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Abstract: By Fichera-Oleinik Rule, how to give a homogeneous boundary condition to assure the posedness of the
equation
Ozt + Uayu — Oy = f(fU’y,t,U)» (:Ba Y, t) €EQr=0Qx (O,T),
is researched. By introducing a new kind of entropy solution, in which the trace 7(%), x; = x or y, on the
boundary of €2 is avoided. By the parabolic regularization method, the uniformly estimate of the gradient is
obtained, and using Kolmogoroff’s theorem, the solvability of the equation in BV (Qr) is obtained.
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1 Introduction er words, some blow-up phenomena happen in finite

time.
In this paper, we consider the initial boundary value As for the boundary value problem of equation
problem of the following partial differential equation (). IfQ = (0,R) x (0,N) C R? and the non-

negative solutions is considered, according to Fichera-

Ozatt + udyu — yu = f(-,w), (1) Oleinik Rule, using Oleinik’s line method (see [14] ],

5. the author had got the local classical solution of (1) in

where (x,y,t).e QT = X (0,T7), 2 C R isa [15],[16] . If Q@ € R%is a general bounded domain
bounded domain with the suitably smooth boundary with suitably smooth boundary 9, very recently, the

o1. The equation (1), arises i'n mathematics finance author [17] has researched the posedness of the solu-
[1], arises when St“dymg nonlinear p'hysu‘:al phenom- tions of equation (1) with the initial value condition
ena such as the combined effects of diffusion and con-

vection of matter [2]. Antonelli, Barucci and Mancino w(z,y,0) = uo(z,y), (z,y) € Q, (2)
[1] introduced a new model for agent’s decision under
risk, in which the utility function is the solution of
equation (1). Under the assumption of that f is a uni-
formly Lipschitz continuous function, Crandall, Ishii

and the part boundary value condition. In details, only
on the portion of the boundary

and Lions [31, Citt'i, Pascucci and Polidoro [4], An- Sy = {(z,y,t) € 00 x [0,T) : ny(z,y,t) # 0},
tonelli and Pascucci [5], step by step, they had proved (3)
that there is a local classical solution of Cauchy prob- is endowed the homogeneous boundary value condi-
lem of equation (1). tion

Clearly, equation (1) is a degenerate parabolic e- w(z,y,t) =0, (z,y,t) € T, (4)
quation on account of that it lacks the second order
partial derivative term 0y, u. As for the existence and and 77 = {n1, na, 0} is the inner unit normal vector of
uniqueness of the global weak solution for Cauchy o09.
problem of equation (1), there are some different ways However, [17] did not explain that why the ho-
to deal with them, for examples, equation (1) is the mogeneous boundary value condition (4) is endowed
special case of the degenerate parabolic equations dis- on the portion of the boundary (3). In this paper, we
cussed in [6-7] etc. The other related results in the shall give an explanation to the conditions (3)-(4) by
posedness of the degenerate parabolic equations, one Fichera-Oleinik Rule, then we shall give a new kind of
can refer to [8-12, 27-28]. However, the author [13] entropy solution to the problem (1)-(2)-(4), the advan-
had shown that the global weak solution of equation tage of the approach was that the boundary condition
(1) can not be a classical solution generally. In oth- was implicitly contained in the entropy inequalities.
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We shall use the general parabolic regularization
method to prove the existence of the solution, in other
words, the initial boundary value problem of the fol-
lowing equation is considered

AU + Opgue + uOyu. — Oru,

= f(z,y,t,ue), (z,y,t) € QA x (0, 7). (5)

In order to prove the compactness of {u.}, we need
some estimates on {u. }. However, since for the limit

function u of a certain subsequence of {uc}, § 8" and

g“ need not have the trace 7( ), Ty = T ory, on

the boundary of ), we have to make a detour to avoid

~( g L) in defining the solution, this method is inspired
by [18] At the same time, we use some ideas of [6-
7] to prove the existence of the solution. As for the
stability of the solutions, it is able to be proved by a
similar way as [17].

2 Fichera-Oleinik Rules and the ap-
plications

Early as in 50-60s of the last century, Fichera [19-20]
and Oleinik [21-22] developed and perfected the gen-
eral theory of second order equation with nonnega-
tive characteristic form, which, in particular contains
those degenerating on the boundary. We can call it as
Fichera-Oleinik Rule. By the rule, for a linear degen-
erate elliptic equation,

N+1 9 Nt
rs a u 8%
r§::1 (@) 0x,0x - ; br(z) ox, + c(x)u

= f(z),z € Q c RN*! (6)

if one wants to consider the boundary value problem
of (6), it needs and only needs to give part boundary
condition. In details, let {n,} be the inner unit normal
vector of Q2 and denote that

Yo={ze€ o a"*n,n, = 0, (br — a3’ )n, < 0},

Yy = {2 € 90 : a"*ngn, > 0}.

Then, to ensure the posedness of equation (6),
Fichera-Oleinik Rule tells us that the suitable bound-
ary condition is

us Uy, = 9(@). (7)

In particular, if the matrix (a"*) is positive definite, (7)
is just the usual Dirichlet boundary condition.
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Now, for the nonlinear heat equation

= AA(u), (8)
with the existence of A~1, in other words, equation (8)
is weakly degenerate, thenletv = A(u),u = A~ (v),

(9)

According to Fichera-Oleinik Rule, we know that we
can require the whole Dirichlet homogeneous bound-
ary condition.

But, when considering the following anisotropic
degenerate parabolic equation

Av — (A7Hw)): = 0.

du_ 0
815_8952-

D

(0¥ () g

(%( )
R (CENCS

if the inverse matrix A~! = (a;;)~! is not existential,
we can not deal with it as (9). Rewrite equation (10)
as

+ f(u, t) e Qx(0,7), (10)

9%u

ou Ou
I ¥/
ot (“)axiaxj

+a” ( )8371 Ox;

(u,z,t); in Qr = Q x (0,7,
(11)

the domain is a cylinder Q2 x (0, 7). If welett = xn4+1
and regard the degenerate parabolic equation (11) as
the form of a “linear” degenerate elliptic equation as

(6). )
. ail 0
(@) (N+1)x (N+1) = < 0 0 ) :

If @¥/(0) = 0, which means that equation (11) is not
only strongly degenerate in the interior of €2, but also
on the boundary 0f2. Then ) 5 is an empty set. While

bs(x,t) = {
(12)

Under this observation, according to Fichera-
Oleinik Rule, the initial value condition (2) is always
needed, but on the lateral boundary 092 x (0,7, by
a*(0) = 0, the portion of the boundary on which we
can give the boundary value is

+Zb’

bl (u) +aij/(u)8‘%, 1<s=i<N,
-1, s=N+1,

5, = {z € 09 : ((0)

Y] 8u .. au
+a" (0)%|x689 —a" (0)%&689)”@' < 0}
J J
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= {z € 9Q :b;(0)n; < 0}. (13)

where {n;} be the unit inner normal vector of JS2.

Though (13) seems reasonable and beautiful,
whether the term | zean has a explicit definition is
unclearly, unless that equation (10) has a classical so-
lution. In fact, due to the strongly degenerate prop-
erty of (a'/), equation (10) generally only has weak
solution. For example, if we consider the solution of
equation (10) in BV sense, then we can not define the
trace of g—; on 0f2, which means that we also can not
define

¥, = {x € 00 : (b;(0)

Y ou

- ou
+a" (0)7|x689 —a" (0)67|xeag)ni < 0}.
Ly

Oz 5
Fortunately, only if b;(s) is derivable, then

¥, = {z € 00 : b;(0)n; < 0}. (14)

has a definite sense, and we can conjecture that we can
require the homogeneous boundary value condition on
it, one can refer to [27].

If without the assumption of that a”/ (0) = 0, ac-
cording to Fichera-Oleinik Rule, except the initial val-
ue (2), the suitable homogeneous boundary value for
equation (11) is

u |Zp: 0, (15)

where

> ={z € 99 : bj(0)ni(x) < 0}

U{x € 99 : " (0)n;(x)n;(x) > 0}.

Let us come back to the main equation (1) in our
paper. By comparing (1) to (6), we has the special
form

(@’)=10
0

o O O
o O O

and

bolu) = 502, ba(u) =

By the above discussion, according to Fichera-Oleinik
Rule, the initial value condition (2) is always needed,
but on the lateral boundary 0 x (0,T), it is not dif-
ficult to observe that

%y = {z €90 : anin; > 0} = {z € 90 : ny(z) #

Thus we give a reasonable explanation of the bound-
ary value condition (4).
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3 The definition of the solution

Following references [23-24], u € BV (Qr),Qr =
RN x (0,T), if and only if u € L}, .(Qr) and

o 1

where

w(xy +hi,- - on +hy,t+ hyyr)

—u(z,t) | dedt < K | b,

BP:{xGRNv‘X ’< p}’ h:(hl)hQ""hNahN+l)

and K is a positive constant. This is equivalent to
that the generalized derivatives of every function in
BV (Qr) are regular Radon measures on Q.

Let I', be the set of all jump points of u €
BV (Qr),v the normal of Ty, at X = (z,t), u™(X)
and v~ (X) the approximate limits of u at X € T,
with respect to (v,Y — X) > O and (v,Y — X) <0
respectively. For continuous function p(u,x,t) and
u € BV (Qr), define

1
plx,t,u) = / p(z,t,7ut + (1 — 7)u”)dr,
0

which is called the composite mean value of p. For
a given ¢, we denote I',, H', (v}, ---,v4) and u’,
as all jump points of wu(-,t), Housdorff measure of
I't, the unit normal vector of T, and the asymptot-
ic limit of w(-,t) respectively. Moreover, if f(s) €
CY(R), u € BV(Qr), then f(u) € BV(Qr) and

af(u) =, ou

=1,2,---,N. 16
) Fgt, i= 120N (6)
Let Sy (s) = [ hn(7)dr for small n > 0. Here

hy(s) = %(1 _ s |) ObV10usly hy(s) € C(R) and

hn(s) 20, | shy(s) [< 1, | Sy(s) [< 1;

. / _
lim $, () = sgn(s), lim s8)(s) =0, (17)

where sgn represents the sign function. In what fol-
lows, the dimension of the space variables is N = 2.

Definition 1 A function u is said to be the entropy so-
lution of (1)-(2)-(4), if

1. w € BV(Qr) N L>®(Qr), and there exist the
function g' € L?(Qr), such that

[, s

-/ gzm,y,wdmydt, (19)
T

o(z,y, t)dxdydt
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fOl’ any gO(CL‘,y,t) € LQ(QT) _

2. Forany 1, 02 € C*(Qr), ¢1 > 0, 912 |oa=
0. @1 [m\ms= 0. ¢1 loaxjor)= 2 loaxjr) and
supppa, supppr C Q0 x (0,T), for any k € R, for
any small n > 0, u satisfies

//Q (L) (u— k)1 — By (u, k)1y + In(u — k) p1za

—f(,u)Sy(u— k)1 — S;(u — k‘)(@xu)le]dxdydt

2

1 T 0
ff/ / / 529y (s —k)dspinadzdo > 0. (19)
2Jo JesJk

forany k € R, n > 0. Here

_ uS _
/ksn(s

I(u—Fk)= /Ou_k Sy(s)ds.

3. The initial value is satisfies in the sense

2
u
k) /~/Q [ucht + 7‘p2y + U@Qxa:]dxdydt
T

By(u, k) = k)ds,

tim [ | u(a,y.t) = uo(a,y) | dedy =0 (20)

t—=0JQ

Clearly, by (19), we have
// [y (u—k)p1e — By(u, k)p1y + In(u—k)p1ee
T
_f('v u)S”](u -
u2
k) // [upar + — oy + upag,|drdydt

STV

Let n — 0 in this inequality. One has

k)p1|dxdydt

k)dspinadzdo > 0.

1
/ / [[u—E| @1t = sgn(u—k) (u2—k2)p1y+lu—k|oree
QT 2
—f(-,u)sgn(u — k)p1]dzdydt
2
+89n(k)// [upas + i¢2y + UP2ze|drdydt

STV

Moreover, let 2 = 0 and so ¢; |y, = 0. We have

k)dspinadzdo > 0.

1
J [ = Mo+ gsontu = k)~ k),
T
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+|u - k:|§01:m: - f(’ u)sgn(u - k?)(pl]dﬁl?dt > 0.
This is just the entropy solution defined in [23-24].
Thus if u is the entropy solution in Definition 1, then
u is a entropy solution defined in general cases.

By the way, it is clear of that the function
o(z,t) € C°(Qr) satisfies the request of function
(1 in Definition 2.1. We do not choose the function
o(z,t) € C°(Qr) as the testing function in Def-
inition 1, since we need the boundary value of (1,
on which the relationship between itself with anoth-
er testing function o can be based Thus, we can

succeed to avoid the trace of (8—;) in defining the

solution.
We shall prove the following theorem.

Theorem 2 Suppose uo(z) € L>®(Q)NC*(Q). If
fz, Iy, ft are bounded functions, and f,, is bounded
too when u is bounded, then the equation (1) with the
initial boundary value conditions (2)(3) has a entropy
solution in the sense of Definition 1.

4 Proof of Theorem 2

Lemma 3 29 Assume thatr @ C RN is an open
bounded set and let g, f € L1(Q), as k — oo,
gr — f weakly in L1(2),1 < q < co. Then

inf klgrolo | gk ||Lq(Q)—|| g H

We now consider the following regularized prob-
lem

eAu+-0pzutudyu—oiu = f(-,u), (z,y,t) € Qx(0,T),
(21)
with the compatible initial value (2) and the homoge-

neous boundary value condition

u(z,y,t) =0, (z,y,t) € 2 =00 x[0,T). (22)

Under the assumptions of Theorem 2, it is well known
that there is a classical solution u, of the initial bound-
ary value problem of (21) with (2)-(22), e.g. one can
refer to the chapter 8 of [26].

We need to make some estimates for u. of (21).
Firstly, since ug(z) € L>(£2) , by the maximum prin-
ciple, we have

| ue [<[[ uo [ze<c. (23)
Secondly, let’s make the BV estimates of ..

Lemma 4 18] Ler u, be the solution of (21) with (2)-
(22). If the assumptions of Theorem 2 are true, then

Ou,

/c‘m |—\d0 < c14co(|gradue| Q)+| lL1(@))-

with constants c;,i = 1,2 independent of €, where
7i = {n1,na} is the inner normal vector of ().
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Theorem 5 Let u. be the solution of (21)-(2)-(22). If
the assumptions of Theorem 2 are true, then
<ec.

lgraduc |1 (o) (24)

where |gradu|? = Y7, \amz %+ ’t‘|2, c is indepen-

dent of ¢, and x1 = x, 22 = Y.

Proof In what follows, we simply denote the so-
lution of (21)-(2)-(22), u., as u, denote 1 = x, Ty =
y,x3 = t, dr = dxidxo, and the dual index of ¢ rep-
resents the sum from 1 to 2, the dual index of s or p
represents the sum from 1 to 3. Differentiate (21) with
respect to zg, s = 1,2, 3, and sum up for s after mul-

Sn(lgradul) then

tiplying the resulting relation by wu,, gradu]

integrating over 2 yields

Ous,  Sy(lgradu])

U
Q ot

|gradu|
_/6%/

0 0 ou
o Oxg Ox " Ox

yaT.

0 0
— /Q %(ums)ffn(\gradu])dx

= /E)Q umsnlags n(lgradul)do

|gradul

dex—d /I (lgradul)dz.

(25)
Sy(lgradul)

iz, |gradul

Sy(lgradul)
|gradu|

B / 9%I,(|gradul)
o 080

where &5 = u,, do is the surface integrable unit.

/ Au%uxé

:&7/ oL, (|gradul) nado
o9 Oz;

. / 0%I,,(|gradul)
o 080

0(uuy)
/Q 0w e
" [lgradulSy(|gradul)

_'_]/ Ou
-3

(26)

Uz gz Uz, z AT

Sy(|gradul) dx
|gradul

zsxiuxpxidaj- (27)
Sy(lgradul)

d
|gradul .

— I)(|gradul)] dx

—/ uly(|gradu|)nado
o0
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= —/ gu [|gradu|S,(|gradu|) — I,(|gradul)] dx.
Q oy
(28)
By the assumption of that f, f;, f, are bounded, and
fu is bounded due to |u| < ¢, then

/ 8f(m,y,t,u)u
Q

X
0xs s

Sy(|gradul)
|gradul

dx < c/ |gradu|dx.
Q

(29)
From (25)-(29), we have

d 2 ;
/%Wmmmmz—/anmem
dt o)

0€,06,
021, (|gradul)
‘5/Q €08,

—/Q(;j[lgmdu\s (lgradul) —

+/ oL, (|gradul) nydo
o9 Oxq

Uz Uy AT

Uz sz Urpx; dx

Iy(lgradul)] dz

e oI, (|gradul) nido
o0 8372

of(t,x,y,u
+/ O0xg Yas

Observing that on ¥ = 9§ x [0,T),

Sy(lgradul)

dz. 30
|gradul . (30)

u = O,Uz3‘2 = Ut’E = 07
and so we have
Ozt ‘E +elAu |E: f(ﬂ?,y,t, 0) (31)

then the surface integral in (30) just remains the fol-
lowing term

g 8/ 8In(|gradu])nid0+ oI, (|gradul)
o0

nlda
Oz; Py O0xy

By Lemma 4, using (31), it is able to deduce that
lim,,_,0 S can be estimated by |gradulr,, (), one can
refer to [18] for details.

Thus, by (30), letting n — 0, and noticing that

lim [|gradu|Sy(|gradu|) — I,(|gradu|)] =
n—0

we have
d
—/ |graduldz < c¢; + 02/ lgradu|dz, (32)
dt Ja Q

by the well-known Gronwall Lemma, we have

/Q |gradul|dz < ¢, (33)
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where c is constant independent of ¢. By (33), using
the equation (21), it is easy to show that

// \uxl\Qd:cldxzdt:// lug |*dzdydt < c.
Qr Qr

(34)

Now, we denote back that u. is the solution of
(21). Thus by Kolmogoroff’s theorem, there exists a
subsequence {u., } of u. and a functionu € BV (Qr)
NL>(Qr) such that u., is strongly convergent to w,
and so u;, — w a.e. on Q. By (34), there exist
functions g' € L?(Q7) and a subsequence of {¢}, we
can simply denote this subsequence as ¢ itself, such
that when ¢ — 0,

Ou, ,
o =g in L(Qr):

We now prove that v is a generalized solution of the
original problem (1)-(2)-(4). Let € C*(Qr), 1>

0, suppp C 2 x (0,7), ¢ Ism\sy= 0, 12 [90= 0.
Multiply (21) by ¢1.5,(u-—k), and integrate over Q.

obtain
[ [, B
T
B 0 8u6
//QT o Oz )15 (ue
e / / Atep1 Sy (us — k)dadydt

// Ususysols

+/ f(fE,y,t,’U/g)Solsn(
Qr

Let’s calculate every term in (35) by the part integral

method.
8 Ous
[1, Sos
T

—/ Iy (ue — k)predadydt. (36)
Qr

— k)dzdydt

— k)dxdydt

— k)dzdydt

ue — k)dzdydt. (35)

— k)dzdydt

5/ Aucp1 Sy (ue — k)drdydt
QT

T
:5/ / Vue - W15, (u
0 Joo

. — k)dtdo

. / Ve (S, (ue—k)Vip1+1S) (u-—k) Vu. ) dadydt
Qr

T
= —5Sn(k‘)/ / Ve - Wgoldtda
0 Joo

—5/ Ve Sy (ue — k)Vprdedydt
Qr
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- / / | Vue |2 8! (ue — k)prdadydt,  (37)
T

// Oratep1Sy(ue — k)dxdydt
T
T Oue
——Sn(k‘)/o /BQ o nypidtdo
// 8u€
T
:_Sn(k)/ / %tnlgaldtda
// 8u5
T
[ sy

I, s
T
/ I,
Qr
_/ / p1zn 1y (ue — k)dtdo, (39)
0 o0
// e 8, (e — k) daydlt
Ue —(~— Ue — i
T dy P 4

1 T
_ §/ /m(ug — k2)ngp1 Sy (ue — k)dtdo

// 8@1 Sn(ue — k)

8u
+901S;;(u€ — k) a;

—// By (ue, k)p1ydadydt
ST

From (35)-(40), we have

o, e

+/ Sn(uaa k)solx:(:dxdydt
Qr

(ue—k)@12+e1S (ue

— k)p1dzdydt

— k)prdadydt,  (38)

— k)p1gdxdydt

— k)p1zpdadydt

|dxdydt

k)dspinadrzdo.  (40)

— k)prdxdydt

- / By (ue, k)p1ydadydt
Qr

—6/ Ve - Vo1 5y (ue — k)dxdydt
Qr

Volume 15, 2016

—k)uey ) dxdydt



WSEAS TRANSACTIONS on MATHEMATICS

—5// | Ve |2 Sy (ue — k)prdadydt
T

I,

_/ f(xayataU)SDISn(Ua
Qr

uS/

E:tn

— k)p1dxdydt

— k)dzdydt
T
S, (k) / / Vu, - Tordtdo
0 JoQ
T ou
Sy (k / / -
"7( ) 0 59 Or
T
—Sn(k‘)/ / (plznldtda
0o Joa

1 T 0

—7/ / / s%S,(s—k)dspinadrdo = 0. (41)
2Jo Joa Jk
Taking > € C2(Qr),

©1 laaxo,r1= ¥2 laax(o,)

and suppy2 C Q x (0,7),

=Sy ( k‘// 8u€n1g01dtda
o0
—e5,( // Vu. - Woidtdo
/ / Ous 0902 1yt
Qr 8$Z 8902
—/ . o
ox
// u? ded ydt + = / / wlponydtdo
T
¥2
——Zdzdydt
+//Tusat ray ]a

T
/ Oie (P2xdxdydt = / / ’U@%nl dtdo
Qr Ox 0o Jea ~ Ox

—// Uepagedxdydt.
T

Since ¢12 |ao= 0, ¢1lsm\xn, = 0, by (41)-(43),
and by the homogeneous boundary value condition
(22), we have

pordrdydt

(42)

(43)

/ Iy (ue — k)predadydt
Qr

+/ I,(
Qr

— k)Aprdxdydt
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—/ By (ue, k)p1ydadydt
Qr
Oue 8802
k)|— dxdydt
[ 8//Ta$18$1 ey
+ / / Uepoppdrdydt — = / / ZaSDded dt
Qr T
92
——dxdydt
+/ / e Y J

—6/ Vue - Vi Sy (ue — k)dzdydt
// umS,'7 — k)prdxdydt
/ / / k)dspinadrdo

—/ f(z,y,t,u)p15,(ue — k)dwdt > 0. (44)
Qr

By Lemma 3,

lim inf St (uz — k) Oue Oue
e—0 Qr 3 3

prdzdydt

> | /Q o' 2 Sl (u — k)prdadydt.  (45)
T
Lete — 01in (44). By (45), we get (19) and the bound-
ary value condition is naturally concealed in the lim-
iting process.
The proof of (20) is similar to that in [2], [6], we
omit details here.

S The stability of the solutions

In the last section of the paper, we give the stability of
the solutions in the sense of Definition 1. The proof is
similar as [17], so we only give the outlines.

Lemma 6 [ Let u be a solution of (1)-(2)-(3). Then

(" —u")vy =0, a.e. (z,y,t) on [y. (46)

which is true in the sense of Hausdorff measure
Hy(Ty,).

The lemma can be proved in a similar way as the
proof of Lemma 6.1 in [6], we omit the details here.
Let u, v be two entropy solutions of (1) with ini-
tial values
(47)

u(az,y,O) = U()(LI?,y), v(a:,y,O) = vo(:r,y).

and with the homogeneous boundary value
u(z,y,t) = v(z,y,t) = 0 when (z,y,t) € .
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For simplicity, we denote the spatial variables
(z,y) as (z1,x2) or (y1,y2) in what follows, and
correspondingly, dr = dx1dxs, dy = dyidys.

Let o1 = w2 = @(z,t) € C(Qr). Then we
have

J [ ke

Bn(u, k), + In(u —k)Pzia

—Sy(u—k) | g'(u) [* o= F (-, u)Sy(u—k)p]dwdt > 0,

(48)

[ | 1w =0er = By(w.0py + Lfo = Do

=Sy (v=1) | g' () |? p—f(-,v) S, (v—1)pldydr > 0.

(49)
Letw(x,t, y,7) = ¢(z,t)jn(x —y,t — 7), where
¢(z,t) = 0, ¢(x,t) € C5°(Qr), and
gulx —y,t —7) = Wyt — ) wp (2 —u5), (50)
an(s) = (7). w(s) € CF(R),
w(s) >0, w(s)=0if |s|>1,
/_O:ow(s)ds — 1 (51)

We choose k = wv(y,7), | = u(x,t), ¢ =
Y(x,t,y,T)in (48) (49), integrate over Qr, plus them
together, then we get

//T/ [, (= )W+ vr)

—(By(u, v)thz, + By(v,u)iby,)
+In(u — V)10, + In(v - U)d}ylyl]

~Spw—v) (1g"@) [+ g'(v) )

—[f(,u)Sy(u—v) + f(-,v)S(v— u)]}cpdxdtdg(/dT).
52

No, by Lemma 6, by Kruzkov’s bi-variables method

(c.f.[17]), we are able to obtain the following inequal-

ity

J [ At =6t |10 | G

—gson(u =) — ),
—[f(,u) = f(-,v)]sgn(u — v)p}dxdt > 0. (53)
E-ISSN: 2224-2880
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Theorem 7 Let 0 < u < 1,0 < v < 1 be two so-

lutions of equation (1) with the homogeneous bound-

ary value yu |Z = v |Z = 0, and with the dif-
3 3

ferent initial values uy(x1, x2), vo(z1,x2) € L*(Q)
respectively. Suppose that |f,(-,u)| < ¢, and sup-
pose the distance function d(x) = dist(z, Q) satis-
fies that

(54)

|da:1:r:1 ‘ <eg,

near the boundary, then for any t € (0,T),

/ | w(zy, x9,t) —v(x1, 22, 1) | dr1dxe
Q

< /Q | uo(x1,x2) — vo(x1,2) | dr1das
+e-esssup [ u—v @ pesyx(0,) - (55)
where 35 = 00\ 3.
Proof Now, we can choose ¢ in (53) by
B(z,1) = wr(@)n(d),

where 7(t) € C§°(0,T), wy(z) € C*(R) is defined
as follows. For any given small enough 0 < A, 0 <
wy < 1, wlgg = 0and

wi(d) =1,if d(x) = dist(x,00) > A

when 0 < d(x) < A,

wi(d(x)) =1~ (d(ﬂ; 2
Then c
wWi(d)] < % (56)
wf\'(d):—%, if 0<d<A (57)
Now,
Prrar = M) (WA(d(2))) 121
= 1(t)(Wh(d)da, ),
= n(t)wi(d)dz, +wi(d)doya,]. (58

of that |dy,| < |Vd| = 1,i = 1,2,0 < fu(-u) < ¢,
0 < wu,v < ¢, from (53), we have

[ Jo
o[

—l—c//QT (e, t) — v(e, t)|édedt > 0. (59)

v(x,t)|pedadt

t)|wh(d)] | w— v | dzdt

Volume 15, 2016



WSEAS TRANSACTIONS on MATHEMATICS

Here Q) = {x : d(x) = dist(z,9Q) < \}. By (56),

0<//T u(z, t)

e / / Dl (d
+g//Tm@¢y—u
< [ [ utet) oo Ol (1)l

+c/Tn@M51/ |u—v|de
vo [ [ e

As A — 0, according to the definition of the trace, by
Yu |Z =y \Z = 0, we have
3 3

(, )| () lwa(d) ddt

) |u—v|dedt

z, t)|n(t)wx(d)dxdt

v(z, t)|n(t)wx(d)dxdt.

0< //T (@, £) — v, )| (t)dadt

T
+c/ DO | v = |g0 dt

—|—c//T x,t)
_ //T u(z, t) — v(z, t)|nidwdt

v [ a0 1w = v lnyuiom

cof [ utan

Let0 <s<7<T,and

(x,t)|n(t)dxdt

(x,t)|n(t)dxdt. (60)

n(t) = /Ts—t ae(o)do, € < min{r,T — s}.

—t

Here a.(t) is the kernel of mollifier with a.(t) = 0
fort ¢ (—e,€). Lete — 0. Then

/|ua:s

v(z, s)|dx </ lu(z, ) — v(z, T)|dx

+c-esssup| [ u—v s x07)

+//]uazt

By Gronwall Lemma, the desired result follows by let-
ting s — 0,

(x,t)|dzdt
|u(z, )

— vz, 7) |10
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< Ju(z,0)—v

we have the conclusion.

(2,0)| 1 ey +e-esssup| | u—v |ss (o17)
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