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Abstract: From a theory developed by C. Mehl, et al., a theory of the rank one perturbation of Hamiltonian
systems with periodic coefficients is proposed. It is shown that the rank one perturbation of the fundamental
solution of Hamiltonian system with periodic coefficients is solution of its rank one perturbation. Some results on
the consequences of the strong stability of these types of systems on their rank one perturbation is proposed. Two
numerical examples are given to illustrate this theory.
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1 Introduction
Let J,W ∈ R2N×2N be two matrices such that J
is nonsingular and skew-symmetric matrix. We say
that the matrix W is J-symplectic (or J-orthogonal)
if W TJW = J . These types of matrices (so-
called structured) usually appear in control theory
[1, 11, 12, 15]: more precisely in optimal control [11]
and in the parametric resonance theory [10, 15]. In
these areas, these types of matrices are obtained as
solutions of Hamiltonian systems with periodic coeffi-
cients. About these systems, that are differential equa-
tions with P -periodic coefficients of the below form

J
dX(t)

dt
= H(t)X(t), t ∈ R (1)

where JT = −J , (H(t))T = H(t) = H(t + P ).
The fundamental solution X(t) of (1) i.e. the matrix
function satisfying J

dX(t)

dt
= H(t)X(t), t ∈ R∗

+

X(0) = I2N
(2)

is J-symplectic [2, 3, 7, 15] and satisfies the rela-
tionship X(t + nP ) = X(t)Xn(P ), ∀t ∈ R and

∀n ∈ N. The solution of the system evaluated at the
period is called the monodromy matrix of the system.
The eigenvalues of this monodromy matrix are called
the multipliers of system (2). The following defini-
tion permits to classify the multiplies of Hamiltonian
system

Definition 1 Let ρ be a semi-simple multiplier of (2)
lying on the unit circle. Then ρ is called a multiplier of
the first (second) kind if the quadratic form (iJx, x) is
positive (negative) on the eigenspace associated with
ρ . When (Jx, x) = 0, then ρ is of mixed kind.

In this definition, the notation (iJx, x) stands for the
Euclidean scalar product and i =

√
−1.

This other definition proposed by S. K. Godunov
[4, 5, 8, 9] gives another classification of the multipli-
ers of (2)

Definition 2 Let ρ be a semi-simple multiplier of
(2) lying on the unit circle. We say that ρ is of
the red (green) color or in short r-multiplier ( g-
multiplier) if (S0x, x) > 0 (respectively (S0x, x) <
0) on the eigenspace associated with ρ where S0 =
(1/2)

(
(JX(P ))T + (JX(P ))

)
. If (S0x, x) = 0, we

say that ρ is of mixed color.
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From Definition 2, Dosso and Sadkane obtained a
result of strong stability of symplectic matrix (see
[2, 4, 6])

Theorem 3 A symplectic matrix is strong stability if
and only if

1. all eigenvalues are on the unit circle ;

2. the eigenvalues are either red color or green
color ;

3. the subspaces associated with these deux groups
of the eigenvalues are well separated.

Denote by Pr and Pg the spectral projectors asso-
ciated with the r−eigenvalues and g−eigenvalues of
the monodromy matrix X(P ) of (2) and let us put

Sr := PT
r S0Pr = ST

r ≥ 0

and
Sg := PT

g S0Pg = ST
g ≤ 0

where

S0 = (1/2)
(
(X(P )J) + (X(P )J)T

)
.

We give the following theorem which gathers all as-
sertions on the strong stability of Hamiltonian systems
with periodic coefficients [2, 6, 15].

Theorem 4 Hamiltonian system (2) is strongly stable
if one of the following conditions is satisfied :

1. If there exists ϵ > 0 such that any Hamiltonian
system with P -periodic coefficients of the form

J
dX(t)

dt
= H̃(t)X(t) and satisfying

∥H − H̃∥ ≡
∫ T

0
∥H(t)− H̃(t)∥dt < ϵ

is stable.

2. The monodromy matrix W = X(P ) of system
(2) is strongly stable

3. (KGL criterion) the multipliers of system (2) are
either of the first kind and either of second kind.
The multipliers of the first kind and second kind
of the monodromy matrix should be well sepa-
rated i.e. the quantity

δKGL(X(P )) = min
{
|eiθk − eiθl | eiθk , eiθl

are multipliers of (2) of different kinds } (3)

should not be close to zero.

4. the multipliers of system (2) are either of the
red color and either of the green color. The r-
multipliers and g-multipliers of the monodromy
matrix should be well separated i.e. the quantity

δS(X(P )) = min
{
|eiθk − eiθl | eiθk , eiθl

are r−multpliers and g−multipliers of (2)}
(4)

should not be close to zero.

5. Sr ≥ 0, Sg ≤ 0 and Sr − Sg > 0

6. Pr + Pg = I and PT
r S0Pg = 0.

The paper is organized as follows. In Section
2 we give some preliminaries and useful results to
introduce the rank one perturbations of Hamiltonian
systems with periodic coefficients. More specifically,
this section explains what led us to rank one pertur-
bations of Hamiltonian system with periodic coeffi-
cients. Section 3 explains the concept of rank one per-
turbation of Hamiltonian systems with coefficients. In
Section 4 we analyze the consequences of strongly
stable of Hamiltonian systems with periodic coeffi-
cients on its rank on perturbation. Section 5 is devoted
to numerical tests. Finally some concluding remarks
are summarized in Section 6

Throughout this paper, we denoted the identity
and zero matrices of order k by Ik and 0k respectively
or just I and 0 whenever it is clear from the context.
The 2-norm of a matrix A is denoted by ∥A∥. The
transpose of a matrix (or vector ) U is denoted by UT .

2 Rank one perturbation of sym-
plectic matrices depending on a pa-
rameter

Let W ∈ R2N×2N be a J-symplectic matrix where
J ∈ R2N×2N is skew-symmetric matrix (i.e. JT =
−J)[13, 14].

Definition 5 We call a rank one perturbation of the
symplectic matrix W any matrix of the form W̃ =
(I + uuTJ)W where u is a non zero vector of R2N .

We recall in the following proposition some properties
of rank one perturbations of symplectic matrices (see
[16]).

Proposition 6 Let W be a J-symplectic matrix.

1. Any rank one perturbation of W is J-symplectic.

2. The invertible of a rank one perturbation I +
uuTJ of identity matrix I is the matrix I−uuTJ .
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Proof: See [13, 16] for the proof. ⊓⊔
Let u be a non zero vector of R2N . Consider the

following lemma

Lemma 7 Consider the rank one perturbations W̃ =
(I+uuTJ)W of the J-symplectic matrixW . Then for
any y ∈ R2N , the quadratic form (S0y, y) is defined
by

(S0y, y) = (S̃0y, y)− φ(y) (5)

where
S̃0 =

1

2

(
(JW̃ ) + (JW̃ )T

)
and

φ(y) =
1

2

(
((JuuTJW ) + (JuuTJW ))T )y, y

)
.

Proof: Developing S̃0, we have

S̃0 =
1

2

(
(JW ) + (JW )T

)
+

1

2

[
(JuuTJW ) + (JuuTJW )T

]
.

we deduct

(S̃0y, y) = (S0y, y)+

1

2

([
(JuuTJW ) + (JuuTJW )T

]
y, y
)

︸ ︷︷ ︸
φ(y)

= (S0y, y) + φ(y)

⊓⊔

Corollary 8 Let ρ be an eigenvalue of W of modulus
1 and y an eigenvector associated with ρ. Then ρ is
an eigenvalue of red color (respectively eigenvalue
of green color) if and only if

(
S̃0y, y

)
> φ(y)

(respectively
(
S̃0y, y

)
< φ(y)).

However if
(
S̃0y, y

)
= φ(y), then ρ is of mixed

color.

Proof: According to lemma 7, we get

(S0y, y) = (S̃0y, y)− φ(y)

From Definition 2, we have

• if ρ is an eigenvalue of red color,

(S0y, y) > 0 =⇒ (S̃0y, y) > φ(y) ;

• if ρ is an eigenvalue of green color,

(S0y, y) < 0 =⇒ (S̃0y, y) < φ(y) ;

• if ρ is an eigenvalue of mixed color,

(S0y, y) = 0 =⇒ (S̃0y, y) = φ(y).

⊓⊔
We consider the following rank one perturbation

of the fundamental solution X(t) of (2)

X̃(t) = (I + uuT )X(t) (6)

then we have the following lemma

Lemma 9 If X̃(t) is a J-symplectic matrix function
such that rank(X̃(t)−X(t)) = 1, ∀t > 0, then there
is a vector function u(t) ∈ C2N ∀t > 0 such that

X̃(t) = (I + u(t)u(t)TJ)X(t), ∀t ∈ R

Conversely, for any vector u(t) ∈ C2N , the matrix
function X̃(t) is J-symplectic.

Proof: According to Lemma 7.1 of [13, Section 7,p.
18], for all t > 0, there exists a vector u(t) ∈ C2N

such that

X̃(t) = (I + u(t)u(t)TJ)X(t).

Moreover, if X(t) is J-symplectic, X̃(t) is also J-
symplectic. ⊓⊔

This Lemma leads us to introduce the concept of
rank one perturbation of Hamiltonian systems with
periodic coefficients.

Now consider that the vector function is a vec-
tor constant. We give the following theorem which
extend Theorem 7.2 of [13, Section 7, p. 19] to ma-
trizant of system (2).

Theorem 10 Let J ∈ C2N×2N be skew-symmetric
and nonsingular matrix, (X(t))t>0 fundamental so-
lution of system (2) and λ(t) ∈ C an eigenvalue of
X(t) for all t > 0. Assume that X(t) has the Jordan
canonical form l1⊕

j=1

Jn1(λ(t))

⊕

 l2⊕
j=1

Jn2(λ(t))

⊕

· · · ⊕

lm(t)⊕
j=1

Jnm(t)
(λ(t))

⊕ J (t),

where n1 > · · · > nm(t) with m : R −→ N∗ a
function of index such that the algebraic multiplici-
ties is a(t) = l1n1 + · · · + lm(t)nm(t) and J (t) with
σ(J (t)) ⊆ C \ {λ(t)} contains all Jordan blocks as-
sociated with eigenvalues different from λ(t). Fur-
thermore, let u ∈ C2N and B(t) = uuTJX(t).
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(1) If ∀t > 0, λ(t) ̸∈ {−1, 1}, then generically with
respect to the components of u, the matrixX(t)+
B(t) has the Jordan canonical forml1−1⊕

j=1

Jn1(λ(t))

⊕

 l2⊕
j=1

Jn2(λ(t))

⊕ · · ·⊕

lm(t)⊕
j=1

Jnm(t)
(λ(t))

⊕ J̃ (t),

(7)

where J (t) contains all the Jordan blocks of
X(t) + B(t) associated with eigenvalues differ-
ent from λ(t).

(2) If ∃t0 > 0, verifying λ(t0) ∈ {+1, 1}, we have

(2a) if n1 is even, then generically with respect
to the components of u, the matrix
X(t0) + B(t0) has the Jordan canonical
forml1−1⊕

j=1

Jn1(λ(t0))

⊕

 l2⊕
j=1

Jn2(λ(t0))

⊕

· · · ⊕

lm(t)⊕
j=1

Jnm(t)
(λ(t0))

⊕ J̃ (t0),

where J (t) contains all the Jordan of
X(t) + B(t) associated with eigenvalues
different from λ(t).

(2b) if n1 is odd, then l1 is even and generi-
cally with respect to the components of u,
the matrix X(t0) + B(t0) has the Jordan
canonical form

Jn1+1(λ(t0))⊕

l1−2⊕
j=1

Jn1(λ(t0))

⊕

· · · ⊕

lm(t)⊕
j=1

Jnm(t)
(λ(t0))

⊕ J̃ (t0),

where J (t0) contains all the blocks of
X(t0)+B(t0) associated with eigenvalues
different from λ(t0).

Proof: For all t > 0, if λ(t) ̸∈ {−1, 1}, we have
decomposition (7) according to [13, Theorem 7.2]).
Other hand, the number of Jordan blocks depend on
the variation of t. Thus, this number is a function of
index m : R+ −→ N∗.

For the other two points (2a) and (2b), we show
in the same way that items (2) and (3) of Theorem
7.2 of [13, Theorem 7.2]) since X(t0) + B(t0) is a
constant matrix. ⊓⊔

In fact, the integers l1, ..., lm(t) and indexes
n1, ..., nm(t) are not constant when t varies. The num-
ber of Jordan blocks and their sizes can vary in func-
tion of the variation of t. In Theorem 10, we consider
the constant integers lk and nk ∀k ∈ {1, ...,m(t)} for
an index m(t) given. When t = 0, λ(0) = 1 with
m(0) = 2N and lk = 1, ∀k. All Jordan blocks are
reduced to 1.

3 Rank one perturbations of Hamil-
tonian system with periodic coeffi-
cients

Let u be a non zero and constant vector of R2N .
(X(t))t∈≥0 the fundamental solution of system 2. We
have the following proposition

Proposition 11 Consider the perturbed Hamiltonian
system

J
dX̃(t)

dt
= [H(t) + E(t)] X̃(t) (8)

where

E(t) = (JuuTH(t))T + JuuTH(t)

+(uuTJ)TH(t)(uuTJ).

Then X̃(t) = (I +uuTJ)X(t) is a solution of system
(8).

Proof: By derivation of X̃(t), we obtain :

J
dX̃(t)

dt
= J(I + uuTJ)J−1J

dX(t)

dt

=J(I + uuTJ)J−1H(t)X(t),

according from system (2)

=[H(t) + JuuTH(t)]X(t)

=[H(t) + JuuTH(t)](I + uuTJ)−1X̃(t)

=[H(t) + JuuTH(t)](I − uuTJ)X̃(t)

because (I + uuTJ)−1 = (I − uuTJ) (see [16])

=
[
H(t)−H(t)uuTJ + JuuTH(t)−
JuuTH(t)uuTJ

]
X̃(t)

=

H(t) + (Juu
T
H(t))

T
+ Juu

T
H(t) + (uu

T
J)

T
H(t)(uu

T
J)︸ ︷︷ ︸

E(t)

 X̃(t)

WSEAS TRANSACTIONS on MATHEMATICS
Mouhamadou Dosso, Arouna G. Y. Traore, 

Jean-Claude Koua Brou

E-ISSN: 2224-2880 505 Volume 15, 2016



Hence the perturbed Hamiltonian equation (8)
follows where

E(t) =(JuuTH(t))T + JuuTH(t)+

(uuTJ)TH(t)(uuTJ) (9)

⊓⊔
We note that E(t) is symmetric and P -periodic

i.e. E(t)T = E(t) and E(t + P ) = E(t) for all
t ≥ 0. The following corollary gives us a simplified
form of system (8)

Corollary 12 System (8) can be put at the form J
dX̃(t)

dt
= (I − uuTJ)TH(t)(I − uuTJ)X̃(t),

X̃(0) = I + uuTJ
(10)

Proof: Indeed, developing (I − uuTJ)TH(t)(I −
uuTJ), we get

(I − uuTJ)TH(t)(I − uuTJ) = H(t) +

(JTuuTH(t))T+JTuuTH(t)+(uuTJ)TH(t)(uuTJ)︸ ︷︷ ︸
E(t)

and X̃(0) = (I + uuTJ)X(0) = I + uuTJ . ⊓⊔
We give the following corollary

Corollary 13 Let (X(t))t≥0 be the fundamental so-
lution of system (2). All solution X̃(t) of perturbed
system (10) of system (2), is of the form X̃(t) =
(I + uuTJ)X(t).

Proof: From Proposition 8 if X(t) is a solution of
(2), the perturbed matrix W (t) = (I + uuTJ)X(t) is
a solution of (10).

Reciprocally, for any solution X̃(t) de (10), Let
us put

X(t) = (I − uuTJ)X̃(t)

where u is the vector defined in system (10).
Since (I + uuTJ) is inverse of the matrix (I −

uuTJ) (see [16]), it holds that

X̃(t) = (I + uuTJ)X(t)

By replacing the expression of X̃(t) in (10), we obtain

J(I + uuTJ)
d

dt
X(t) = (I − uuTJ)TH(t)X(t)

J(I + uuTJ)
d

dt
X(t) = (I − uuTJ)TH(t)X(t)

(I − uuTJ)−TJ(I + uuTJ)
d

dt
X(t) =H(t)X(t)

(I + uuTJ)TJ(I + uuTJ)︸ ︷︷ ︸
=J

d

dt
X(t) =H(t)X(t)

J
d

dt
X(t) =H(t)X(t)

and X(0) = (I − uuTJ)X̃(0) = (I − uuTJ)(I +
uuTJ) = I . Consequently, X(t) is the solution of
(2). ⊓⊔

From the foregoing, we give the following defini-
tion:

Definition 14 We call rank one perturbations of
Hamiltonian system with periodic coefficients, any
perturbation of the form (10) of (2).

Consider the following canonical perturbed system
taking I2N at t = 0. J

dW̃ (t)

dt
= (I − uuTJ)TH(t)(I − uuTJ)W̃ (t),

W̃ (0) = I
(11)

4 Consequence of the strong stabil-
ity on rank one perturbations

We give the following proposition which is a conse-
quent of Corollary 8

Proposition 15 If a symplectic matrix W is strongly
stable, then there exists a positif constant δ such that
any vector u ∈ R2N verifying ∥uuTJW∥ < δ, we
have

(
S̃0y, y

)
≠ φ(y) for any eigenvector y of W

where S̃0 = (1/2)
(
(JW̃ ) + (JW̃ )

)
with W̃ = (I +

uuT )W .

Proof: The strong stability of symplectic matrix W
implies that the eigenvalues of W are either of red
color or either of green color i.e. for any eigenvector
y of W , we have

(S0y, y) ̸= 0 =⇒ (S̃0y, y) ̸= φ(y)

using Corollary 8. ⊓⊔
This following Proposition gives us another con-

sequence of the strong stability of W under small per-
turbation that preserve symplecticity.

Proposition 16 If a symplectic matrix W is strongly
stable, then there exists a positif constant δ such that
any vector u ∈ R2N verifies ∥uuTJW∥ < δ, we have
W̃ = (I + uutJ)W is stable.

Proof: If W is strongly stable, then there exists
a positif constant δ such that any small perturba-
tion W̃ of W preserving its symplecticity verifying
∥W̃ −W∥ ≤ δ, is stable. In particulary, if the pertur-
bation is a rank one perturbation with W̃ of the form
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W +uuTJW , any vector u verifying ∥uuTJW∥ ≤ δ

gives W̃ stable. ⊓⊔
Hence we have this following result on the strong

stability of the Hamiltonian systems with periodic co-
efficients

Proposition 17 If Hamiltonian system with periodic
coefficients (2) is strongly stable, then there exists ε >
0 such that for any vector u verifying

∥E(t)∥ ≤ ε

where E(t) is defined in (9), rank one perturbation
Hamiltonian system (10) associated is stable.

Proof: This proposition is a consequence of Theorem
4 using system (8) of Proposition 11. ⊓⊔

On the other hand, if the unperturbed system is
unstable, there exits a neighborhood in which any rank
one perturbation of system (2) remains unstable.

Remark 18 The stability of any small rank one per-
turbation of a Hamiltonian system with periodic co-
efficients doesn’t imply its strong stability because we
are in a particular case of the perturbation of the sys-
tem. However it can permit to study the behavior of
multipliers of Hamiltonian systems with periodic co-
efficients.

5 Numerical examples
Example 19 Consider the Mathieu equation

J
d2y(t)

dt2
= (a+ b sin(2t))y(t) (12)

where a, b ∈ R (see [15, vol. 2, p. 412],[4]).

Putting

x(t) =

(
y
dy

dt

)
, J =

(
0 −1
1 0

)
and

H(t) =

(
b sin 2t+ a 0

0 1

)
,

we obtain the following canonical Hamiltonian Equa-
tion  J

dX(t)

dt
= H(t)X(t), ∀t ∈ R,

X(0) = I2,
(13)

where the matrixH(t) is Hamiltonian and π-periodic.
Let u ∈ R2N×2N be a random vector in a neighbor-
hood of the zero vector. Consider perturbed system

(10) of (13). We show that the rank one perturbation
of the fundamental solution is a solution of perturbed
system (10). Consider

ψ(t) = ∥X̃1(t)− X̃2(t)∥, ∀t ≥ 0

where X̃1(t) = (I − uuTJ)X(t) and (X̃2(t))t∈≥0 is
the solution of system (10). We show by numerical
examples that (ψ(t)) ≤ 1.5 10−14, ∀t ∈ [0, π].

• For a = 7 and b = 4, consider the vector u =(
0.8913
0.7621

)
. In Figure 1, we consider a random

vector u which permits to perturb system (13) by
the vectors u, 10−1u, 10−2u and 10−3u. In this
first figure, we note that ψ(t) ≤ 1.5 10−14. This
shows that X̃1(t) = X̃2(t) for all t ∈ [0, π] i.e.
the rank one perturbation (X̃1(t))t∈[0,π] of the
fundamental solution of system (13) is equal to
the solution (X̃2(t))t∈[0,π] of rank one perturba-
tion system (10).

0 1 2 3
0

1

2

3

4
x 10

−14

t,times

ψ
(t

)

a=7 and b=4 with u

ψ(t)

y=1.5 10−14

0 1 2 3
0

1

2

3

4
x 10

−14

t,times
ψ

(t
)

a=7 and b=4 with 10−1u

ψ(t)

y=1.5 10−14

0 1 2 3
0

1

2

3

4
x 10

−14

t,times

ψ
(t

)

a=7 and b=4 with 10−2u

ψ(t)

y=1.5 10−14

0 1 2 3
0

1

2

3

4
x 10

−14

t,times

ψ
(t

)

a=7 and b=4 with 10−3u

ψ(t)

y=1.5 10−14

Figure 1: Comparison of two solutions

However, unperturbed system (13) is strongly
stable. We remark that the rank one perturbed
systems (10) of (13) is strongly stable for any
vector belonging to

{
u, 10−1u, 10−2u, 10−3u

}
.

Therefore they are stable. This justifies Proposi-
tion (17)

• For a = 16.1916618724166685... and b = 5,

consider the vector u =

(
0.4565
0.0185

)
. In this

another example illustrated by Figure 2, we con-
sider a random vector u which permits to per-
turb system (13) by the vectors u, 10−1u, 10−2u
and 10−3u. In figure 2, we note that ψ(t) ≤
1.5 10−14. This shows that X̃1(t) = X̃2(t) for
all t ∈ [0, π].
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Figure 2: Comparison of two solutions

In this example, the unperturbed system be-
ing unstable, the rank one perturbation of the
system is unstable for any vector belonging to{
u, 10−1u, 10−2u, 10−3u

}
. This justifies the exis-

tence of a neighborhood of the unperturbed system
in which any rank one perturbation of the system is
unstable.

Example 20 Consider the system of differential
equations ( see [9] and [15, Vil. 2, p. 412])

q1
d2η1
dt2

+ p1η1

+ [aη1 cos 2γt+ (b cos 2γt+ c sin 2γt)η3] = 0

q2
d2η2
dt2

+ p2η2 + gη3 sin 5γt = 0,

q3
d2η3
dt2

+ p3η3

+ [(b cos 2γt+ c sin 2γt)η1 + gη2 sin 5γt] = 0,
(14)

which can be reduced on the following canonical
Hamiltonian system

J
dX(t)

dt
= H(t), X(0) = I6 (15)

where

x =

 η

dη

dt

 , η =


η1√
q1
η2√
q2

eta3√
q3

 ,

J =

(
03 −I3
I3 03

)
, H(t) =

(
P (t) 03
03 I3

)
,

with

P (t)=



p1 + a cos 2γt

q1
0

b cos 2γ2γt+c sin 2γt
√

q1q3

0
p2

q2

g sin 5γt√
q2q3

b cos 2γ2γt+c sin 2γt
√

q1q3

g sin 5γt√
q2q3

p3

q3

 .

Let u ∈ R2N be a random vector in a neighbor-
hood of the zero vector. Consider perturbed system
(10) of (15). We show that the rank one perturbation
of the fundamental solution of (15) is a solution of the
rank one perturbation of the system. Consider

ψ(t) = ∥X̃1(t)− X̃2(t)∥, ∀t ∈ R

where X̃1(t) = (I − uuTJ)X(t) and (X̃2(t))t∈R is
the solution of the rank one perturbation Hamiltonian
system (10) of (15). Figures 3 and 4 represent the
norm of the difference between X̃1 et X̃2.

• for ϵ = 15.5 and δ = 1, Let’s take

u =

 0.8214
0.4447
0.6154
0.7919
0.9218
0.7382

. Figure 3 is ob-

tained for values of any vector taken in{
u, 10−1u, 10−2u, 10−3u

}
. In figure 3, we

note that ψ(t) ≤ 5 10−13. This shows that
X̃1(t) = X̃2(t) for all t ∈ [0, π] i.e. the rank one
perturbation (X̃1(t))t∈[0,π] of the fundamental
solution of system (15) is equal to the solution
(X̃2(t))t∈[0,π] of the rank one perturbation
system of (15).
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Figure 3: Comparison of two solutions

However, unperturbed system (15) is strongly
stable. We also note that the rank one perturbed
systems (10) of (15) is strongly stable for any
vector belonging to

{
u, 10−1u, 10−2u, 10−3u

}
.

Therefore they are stable. This justifies Proposi-
tion (17)
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• ϵ = 15 and δ = 2, Let’s take u =

 0.0272
0.3127
0.0129
0.3840
0.6831
0.0928

.

The following figures is obtained for any vector
belonging to

{
u, 10−1u, 10−2u, 10−3u

}
. In fig-

ure 4, we also note that ψ(t) ≤ 2 10−13. This
shows that X̃1(t) = X̃2(t) for all t ∈ [0, π].
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Figure 4: Comparisons of two solutions

In this latter example, the unperturbed system
is unstable and the rank one perturbation sys-
tems remain unstable for any vector belonging
to
{
u, 10−1u, 10−2u, 10−3u

}
. This justifies the

existence of a neighborhood of the unperturbed
system in which any rank one perturbation of the
system is unstable.

6 Conclusion
From a theory developed by C. Mehl, et al., on the
rank one perturbation of symplectic matrices (see
[13]), we defined the rank one perturbation of Hamil-
tonian system of periodic coefficients. After an adap-
tation of some results of [13] on symplectic matrices
when they depend on a time parameter, we show that
the rank one perturbation of the fundamental solution
of a Hamiltonian system with periodic coefficients is
solution of the rank one perturbation of the system.
As result of this theory, we give a consequence of the
strong stability on a small rank one perturbation of
these Hamiltonian systems. Two numerical examples
are given to illustrate this theory.

In future work, we will study how to use the rank
one perturbation of Hamiltonian system with periodic
coefficients to analyze the behavior of their multipli-
ers and also how this theory can analyze their strong
stability ?
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