyapunov-Krasovskii functional and combining
integral inequality with approach to estimate the derivative of the Lyapunov-Krasovskii functional, which estimated
some integral terms by Wirtinger’s inequality, a matrix-based quadratic convex technique is used to design an LMI-
based sufficient conditions. New stability condition is much less conservative and more general than some existing
results. New stability criteria is given in terms of linear matrix inequalities. Numerical examples are given to
illustrate the effectiveness of the results.
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1 Introduction
In many practical systems, models of system are de-
scribed by neutral differential equations, in which the
models depend on the delays of state and state deriva-
tives. Heat exchanges, distributed networks contain-
ing lossless transmission lines and population ecol-
ogy are examples of neutral systems. Because of
its wider application, several researchers have studied
neutral systems and provided sufficient conditions to
guarantee the stability of neutral time delay systems,
see [1,8,19] and references cited therein.

It is well know that nonlinearities may cause in-
stability and poor performance of practical systems,
[5, 8, 14, 20, 25]. Many nonlinear control systems can
be modeled as a feedback connection of a linear neu-
tral system and a nonlinear element. One of the im-
portant classes of nonlinear systems is the Lur’e sys-
tem whose nonlinear element satisfies certain sector
constraints. Absolute stability of Lur’e systems with
sector bounded nonlinearities has attracted several re-
searcher [5,7,9,15].

It is well known that the existence of time delay
in a system may cause instability and oscillations. Ex-
amples of time delay systems are chemical engineer-
ing systems, biological modeling, electrical networks,
physical networks and many others, [11, 12, 17]. The
stability criteria for system with time delays can be
classified into two categories: delay-independent and
delay-dependent. Delay-independent criteria does not
employ any information on the size of the delay;

while delay-dependent criteria makes use of such in-
formation at different levels. Delay-dependent sta-
bility conditions are generally less conservative than
delay-independent ones especially when the delay is
small. In most of the existing results, the range of
time-varying delay considered varies form 0 to an up-
per bound. In practice, the range of delay may vary in
a range for which the lower bound is not restricted to
be 0, i.e., interval time-varying delay. A typical exam-
ple with interval time delay is the networked control
system, which has been widely studied in the recent
literature (see, e.g., [2,11,24]).

Recently, there are many research studies on the
absolute stability of a class of neutral type Lur’e dy-
namical systems with time delay, see for examples
[14, 16, 20, 22, 25]. The problems have been dealt
with delay-dependent absolute and robust stability
for time-delay Lur’e system [14]. Improved delay-
dependent robust stability criteria for a class of uncer-
tain mixed neutral and Lur’e dynamical systems with
interval time-varying delays and sector-bounded non-
linearity were studied in [22]. On delay-dependent
robust stability of a class of uncertain mixed neu-
tral and Lur’e dynamical systems with interval time-
varying delays were investigated in [25]. In [?], the
authors considered the problem of global asymptot-
ically stability analysis for delayed neural networks.
By using a matrix-based quadratic convex approach
to derive a sufficient condition, the positive definite-
ness of chosen LKF can be ensured. As a result the
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constraintP > 0 in both Kim(2011) and Zhang et
al.(2013) is removed. However, it is worth point-
ing out that, even though these results were elegant,
there still exist some points waiting for the improve-
ment. Firstly, most of the works above [5, 14], the
augmented Lyapunov matrixP must be positive def-
inite. So, for removing this restriction by assum-
ing thatP are only real matrices in Lur’e systems.
Secondly, By introducing new augmented Lyapunov-
Kravoskii functional which have not been considered
yet in stability analysis of Lur’e systems. Thirdly,
by taking the time derivative of

∫ t

t−h1
h1(h1 − t +

s)ẋT (s)W1ẋ(s),
∫ t

t−h1
(h1 − t+ s)2ẋT (s)W2ẋ(s)ds,

∫ t−h1

t−h2
h21(h2 − t+ s)ẋT (s)R1ẋ(s),

∫ t−h1

t−h2
(h2 − t+

s)2ẋT (s)R2ẋ(s)ds, it is found that the integral terms
2
∫ t−h1

t−h2
(h2 − t + s)ẋT (s)R2ẋ(s)ds, 2

∫ t

t−h1
(h1 −

t + s)ẋT (s)W2ẋ(s)ds, h21
∫ t−h1

t−h2
ẋT (s)R1ẋ(s)ds,

−h1
∫ t

t−h1
ẋT (s)W1ẋ(s)ds, appear. For estimat-

ing these terms, techniques in [21, 27] are applied
in this paper, called matrix-based quadradic con-
vex optimization approach combined with some im-
proved bounding techniques for integral terms such as
Wirtinger-based integral inequality; as a result we ob-
tain inequality encompassing the Jensen one and also
goes to tractable LMI criteria to futher reduce the con-
servatism over the existing results [14, 16, 20, 22, 25].
Fourthly, most of the previous works did not con-
sider the lower bound of the time-varying delay and its
time-derivative. Factually, the lower bound can play
an important role in reducing the conservatism when
it can be available and fully tackled in [16,20,22,25].

Based on the above discussions, we consider
the problem of delay-dependent absolute stability of
Lur’e systems of neutral type with time-varying de-
lays, matrix-based quadratic convex approach will be
used. The time delay is a continuous function be-
longing to a given interval, which means that the
lower and upper bounds for the time varying delay
are available. Based on the construction of improved
Lyapunov-Krasovskii functionals combined with a
quadratic convex approach, some new cross terms will
be introduced which enhance the feasible stability cri-
terion. New delay-dependent sufficient conditions for
the neutral type Lur’e dynamical systems are estab-
lished in terms of LMIs. The new stability condition
is much less conservative and more general than some
existing results. Numerical examples are given to il-
lustrate the effectiveness of our theoretical results.

2 Problem statements and prelimi-
naries

The following notation will be used in this paper:
R+ denotes the set of all real non-negative numbers;
Rn denotes then−dimensional space and the vector
norm ‖ . ‖; Mn×r denotes the space of all matri-
ces of(n × r)−dimensions.AT denotes the trans-
pose of matrixA; A is symmetric ifA = AT ; I
denotes the identity matrix;λ(A) denotes the set of
all eigenvalues ofA; λmax(A) = max{Reλ;λ ∈
λ(A)}. xt := {x(t + s) : s ∈ [−h, 0]}, ‖ xt ‖=
sups∈[−h,0] ‖ x(t + s) ‖; C([0, t],Rn) denotes the
set of allRn−valued continuous functions on[0, t];
Matrix A is called semi-positive definite(A ≥ 0) if
xTAx ≥ 0, for all x ∈ Rn;A is positive definite
(A > 0) if xTAx > 0 for all x 6= 0;A > B means
A − B > 0; diag(c1, c2, ..., cm) denotes block diago-
nal matrix with diagonal elementsci, i = 1, 2, ...,m.
The symmetric term in a matrix is denoted by∗.

Consider the following Lur’e system of neutral
type with interval time-varying delay:

ẋ(t) = A1ẋ(t− τ(t)) +Ax(t) (1)

+Bx(t− h(t)) + Cf(ω(t)) +Dh(σ(t)),

ω(t) = Ex(t) = [E1 E2 ... Ek1 ]
Tx(t),

∀t ≥ 0, (2)

σ(t) = Fx(t− h(t)) = [F1 F2 ... Fk2 ]
T

× x(t− h(t)), ∀t ≥ 0, (3)

x(t+ s) = φ(t+ s), ẋ(t+ s) = ϕ(t+ s),

s ∈ [−m, 0], m = max{h2, τ2},

wherex(t) ∈ Rn, ω(t) ∈ Rk1 andσ(t) ∈ Rk2 de-
note the state vector and output ones of the system,
respectively;A ∈ Rn×n, B ∈ Rn×n, C ∈ Rn×k1,
A1 ∈ Rn×n, D ∈ Rn×k2 are constant known ma-
trices; f(Ex(·)) = [f1(E

T
1 x(·)), ..., fk1(E

T
k1
x(·))]T ,

h(Fx(·)) = [h1(F
T
1 x(·)), ..., hk2 (F

T
k2
x(·))]T are the

nonlinear elements.

Assumption 1. The delaysτ(t) and h(t) are time-
varying continuous functions that satisfying

0 ≤ h1 ≤ h(t) ≤ h2, µ1 ≤ ḣ(t) ≤ µ2, (4)

0 ≤ τ(t) ≤ τ2, τ̇(t) ≤ δ < 1, (5)

in whichh1, h2, τ2, µ1, µ2 andδ are constants.

Assumption 2. For any ǫ1, ǫ2 ∈ R, the nonlinear
function fi(·) and hj(·) satisfyfi(0) = hj(0) = 0,
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and

σ−

i ≤
fi(ǫ1)− fi(ǫ2)

ǫ1 − ǫ2
≤ σ+

i ,

δ−j ≤
hj(ǫ1)− hj(ǫ2)

ǫ1 − ǫ2
≤ δ+j ,

ǫ1 6= ǫ2, i = 1, ..., k1; j = 1, ..., k2,

whereσ+
i , σ

−

i , δ
+
j , andδ−j are given constants. Here,

we give

Υ1 = diag(σ+
1 σ

−

1 , ..., σ
+
k1
σ−

k1
),

Υ2 = diag(
σ+
1 + σ−

1

2
, ...,

σ+
k1

+ σ−

k1

2
),

Υ3 = diag(δ+1 δ
−

1 , ..., δ
+
k2
δ−k2),

Υ4 = diag(
δ+1 + δ−1

2
, ...,

δ+k2 + δ−k2
2

),

Υ1 = diag(σ+
1 , ..., σ

+
k1
),

Υ2 = diag(σ−

1 , ..., σ
−

k1
),

Υ3 = diag(δ+1 , ..., δ
+
k2
),

Υ4 = diag(δ−1 , ..., δ
−

k2
). (6)

Assumption 3. All the eigenvalues of matrixA1 are
inside the unit circle.

We introduce the following technical well-known
propositions and Definition, which will be used in the
proof of our results.

Lemma 4. [21] For a given matrixR > 0, the fol-
lowing inequality holds for all continuously differen-
tiable functionω in [a, b] → Rn:

∫ b

a

ω̇T (u)Rω̇(u)du ≥
1

b− a
(ω(b)− ω(a))TR

×(ω(b)− ω(a)) (7)

+
3

b− a
Ω̃TRΩ̃

whereΩ̃ = ω(b) + ω(a)− 2
b−a

∫ b

a
ω(u)du.

Remark 5. Clearly, the inequality (7) contains a
tighter lower bound for

∫ b

a
ω̇T (u)Rω̇(u)du than

Jensen’s inequality. As a result, this technique is ap-
plied in this paper that this resulting encompasses the
Jensen one and also goes to tractable LMI criteria to
futher reduce the conservatism over the existing re-
sults [14,16,20,22,25].

Lemma 6. [27] Let h(t) be a continuous function
satisfying0 ≤ h1 ≤ h(t) ≤ h2. For anyn × n real
matrixR1 > 0 and a vectorẋ : [−h2, 0] → Rn such
that the integration concerned below is well defined,

the following inequality holds for any2n × 2n real

matricesS1 satisfying

[

R̃1 S1

ST
1 R̃1

]

≥ 0

− (h2 − h1)

∫ t−h1

t−h2

ẋT (s)R1ẋ(s)ds

=2ϕT
11Sϕ21 − ϕT

11R̃1ϕ11 − ϕT
21R̃1ϕ21, (8)

whereR̃1 , diag{R1, 3R1} and

ϕ11 ,

[

x(t− h(t))− x(t− h2)
x(t− h(t)) + x(t− h2)− 2ω1(t)

]

,

ϕ21 ,

[

x(t− h1)− x(t− h(t))
x(t− h1) + x(t− h(t)) − 2ω2(t)

]

,

where

ω1 ,
1

h2 − h(t)

∫ t−h(t)

t−h2

x(s)ds,

ω2 ,
1

h(t)− h1

∫ t−h1

t−h(t)
x(s)ds. (9)

Lemma 7. [27] Let h(t) be a continuous function
satisfying0 ≤ h1 ≤ h(t) ≤ h2. For any n × n
real matrixR2 > 0 and a vectorẋ : [−h2, 0] → Rn

such that the integration concerned below is well de-
fined, the following inequality holds for anyφi1 ∈ Rq

and real matricesZi ∈ Rq×q, Ni ∈ Rq×n satisfying
[

Zi Ni

NT
i R2

]

≥ 0 (i = 1, 2)

−

∫ t−h1

t−h2

(h2 − t+ s)ẋT (s)R2ẋ(s)ds

≤
1

2
(h2 − h(t))2φT

11Z1φ11 + 2(h2 − h(t))φT
11N1φ12

+
1

2
[(h2 − h1)

2 − (h2 − h(t))2]φT
21Z2φ21

+ 2φT
21N2[(h2 − h(t))φ22 + (h(t) − h1)φ23],

where

φ12 , x(t− h(t))− ω1(t),

φ22 , x(t− h1)− x(t− h(t)),

φ23 , x(t− h1)− ω2(t).

Lemma 8. [27] Let ξ0, ξ1 andξ2 bem×m real sym-
metric matrices and a continuous functionh satisfy
h1 ≤ h ≤ h2, whereh1 andh2 are constants satisfy-
ing 0 ≤ h1 ≤ h2. If ξ0 ≥ 0, then

h2ξ0 + hξ1 + ξ2 < 0(≤ 0), ∀h ∈ [h1, h2],

↔ h2i ξ0 + hiξ1 + ξ2 < 0(≤ 0), (i = 1, 2), (10)

or

h2ξ0 + hξ1 + ξ2 > 0(≥ 0), ∀h ∈ [h1, h2],

↔ h2i ξ0 + hiξ1 + ξ2 > 0(≥ 0), (i = 1, 2). (11)
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3 Main results

Now we present a Lyapunov-Krasovskii functional
for the Lur’e system (1) satisfying the conditions (2),
(3) with interval time-varying delay

V (t, xt, ẋt) =
4

∑

i=1

Vi(t), (12)

where

V1(t) , ηT (t)Pη(t) +

∫ t

t−h1

ẋT (s)Q0ẋ(s)ds

+

∫ t

t−τ(t)
ẋT (s)Jẋ(s)ds

V2(t) ,

∫ t

t−h1

[xT (t) xT (s)]Q1[x
T (t) xT (s)]T ds

+

∫ t−h1

t−h(t)
[xT (t) xT (s)]Q2[x

T (t) xT (s)]T ds

+

∫ t−h(t)

t−h2

[xT (t) xT (s)]Q3[x
T (t) xT (s)]Tds

V3(t) ,

∫ t

t−h1

{

h1(h1 − t+ s)ẋT (s)W1ẋ(s)

+(h1 − t+ s)2ẋT (s)W2ẋ(s)
}

ds

+

∫ t−h1

t−h2

{

h21(h2 − t+ s)ẋT (s)R1ẋ(s)

+(h2 − t+ s)2ẋT (s)R2ẋ(s)
}

ds

V4(t) , 2

n
∑

i=1

∫ ET

i
x

0
[ki[fi(s)− σ−

i (s)]

+li[σ
+
i (s)− fi(s)]]ds

2

n
∑

i=1

∫ FT

i
x

0
[gi[hi(s)− δ−i (s)]

+ti[δ
+
i (s)− hi(s)]]ds (13)

whereP are real matrices,Q0 > 0, Qj > 0,Wq >
0, Rq > 0, J > 0(j = 1, 2, 3; q = 1, 2), K =
diag(k1, ..., kn) > 0, L = diag(l1, ..., ln) > 0, G =
diag(g1, ..., gn) > 0, T = diag(t1, ..., tn) > 0; and
h21 , h2 − h1,
η(t) , col{x(t), x(t − h1),

∫ t−h(t)
t−h2

x(s)ds,
∫ t−h1

t−h(t) x(s)ds,
∫ t

t−h1
x(s)ds }.

Remark 9. This of [14], previous work only fo-
cused on some the augment vectors but our work
includes not only onx(t),

∫ t

t−τ0
x(s)ds but also

x(t),
∫ t−h(t)
t−h2

x(s)ds, x(t − h1),
∫ t−h1

t−h(t) x(s)ds. We
can see that the adoption of new augmented variables,
cross terms of variables and more multiple integral
terms may reduce the conservatism.

Remark 10. Those of [5,14] previous works, the aug-
mented Lyapunov matrixP still needP > 0, but
for our work does not need to be positive definite,
which can be seen in Lemma 11. So we can see that
the introduction of the vectorΘ(t) plays a important
key role in deriving a quadratic convex combination
Σ(h(t), ḣ(t)). Hence, a matrix-based quadratic con-
vex technique can be applied to design an LMI-based
sufficient conditions.

For simplicity of presentation, we set in the fol-
lowing
ω1, ω2 are defined in (9) andω3 = 1

h1

∫ t

t−h1
x(s)ds.

Denote byẽi(i = 1, . . . , 5) the block-row vectors of
the5n×5n identity matrix. Then we have the follow-
ing result.

Lemma 11. [27] For the LKF (13), there exist
scalarsǫ1 > 0 andǫ2 > 0 such that

ǫ1‖x‖
2 ≤ V (t, xt, ẋt) ≤ ǫ2‖xt‖

2
W (14)

if the following LMIs are satisfied

ẽ1P ẽT1 > 0, P0 ≥ 0, Λ1(h1) + Λ2(h1) ≥ 0,

Λ1(h2) + Λ2(h2) ≥ 0, (15)

where

Λ1(h(t)) ,







∆, h1 = 0
∆+ 1

h1
ΓT
2 diag{Q0, 3Q0}Γ2,

h1 6= 0

(16)

Λ2(h(t)) , h1[ẽ
T
1 ẽT5 ]Q1[ẽ

T
1 ẽT5 ]

T + (h(t)− h1)

×[ẽT1 ẽT4 ]Q2[ẽ
T
1 ẽT4 ]

T + (h2 − h(t))

×[ẽT1 ẽT3 ]Q3[ẽ
T
1 ẽT3 ]

T (17)

where

Γ1 = col{ẽ1, ẽ2, (h2 − h(t))ẽ3, (h(t) − h1)ẽ4, h1ẽ5},

Γ2 = col{ẽ1 − ẽ2, ẽ1 + ẽ2 − 2ẽ5},

P0 = (ẽT4 ẽ4 − ẽT3 ẽ3)P (ẽT4 ẽ4 − ẽT3 ẽ3),

∆ = ΓT
1 PΓ1 − ẽT1 ẽ1P ẽT1 ẽ1.

Theorem 12. The system (1) satisfying the sector
condition (2), (3), for given scalarsh1, h2, µ1, µ2

and δ is absolutely stable if there existP are real
matrices to be determined, symmetric positive definite
matricesQ0 > 0, Qj > 0,Wq > 0, Rq > 0, J >
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0(j = 1, 2, 3; q = 1, 2), andn× n diagonal matrices
K > 0, L > 0, G > 0, T > 0, U > 0, V > 0 such
that (15) and the following LMI holds:

4
∑

i=1,h(t)=h1,µ(t)=µ1

Σi < 0,

4
∑

i=1,h(t)=h1,µ(t)=µ2

Σi < 0,

4
∑

i=1,h(t)=h2,µ(t)=µ1

Σi < 0,

4
∑

i=1,h(t)=h2,µ(t)=µ2

Σi < 0,

(18)

[

Zi Ni

NT
i R2

]

≥ 0, (i = 1, 2)

[

Z3 N2

NT
3 W2

]

≥ 0, (19)

[

R̃1 S1

ST
1 R̃1

]

≥ 0, Z1 ≥ Z2, (20)

whereR̃1 = diag{R1, 3R1};and

Σ1(h(t), ḣ(t)) , ∆T
1 P∆2 +∆T

2 P∆1 +∆T
0 Q0∆0

− eT8 Q0e8 +∆T
0 J∆0

− (1− τ̇(t))eT11Je11

Σ2(h(t), ḣ(t)) , Ψ20 + [h(t)− h1]Ψ21 + [h2 − d(t)]Ψ22

Σ3(h(t)) , ϕ̃T
1 S1ϕ̃2 + ϕ̃T

2 S
T
1 ϕ̃1 − ϕ̃T

1 R̃1ϕ̃1

+ (h2 − h(t))2(Z1 − Z2)

+ (h2 − h(t))Ψ31 + (h(t) − h1)Ψ32

+ h221Z2 − ϕ̃T
2 R̃1ϕ̃2

Σ4 , −ϕ̃T
3 W̃1ϕ̃3 +∆T

0 (h
2
1W1 + h21W2)∆0

+ 2h1N3(e1 − e7) + eT8 (h
2
21R1

+ h221R2)e8 + 2h1(e1 − e7)
TNT

3 + h21Z3

+ eT10[K − L]E∆0 +∆T
0 E

T [K − L]T e10

+ eT1 E
T [Ῡ1L− Ῡ2K]E∆0

+∆T
0 E

T [Ῡ1L− Ῡ2K]TEe1

+ eT9 [G− T ]F∆0 +∆T
0 F

T [G− T ]T e9

+ eT1 F
T [Ῡ3G− Ῡ4T ]F∆0

+∆T
0 F

T [Ῡ3G− Ῡ4T ]
TFe1

− [eT1 E
TUΥ1Ee1 − 2eT1 E

TUΥ2e10

+ eT10Ue10]− [eT1 F
TVΥ3Fe1

− 2eT1 F
TVΥ4e9 + eT9 V e9] (21)

with ei(i = 1, 2, . . . , 11) denoting the i-th row-
block vector of the11n × 11n identity matrixW̃1 =

diag{W1, 3W1}; and

Ψ20 , [eT1 eT3 ](Q2 −Q1)[e
T
1 eT3 ]

T

+ h1[∆
T
0 0]Q1[e

T
1 eT7 ]

T + h1[e
T
1 eT7 ]Q1[∆

T
0 0]T

− (1− ḣ(t))[eT1 eT2 ](Q2 −Q3)[e
T
1 eT2 ]

T

− [eT1 eT4 ]Q3[e
T
1 eT4 ]

T + [eT1 eT1 ]Q1[e
T
1 eT1 ]

T

Ψ21 , [eT1 eT6 ]Q2[∆
T
0 0]T + [∆T

0 0]Q2[e
T
1 eT6 ]

T

Ψ22 , [eT1 eT5 ]Q3[∆
T
0 0]T + [∆T

0 0]Q3[e
T
1 eT5 ]

T

Ψ31 , 2N1(e2 − e5) + 2N2(e3 − e2)

+ 2(e3 − e2)
TNT

2 + 2(e2 − e5)
TNT

1

Ψ32 , 2N2(e3 − e6) + 2(e3 − e6)
TNT

2

ϕ̃1 , col{e2 − e4, e2 + e4 − 2e5}

ϕ̃2 , col{e3 − e2, e3 + e2 − 2e6}

ϕ̃3 , col{e1 − e3, e1 + e3 − 2e7}

∆1 , col{e1, e3, (h2 − h(t))e5, (h(t) − h1)e6, h1e7}

∆2 , col{∆0, e8, (1− ḣ(t))e2 − e4, e3

− (1− ḣ(t))e2, e1 − e3}.

For simplicity of presentation, we denote
Θ , col{x(t), x(t − h(t)), x(t −
h1), x(t − h2), ω1(t), ω2(t), ω3(t), ẋ(t −
h1), h(σ(t)), f(ω(t)), ẋ(t− τ(t))},
ẋ(t) = ∆0Θ(t),∆0 , A1e11 +Ae1 +Be2+Ce10+
De9.

Proof. Taking the derivative ofV along the solution
of system(1), we can be obtains as

V̇1(t) =2ηT (t)P η̇(t) + ẋT (t)Q0ẋ(t)− ẋT (t− h1)Q0

× ẋ(t− h1) + ẋT (t)Jẋ(t)

− (1− τ̇(t))ẋT (t− τ(t))Jẋ(t− τ(t))

V̇2(t) =[xT (t) xT (t)]Q1[x
T (t) xT (t)]T

− [xT (t) xT (t− h1)]Q1[x
T (t) xT (t− h1)]

T

+ 2

∫ t

t−h1

[xT (t) xT (s)]Q1[ẋ(t)
T 0]T ds

+ [xT (t) xT (t− h1)]Q2[x
T (t) xT (t− h1)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q2[x
T (t)

xT (t− h(t))]T + 2

∫ t−h1

t−h(t)
[xT (t) xT (s)]Q2

× [ẋT (t) 0]Tds+ [xT (t) xT (t− h2)]

×Q3[x
T (t) xT (t− h2)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q3

(22)
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− (1− ḣ(t))[xT (t) xT (t− h(t))]Q3

× [xT (t) xT (t− h(t))]T

+ 2

∫ t−h(t)

t−h2

[xT (t) xT (s)]Q3[ẋ
T (t) 0]T ds

V̇3(t) =ΘT (t)(h21∆
T
0 W1∆0 + h21∆

T
0W2∆0)Θ(t)

− h1

∫ t

t−h1

ẋT (s)W1ẋ(s)ds

− 2

∫ t

t−h1

(h1 − t+ s)ẋT (s)W2ẋ(s)ds

+ h221ẋ
T (t− h1)R1ẋ(t− h1)

+ h221ẋ
T (t− h1)R2ẋ(t− h1)

− h21

∫ t−h1

t−h2

ẋT (s)R1ẋ(s)ds

− 2

∫ t−h1

t−h2

(h2 − t+ s)ẋT (s)R2ẋ(s)ds.

V̇4(t) =2fT (Ex(t))[K − L]Eẋ(t) + 2xT (t)ET [Ῡ1L

− Ῡ2K]Eẋ+ 2hT (Fx(t))[G − T ]Fẋ(t)

+ 2xT (t)F T [Ῡ3G− Ῡ4T ]Fẋ(t). (23)

On the condition (6) and diagonal matricesU >
0, V > 0, then we have

−[xT (t)ETUΥ1Ex(t)− 2xT (t)ETUΥ2f(Ex(t))

+fT (Ex(t))Uf(Ex(t))] − [xT (t)F TVΥ3Fx(t)

−2xT (t)F TVΥ4h(Fx(t)) + hT (Fx(t))V h(Fx(t))]

≥ 0.

With the consideration of some term ofV̇2(t), V̇3(t),
we obtained the following equality and inequality:

∫ t

t−h1

[xT (t) xT (s)]Q1[ẋ(t)
T 0]T ds

= [

∫ t

t−h1

xT (t)ds

∫ t

t−h1

xT (s)ds]Q1[ẋ
T (t) 0]T

= h1[x
T (t) ωT

3 ]Q1[ẋ
T (t) 0]T , (24)

∫ t−h1

t−h(t)
[xT (t) xT (s)]Q2[ẋ(t)

T 0]T ds

= [

∫ t−h1

t−h(t)
xT (t)ds

∫ t−h1

t−h(t)
xT (s)ds]Q2[ẋ

T (t) 0]T

= (h(t)− h1)[x
T (t) ωT

2 ]Q2[ẋ
T (t) 0]T , (25)

and

∫ t−h(t)

t−h2

[xT (t) xT (s)]Q3[ẋ(t)
T 0]T ds

= [

∫ t−h(t)

t−h2

xT (t)ds

∫ t−h(t)

t−h2

xT (s)ds]

×Q3[ẋ
T (t) 0]T

= (h2 − h(t))[xT (t) ωT
1 ]Q3[ẋ

T (t) 0]T .(26)

By utilizing Lemma4, we can be estimated

−

∫ t

t−h1

ẋT (s)h1W1ẋ(s)ds

≤ −[x(t)− x(t− h1)]
TW1[x(t)− x(t− h1)]

−3Ω̃1
T
W1Ω̃1, (27)

where

Ω̃1 = x(t) + x(t− h1)− 2ω3.

And applying [27], we obtained the following

− 2

∫ t

t−h1

(h1 − t+ s)ẋT (s)W2ẋ(s)ds

≤ h21Θ
T (t)Z3Θ(t) + 2h1Θ

T (t)N3[x(t)− ω3]

+ 2h1[x(t)− ω3]
TNT

3 Θ(t), (28)

−

∫ t−h1

t−h2

ẋT (s)h21R1ẋ(s)ds

≤ 2ϕT
11S1ϕ21 − ϕT

11R̃1ϕ11 − ϕT
21R̃1ϕ21 (29)

and

− 2

∫ t−h1

t−h2

(h2 − t+ s)ẋT (s)R2ẋ(s)ds

≤ (h2 − h(t))2ΘT (t)Z1Θ(t)

+ 4(h2 − h(t))ΘT (t)N1[x(t− h(t))− ω1]

+ [(h2 − h1)
2 − (h2 − h(t))2]ΘT (t)Z2Θ(t)

+ 4ΘT (t)N2[(h2 − h(t))[x(t − h1)− x(t− h(t))]

+ (h(t) − h1)[x(t− h1)− ω2(t)]]. (30)
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Hence, according to (23)-(30) we get

V̇ (t, xt, ẋt) ≤ 2ηT (t)P η̇(t) + ẋT (t)Q0ẋ(t)

− ẋT (t− h1)Q0ẋ(t− h1) + ẋT (t)Jẋ(t)

− (1− δ)ẋT (t− τ(t))Jẋ(t− τ(t))

+ [xT (t) xT (t)]Q1[x
T (t) xT (t)]T

− [xT (t) xT (t− h1)]Q1[x
T (t) xT (t− h1)]

T

+ 2h1[x
T (t) ωT

3 ]Q1[ẋ
T (t) 0]T

+ [xT (t) xT (t− h1)]Q2[x
T (t) xT (t− h1)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q2[x
T (t)

xT (t− h(t))]T + 2(h(t) − h1)[x
T (t) ωT

2 ]

×Q2[ẋ
T (t) 0]T + [xT (t) xT (t− h2)]

×Q3[x
T (t) xT (t− h2)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q3

× [xT (t) xT (t− h(t))]T

+ 2(h2 − h(t))[xT (t) ωT
1 ]Q3[ẋ

T (t) 0]T

+ΘT (t)(h21∆
T
0 W1∆0 + h21∆

T
0 W2∆0)Θ(t)

− [x(t)− x(t− h1)]
TW1[x(t)− x(t− h1)]

− 3Ω̃1
T
W1Ω̃1 + h21Θ

T (t)Z3Θ(t)

+ 2h1Θ
T (t)N3[x(t)− ω3] + 2h1[x(t)− ω3]

T

×NT
3 Θ(t) + h221ẋ

T (t− h1)R1ẋ(t− h1)

+ h221ẋ
T (t− h1)R2ẋ(t− h1)

+ 2ϕT
11S1ϕ21 − ϕT

11R̃1ϕ11 − ϕT
21R̃1ϕ21

+ (h2 − h(t))2ΘT (t)Z1Θ(t)

+ 4(h2 − h(t))ΘT (t)N1[x(t− h(t))− ω1]

+ [(h2 − h1)
2 − (h2 − h(t))2]ΘT (t)Z2Θ(t)

+ 4ΘT (t)N2[(h2 − h(t))[x(t − h1)− x(t− h(t))]

+ (h(t) − h1)[x(t− h1)− ω2(t)]]

+ 2fT (Ex(t))[K − L]Eẋ(t) + 2xT (t)ET

× [Ῡ1L− Ῡ2K]Eẋ+ 2hT (Fx(t))[G − T ]Fẋ(t)

+ 2xT (t)F T [Ῡ3G− Ῡ4T ]Fẋ(t)

− [xT (t)ETUΥ1Ex(t)− 2xT (t)ETUΥ2f(Ex(t))

+ fT (Ex(t))Uf(Ex(t))] − [xT (t)F TVΥ3Fx(t)

− 2xT (t)F TVΥ4h(Fx(t))

+ hT (Fx(t))V h(Fx(t))]

V̇ (t, xt, ẋt) ≤ ΘT (t)Σ(h(t), ḣ(t))Θ(t) (31)

where Σ(h(t), ḣ(t)) ,
∑4

i=1 Σi. Clearly,
Σ(h(t), ḣ(t)) can be rewritten asΣ(h(t), ḣ(t)) =
h2(t)Π0 + h(t)Π1 +Π2 whereΠ = Z1 − Z2 andΠ1

andΠ2 are h(t)− independent real metrices. Now
together with (8) and ifZ1 −Z2 ≥ 0 and the inequal-
ities in (18) hold, thenΣ(h(t), ḣ(t)) < 0,∀h(t) ∈
[h1, h2],∀ḣ(t) ∈ [µ1, µ2]. ThenV̇ (t, xt) ≤ −λ‖x(t)‖
for someλ > 0,∀x(t) 6= 0. Thus the system (1)
satisfy conditions (2),(3) is absolutely stable.

WhenD = 0, time-varying delay system in (1)
reduces to

ẋ(t) = A1ẋ(t− τ(t)) +Ax(t) +Bx(t− h(t))

+Cf(ω(t)). (32)

In the following, we present a stability criterion for
h1 = 0. We consider the following LKF candidate

V̂ (t, xt, ẋt) = η̄T (t)P η̄(t)

+

∫ t

t−τ(t)
ẋT (s)Jẋ(s)ds

+

∫ t

t−h(t)
[xT (t) xT (s)]Q2

×[xT (t) xT (s)]T ds

+

∫ t−h(t)

t−h2

[xT (t) xT (s)]Q3

×[xT (t) xT (s)]T ds

+

∫ t

t−h2

{

h2(h2 − t+ s)ẋT (s)

×R1ẋ(s) + (h2 − t+ s)2

×ẋT (s)R2ẋ(s)
}

ds

+2

n
∑

i=1

∫ ET

i
x

0
[ki[fi(s)− σ−

i (s)]

+li[σ
+
i (s)− fi(s)]]ds, (33)

whereη̄ = [x(t)
∫ t−h(t)
t−h2

x(s)ds
∫ t

t−h(t) x(s)ds] and

−[xT (t)ETUΥ1Ex(t)− 2xT (t)ETUΥ2

f(Ex(t)) + fT (Ex(t))Uf(Ex(t))] ≥ 0.

Corollary 13. The system (32) satisfying the sector
condition (2), for given scalarsh2, µ1, µ2 and δ
is absolutely stable if there existP = P T with
P11 > 0 symmetric positive definite matrices
Rq > 0, J > 0(q = 1, 2), and n × n diagonal
matricesK > 0, L > 0, U > 0 such that (15) and the
following LMIs hold:

̥(h(t), ḣ(t)) + h2Ω1 + (1− ḣ(t))Ω3 +Ω4 < 0,

h(t) = 0, ḣ(t) = µ1, µ2. (34)
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̥(h(t), ḣ(t)) + h2Ω2 + (1− ḣ(t))Ω3 +Ω4 < 0,

h(t) = h2, ḣ(t) = µ1, µ2. (35)

[

R̃1 S1

ST
1 R̃1

]

≥ 0,

[

P22 P23

∗ P33

]

≥ 0, Z1 ≥ Z2, (36)

[

Zi Ni

NT
i R2

]

≥ 0, (i = 1, 2), (37)

[

h2Q21 h2(P13 +Q22)
∗ h22P33 + h2Q23

]

≥ 0, (38)

Qj =

[

Qj1 Qj2

∗ Qj3

]

≥ 0, (i = 2, 3), (39)

[

h2Q11 h2(P12 +Q12)
∗ h22P22 + h2Q13

]

≥ 0, (40)

whereR̃1 , diag{R1, 3R1}

̥(h(t), ḣ(t)) , ̥
T
1 (h(t))P̥2(ḣ(t))

+̥
T
2 (ḣ(t))P̥1(h(t))

Ω1 , [êT1 êT4 ]Q3∅0 + ∅T0 Q3[ê
T
1 ê

T
4 ]

T

+h2(Z1 − Z2) + 2N1[ê2 − ê4]

+2[ê2 − ê4]
TNT

1 + 2N2[ê1 − ê2]

+2[ê1 − ê2]
TNT

2

Ω2 , [êT1 êT5 ]Q2∅0 + ∅T0 Q2[ê
T
1 ê

T
5 ]

T

+2N2[ê1 − ê5] + 2[ê1 − ê5]
TNT

2

Ω3 , [êT1 êT2 ](Q3 −Q2)[ê
T
1 êT2 ]

T

Ω4 , ∅T0 J∅0 − (1− δ)êT7 Jê7

+[êT1 êT1 ]Q2[ê
T
1 êT1 ]

T

−[êT1 êT3 ]Q3[ê
T
1 êT3 ]

T

+h22∅
T
0 (R1 +R2)∅0 + ∅T1 S1∅2

+∅T2 S
T
1 ∅1 − ∅T1 R̃1∅1 − ∅T2 R̃1∅2

+h22Z2 + êT6 [K − L]E∅0

+∅T0 E
T [K − L]T ê6

+ê1E
T [Ῡ1L− Ῡ2K]E∅0

+∅T0 E
T [Ῡ1L− Ῡ2K]TEêT1

−[êT1 E
TUΥ1Eê1 − êT1 UΥ2ê6

−êT6 Υ
T
2 U

T ê1 + êT6 Uê6],

with ê1 = [I 0 0 0 0 0 0], ..., ê7 = [0 0 0 0 0 0 I]; and

̥1(h(t)) , col{ê1, (h2 − h(t))ê4, h(t)ê5}

̥2(ḣ(t)) , col{∅0, (1− ḣ(t))ê2 − ê3, ê1

−(1− ḣ(t))ê2}

∅0 , A1ê7 +Aê1 +Bê2 + Cê6

∅1 , col{ê2 − ê3, ê2 + ê3 − 2ê4}

∅2 , col{ê1 − ê2, ê1 + ê2 − 2ê5}. (41)

4 Numerical Example

In this section, we provide numerical examples to
show the effectiveness of our theoretical results.
In this section, we provide numerical examples to
show the effectiveness of our theoretical results.
Example 4.1 Consider the following Lur’e system
with time-varying delays which is studied in [25],
[22], [20], [14]:

ẋ(t) = A1ẋ(t− τ(t)) +Ax(t) +Bx(t− h(t))

+Cf(ω(t)), (42)

with the following parameters:

A1 =

[

0.2 0.1
0.1 0.2

]

, A =

[

−2 0.5
0 −1

]

,

B =

[

1 0.4
0.4 −1

]

, C =

[

−0.5
−0.75

]

,

E =

[

0.2
0.6

]

.

Applying Corollary13, The maximum allowable value
of h2 is given in Table I whenh1 = 0, −µ1 = µ2 = µ
and values ofδ = 0.9. The constraint on the aug-
mented Lyapunov matrixP > 0 is not required, so our
conditions are generally less conservative than [14].

Table I: Upper bounds of interval time-varying delays
with h1 = 0, δ = 0.9 and different values ofµ for

Example 4.1.

δ µ 0.2 0.4
[25] 1.841 1.315
[22] 2.154 1.704

0.5 [20] 2.456 1.801
[14] 2.462 1.810
our > 10000 > 10000

[25] 0.124 0.108
[22] 0.112 0.109

0.9 [20] 0.113 0.110
[14] 0.125 0.113

0.9 Corollary13 0.510 0.451
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δ µ 0.6 0.8
[25] 0.790 0.632
[22] 1.383 1.009

0.5 [20] 1.482 1.116
[14] 1.490 1.122
our 2.8080 2.1934
[25] 0.099 0.098
[22] 0.109 0.109

0.9 [20] 0.110 0.110
[14] 0.113 0.112

0.9 Corollary13 0.414 0.388

Example 4.2 Consider the following neutral system
with time-varying delays which is studied in [16]:

ẋ(t) = A1ẋ(t− τ(t)) +Ax(t) +Bx(t− h(t))

with the following parameters:

A1 =

[

−0.2 0
0.2 −0.1

]

, A =

[

−2 0
0 −0.9

]

,

B =

[

−1 0
−1 −1

]

.

By applying our proposed Theorem 12 to the above
system, one can obtain maximum delay bounds as
listed in Table II. It can be found that the maximum
upper bounds on the allowable sizes to beh(t) =
τ(t) = 4.2365, which is larger than in [16]. This
means that the proposed ideas in theorem 12 is effec-
tive in reducing the conservatism of stability criterion.

Table II: Upper bounds of interval time-varying
delays withh1 = 0 andτ(t) = h(t) for Example 4.2.

Methods h2[τ(t) = h(t)]

[16] 0.985
Theorem 12 4.2365

5 Conclusion
In this paper, we have investigated with the problem
of robust absolute stability of neutral type Lur’e sys-
tems with mixed time-varying delays. By constructing
an new augmented Lyapunov-Krasovskii functional
and combining integral inequality with approach to
estimate the derivative of the Lyapunov-Krasovskii
functional, which estimated some integral terms by
Wirtinger’s inequality, a matrix-based quadratic con-
vex technique is used to design an LMI-based suffi-
cient conditions. New stability condition is much less
conservative and more general than some existing re-
sults. New stability criteria is given in terms of lin-
ear matrix inequalities. Numerical examples are given

to illustrate the effectiveness of the theoretic results
which show that our results are much less conserva-
tive than some existing results in the literature.
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