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Abstract: In this paper, combining with a fractional complex transformation, we propose a new generalized frac-
tional sub-equation method named fractio(‘@%) method to seek exact solutions for fractional partial differen-

tial equations. This method is the fractional version of the improved (G’/G) method. Based on this method, some
new exact solutions for the space-time fractional (2+1)-dimensional breaking soliton equations and the space-time
fractional Fokas equation are successfully found. Under some special cases, we get solitary wave solutions fol

them.

Key—Words:Fractional sub-equation method; Fractional partial differential equations; Exact solutions; Fractional
complex transformation; Fractional breaking soliton equations; Fractional Fokas equation.

1

Fractional differential equations are generalizations of
classical differential equations of integer order. The
main advantage of fractional differential equations in
comparison with classical differential equations of in-
teger order mainly lies in that fractional derivative
is more useful in describing the memory and hered-
itary properties of materials and processes. In recent
decades, fractional differential equations have gained
much attention as they are widely used to describe var-
ious complex phenomena in many fields such as the
fluid flow, signal processing, control theory, systems
identification, biology and other areas. The mathe-
matical modeling and simulation of systems and pro-
cesses leads to the research of the theory for fractional
differential equations. Many authors have investigat-
ed some aspects of fractional differential equations so
far. Among these investigations for fractional differ-
ential equations, research for seeking numerical solu-
tions and exact solutions of fractional differential e-
guations has been a hot topic, which can also provide
valuable reference for other related research. Many
powerful and efficient methods have been proposed to
obtain numerical solutions and exact solutions of frac-
tional differential equations so far. For example, these
methods include the (G'/G) method [1-3], the Homo-
Separation of Variables method [4], the variational
iterative method [5-7], the Adomian decomposition
method [8,9], the fractional sub-equation method [10-
12], the homotopy perturbation method [13-15] and
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so on. Based on these methods, a variety of fractional
differential equations have been investigated.

In this paper, using a new fractional sub-equation,
we propose a new generalized fractional sub-equation
method named fractionang;—G) method to seek exact
solutions for fractional partial differential equations in
the sense of modified Riemann-Liouville derivative.
This method can be seen as the fractional version of
the improved (G'/G) method [16].

The modified Riemann-Liouville fractional
derivative, defined by Jumarie in [17-20], has
many excellent characters in handling with many
fractional calculus problems. Many authors have
investigated various applications of the modified
Riemann-Liouville fractional derivative (for example,
see [21-23]). We now list the definition for it as
follows.

Definition 1 The modified Riemann-Liouville deriva-
tive of ordera is defined by the following expression:

4 e S (©) — F(0)de,
a _ 0<a<l,
Dif(t) = (f(n)(t))(ozfn)7 n<a<n+l,
n > 1.

Definition 2 The Riemann-Liouville fractional inte-
gral of order« on the intervall0, ¢ is defined by

_ S)oc—l

Iaf(t):/o (tFTf(S)dS-
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Some important properties for the modified
Riemann-Liouville derivative and fractional integral
are listed as follows (see [17, Eqgs. (3.10)-(3.13)], and

see also [10-12,21-23]) (the interval concerned below expressed by a polynomial (

is always defined b0, ¢]):

rt+r) ., .
Ml+r—a) ’ (@)
Dy (f)g(t)=g(t) Dy f(t)+ f(t)Di'g(t);(2)
Dy flg(t)] = fola(®)] D g(t)

Do‘f[ OICAG)
I*(Dif(t) = f(t) — f(0)
I*(g(t) Dy f (1)) = f()g(t) — f(0)g(0)

—I°(f()Di'g(1)). (5)

The rest of this paper is organized as follows. In
Section 2, we give the description of the fractional
(£2£) method for solving fractional partial differen-
tial equations. Then in Section 3 we apply this method
to establish exact solutions for the space-time frac-
tional (2+1)-dimensional breaking soliton equations

D" =

(3)
(4)
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, DUy, k3* DUy, ...) = 0. (8)
Step 2. Suppose that the solutlon of (8) can be
)as follows:
2 DO‘G
Zaﬂ Li=1,2,..k (9
wherea;;, i = 0,1,....m, j = 1,2,....k are con-

stants to be determined later wity,, # 0, the
positive integerm can be determined by consider-
ing the homogeneous balance between the highest or-
der derivatives and nonlinear terms appearing in (8),
G = G(¢) satisfies the following fractional ordinary
differential equation:

AGD¥G(€) -
—~C(DgG(6))

BGDEG(¢)

- EG?*(¢) =0, (10)

where DgG(¢) denotes the modified Riemann-
Liouville derivative of ordera for G(£) with respect

and the space-time fractional Fokas equation. Some to¢, andA, B, C, E are real parameters.

conclusions are presented at the end of the paper.

2 Description of the fractional (Z5)
method

In this section we give the description of th@é—G)
method for solving fractional partial differential equa-
tions.

Suppose that a fractional partial differential equa-
tion, say in the independent variables:, xs, ..., T,
is given by

P(ul,..uk,Df‘ul,..,Df‘uk,D ul,.,D uk,...
2

Dg uy,.., Dy ug, Di%uq, ... Dt uk,D U, ...)

=0, (6)

whereu; = u;(t,z1,x9,...,xy,), i = 1,...,k are un-
known functions,P is a polynomial inu; and their
various partial derivatives including fractional deriva-
tives.

Step 1. Suppose that

’LLi(t,l'l,l'Q, 7$n) = Ul(g)v

xi = ct + k121 + koxo + ... + kpxn + &o- (7)

Then by the second equality in Eq. (3), Eq. (7)
can be turned into the following fractional ordinary
differential equation with respect to the varialjle

P(Uy,...,Uy, ¢®DEUL, ..., ¢® DU, kS DEUY, ...,
kY DgUg, ... kY DEUL, ..., kg DEUy, > DU,
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In order to obtain the general solutions for Eq.
(10), we supposé&/(£) = H(n), and a nonlinear frac-
tional complex transformation = F(f ) Then by
Eqg. (1) and the first equality in Eq. (3), Eg. (10) can
be turned into the following second ordinary differen-
tial equation:

AHH"(n) — BHH'(n)
~C(H'(n))? = EH?(n) = 0. (11)
DenoteA; = B2+4FE(A-C), Ay = E(A-C).

By the general solutions of Eq. (11) [16] we have the
following expressions foL
WhenB # 0, A > 0
H _ _ B VA
H(n) — 2(4-0) " 2(4-0)
C'1 sinh 2?{470) +C3q cosh 2?{4?1077) (12)

VAL ]’
3(A-0)

C cosh +C9 sinh

NS

2(A—0C)

whereC,, C are arbitrary constants.
WhenB # 0, A; < 0:

Ho) _ B &
H(n) = 2(4-0) ' 2(4-0)
Vv -—A1n

V=81n
[ —(C1 sin m—i—CQ €os 3a—¢n

)+Czsm Y Al" ]’

(13)

C'1 cos

V=81
2(A—C

whereC,, C are arbitrary constants.
WhenB # 0, A; =0:

H'(U) — B _|_ Cs
H(n) 2(A-0) Ci+Can

(14)
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whereC,, Cs are arbitrary constants.
WhenB =0, As > 0:

V/Ban VB
H'(n) _ A/A_CQ, C'1 sinh a=0) +C5 cosh (=) ] (15)
H /A N )
)~ ( ) C'1 cosh a )—I—Cg sinh = 207;

whereC;, Cs are arbitrary constants.
WhenB =0, As < 0:

N/ — N/ —A
\/—[ Cq sin = c)n—l—Cgcos 27

H'(n) _
Hip) — (4=0) VB o

Ci cos (A=0) A=0)

(16)
whereC;, Cs are arbitrary constants.

Since DEG(§) = DH(n) = H'(n)Dgn =
H'(n), we obtain the following expressions for
DEG(e) |

GE) -
WhenB # 0, A; > 0:

DEGE) g
c@ ~ ot
C'1 sinh

VAL
2(A-0)
JALEY VA
2(A— C)F(1+a)+02 cosh o7 C)F(1+a)]
b

VS Ll +C9 sinh V2162

2(A-C)I(1+a) 2A-C)[(1+a)

17)

C'1 cosh

whereC,, Cs are arbitrary constants.
WhenB # 0, A; < 0:

DGO _ _p
GO T A-0) T 2(A-0)
A1§ N/ — Alga

—C1 s8I0 o=y iy 102 €08 sa=eyr Ty ]
b

V—A1€Y VA€

2(A—CO) (1t 2(A—CO)T(1+a)

/—Aq

(18)

C'1 cos ) +C9 sin

whereC;, Cs are arbitrary constants.
WhenB # 0, Ay =0:

DgG(€)
G@)

Col'(14-«)

_ B
= 2(A-0) T Tl (1Ta)+05E (19)

whereC,, Cs are arbitrary constants.
WhenB =0, A > 0:

DeGE) _ A,
G(§) \/(217—&55)
Ch sinthg(lw

VAgE”

(A—C)(ita)

VA
(A—CT'(14«) ] (20)
/A2§a )
(A-CO)T'(14«)

+C5 cosh

C1 cosh +C49 sinh

whereC,, Cs are arbitrary constants.
WhenB =0, A < 0:

D2GE)  Jor,
G(6) (AA Q)

—(C1q sin A—C)T(15a) VC)FerCQ cos
Ve

A-C)(1ta)

Jome (21)

(A—O)T(1ta) ]
M

+C9 sin 0 Vit L3

A-C)(1ta)

[

C1 cos 0

whereC,, Cs are arbitrary constants.

Step 3. Substituting (9) into (8) and using (10),

, . G
collecting all terms with the same order Q%)
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together, the Ieft hand side of (8) is converted into an-

oG
£—). Equating each coefficient

of this polynomial to zero, yields a set of algebraic

equations fow;;, : =0,1,....m, 7 =1,2,... k.

Step 4. Solving the equations system in Step 3,
and using (17)-(21), we can construct a variety of ex-
act solutions for Eqg. (6).

Remark 3 If we setae = 1 in Eg. (10), then
it becomesAGG” (¢) — BGG'(€) — C(G'(€))? —
EG?(¢) = 0, which is the foundation of the improved
(G’IG) method [16] for solving partial differential e-

guations (PDEs). So the fractiona%) method is

the extension of the improved (G’/G) method to frac-
tional case.

3 Applications of the fractional
(DLGG) method to some fractional

partial differential equations

3.1 Space-time fractional (2+1)-dimensional
breaking soliton equations

Consider the space-time fractional (2+1)-dimensional
breaking soliton equations [24]

{ %tg —I—a(%ga —|—4au —|—4aaxav—0
0% _ 0% ’
8ya 8$a 9

(22)

where0 < « < 1. In [24], the authors obtained some
new exact solutions for Eqgs. (22) by use of a fractional
sub-equation method, which is based on the following
fractional sub-equation:

DEG(§) + ADEG(€) + pG(€) =0, (23)

In the following, we will apply the fractional
(%G) method described in Section 3 to solve E-
gs. (22). To begin with, we supposgz,y,t) =
U(§)7 U(%%t) = V(f), wheref = kix+ koy +ct +
o, k1, ko, c, & are all constants witky, ko, ¢ # 0.
Then by use of the second equality in Eq. (4), Egs.

(22) can be turned into
*DgU + aki*ks DU
+4akFUDgV + 4ak$V DU = 0,
k3 DgU = k' Dg'V.

(24)

Suppose that the solution of Egs. (24) can be ex-
pressed by

U(e) = im”éc")z
2 oo, (25)
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Balancing the order oD?*U and UDO‘V DgU and
Degv in (24) we haven; = mq = 2.

DO‘G DG
) + (12( é
G

PEEY 4 by( 25

)?,
2.

Substituting (26) into (24), using the properties
(1)-(3) and Eqg. (10), collecting all the terms with the

same power of ——) together, equating each coeffi-

U(€) =ao + ai(—
V(&) = bo + b1 (

(26)

cient to zero, yields a set of algebraic equations. Solv-

ing these equations yields:

ag = aop,
3(A— C)Bk%‘
A1 = ——559 ——
(C +A2 ZCA)kQO‘
ag = —
b — _ak’fc‘ké"B +8ak%akg“aE(CfA)+caA2+4aaoA2k§“
0 1aAZET ’
3(A-C)Bk{ kS
by =
__ 3(CF+A2-2CA)kf kS
b2 - 2A2 )

whereaqy is an arbitrary constant.

Substituting the result above into Eqgs. (26), and
combining with (17)-(21) we can obtain the following
exact solutions to Egs. (22).

Family 1: whenB # 0, A; > 0:

ul(xayut) = ap+

3(A-C)BK}™ (B 4 VAL
247 (A—C) T 2(A=C)
. VAgY VA
1 sinh s oyrtrey 92 ©o%h s o 1}
JAqex VA18¢
C1 cosh gA cﬁﬂ(l_‘_a) +Cg sinh 72(14_0)}(“_&) (27)
_ 3(C*+A2—2CA)kI> { + VAL
2A2 2(A C) ' 2(A-0)
. VAg” VAL
Cusinh m+@mhm]}2
f /Alfa Y
C1 cosh 52 YeraTa) VC)(HQ)JrCz sinh 5 oyrray
Ul(xvyvt) = -
ak?*k$ B?48ak2kSaE(C—A)+c* A% +daag A2kS
TaAZES
3(A—C)BKSkS ; B VAL
= —{sa—o T 25—
. JAqee VA€
C1 sinh erCQ cosh A=) T (Fa) ]} (28)
JAqex VA18¢
C1 cosh 20 s~ oy (Fe) T 02 sinh s ey
 3(C2+A2-20A)kS g{ 4 VA
2A2 2(A C) ' 2(A-0)
. VAgY VAL
Cusinh m+@mhm]}2
NISTE] VA€ ’
Creosh 5o oyrira) T2 SN st oy T

whereC1, Cs are arbitrary constant§,= ki z+koy+
ct + &. In particular, if we setCs = 0 in (27)-(28),

E-ISSN: 2224-2880 47

Qinghua Feng

then we obtain the following solitary solutions:

3(A—C)Bk2™
247

tanh

UQ(xvyvt) =ao+

VALEY }

B
{2(AfC) 2(\1{170) 2(A—CO)I(1+a)

3(C24+A2—-2CA)k3
o 2A2

A
2(A—C)

(29)

VA E*

tanh 5 YSraray

B
{2(AfC)

02($7y7t) =

| ak2°kg B2 +8ak? kG al(C—A)+c® A2+daag AZkg
4a A%k

3(A—C) Bko kg
+ AT

B VAL NESTS
{sta=ey + 33—y tanh 2(A70)1§(1+a)}
_ 3(C2+A%— 2CA)kaka

VAL
(oo + (F) tanh 2(A70)%£(1+a)}2‘

(30)
Family 2: whenB # 0, A < 0:

{2AcJr

/—Alﬁa
2(A-CO)I'(1+a) ]}
\/_—Alfa
2(A-COT'(1+«)
/=1

3(A—C)Bk2>
2A2

V=21
2(A=C)

uz(w,y,t) = ag +

. VSt
[_Cl S 5(A—O)I (1+a)
\/Tga
C1 cos 2(A—CO)T(1+a)
_ 3(CP+A2-2CA)kI~
TA? {2 A-0) T 3(A=0)
. VA EY —AE”
[_Cl S 5 A~V (14 a) +C2 cos 2(A—O)T(1ta) ]}2
b

S )+02 sin 52182

2(A—CO)T (1t 2A—C)T(1+a)

+C5 cos

+C5 sin

C1 cos

(31)

U3(:C> Y, t) =

ak?*k$ B24-8ak2*kSaE(C—A)+c* A2 +4aag A2kS
- 4aAZkS

3(A—C)BkQ kS

+ ( 2A2 0

2 Vv

{2(,4 o T 2=
/=A™ AL
(A c>r1(1+a)+02 cos 2(A—C)F1(1+o<) 1}

NESG NESG
O)r(i¥a) 2A—C)T(1Fa)

20 Ak kS V=A]
7AZ {2 a-0) T 3a-0)

. /AL @ /AL Ea
[*Cl sin 2(A—C)F1(1+o<) +C2 cos 2(A—C)F(1+o<) ]}2
bl

V—AEY )+025in (\/*Alé"‘

2(A-O)T(1ta 2(A-O)T(1ta)

—(C1q sin

+C’2 sin

C1 cos (A=
C2+ (2

C1 cos

(32)
where (1, Cy are constants,

§ = ki1x + koy + ct + &p.

arbitrary

Family 3: whenB # 0, Ay = 0:

3(A—C)Bk2
U4(513>y>t) =ao + Tl
{ B__ CoT(14a) }
2(A-C) ClF(1+a -I—CQEC“
_ 3(C*+A2—2CA)kI>
2A2

(33)

B Col'(1+a) 2
{2(A70) + ClF(i"rOl +Cz§a}
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U4($7 Y, t) =

ak?*kS B248aki“kSaE(C—A)+c* A% +4aag A%kS
o 4a A2k

3(A—C)BEO kS Col(14a)
+= o {gie) + orira +025a}

3(C2+A2-2CA)k§ kS
242

{ B + Col'(14«) }2
2(A—C) 01F 1+a +02£°‘

(34)
where Cy, (Cy are arbitrary constants, and
& =kix + koy + ct + &p.

Family 4: whenB =0, Ay > 0:

3(A-C)Bk2>
u5(£7y7t):a0+ ( 2A)2 ! {\/_

A=C)
. VAgE® VAge®
Croinh Gront(eay 02 M Gt irar
JAgee . VA2E2
€1 cosh rronfrrgy +Ca sinh oty (35)
 3(C2+A2-20A)k { VAs
2A2 (A-C)
. N VA2E%
C1 sinh m“rc& cosh (A-O)I'(1+a) ]}2
Vg™ - VST ’
Cl cosh m—‘er sinh m
vs(z,y,t) =
_ akfk§ B2 +8aki® k§aB(C—A)+c A% +daag A%k
4a A2k
n 3(A—C) Bk kS { VA
2A2 (A-0)
. Ao¢ Ay8
C1sinh ngwz cosh mfgm )}
N . Agge
Ci cosh MWJFC? sinh (A\gm
_ 3(C%4A2-2CA)kSk { VA
2A2 (A- C)
. VAge® VA%
[C'l sinh oy ay +02 cosh ety ]}2
VST - VAze™ ’
C1 cosh m‘f‘@ sinh A-O)'(i+a)

(36)
where (1, Cy are arbitrary constants,
& =kix + koy + ct + &p.

Family 5: whenB = 0, A, < 0:

3(A—C)Bk2®

’LLG(ZE,y,t) =ap + 2A2 {
. VY oY /= A2§a
—C1sin ey 702 08 aoraTa I
\/Tga . \/7—A25‘1
€1 cos = OT(1ia) +Cz2 sin (A eI EE=) (37)
_ 3(C*+A2-2CA)kI>
7E {525
. N/ —Agt® —Agg®
—Crsin ey 702 08 oraTa ]}2
VA : vV —AgEY ’
C1 cos EmraTay T2 i e are
E-ISSN: 2224-2880 48
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U6($7 Y, t) =
ak3*k§ B?+8ak?°kSaE(C—A)+c* A2 +4aag A%kS
o 4aA2k;¥
3(A—C)Bk{kS
+ 2A2 { (

—(C sin —~ —256%

[ (Afc)r(ua)

/,AQE(X
+C2 cos ATy I

VA8 . VA8
C1 cos = C)F(1+a) +C2 sin T ayr ey
_ 3(C%4+A%2CA)kSkS { N,

7AZ (A—0)

V=A™ V=A™
—(C'1 sin As C)F(1+a) +C> cos = C)F(1+a) ]}
M

VA8 WAV YL
A-O)T(1ta) A-O)T(1ta)

C1 cos +C49 sin

(38)
whereCy, Cs are arbitrary constant§,= kiz+koy+
ct + &o.

3.2 Space-time fractional Fokas equation

Consider the space-time fractional Fokas equation
a2a 8404 o qa q
A5mEmny ~ 5a30eg T am%ax 1205 oug (39)

“g2a
+12q8x°‘8x — 6557 =0, 0<a <1

In [25], the authors solved Eq. (37) by a fraction-
al Riccati sub-equation method. Based on the this
method, some exact solutions for it were obtained.
Now we will apply the fractional£25¢) method de-
scribed in Section 3 to solve Eq. (37).
Suppose(t, 21, 22, y1,y2) = U(§), where§ =
ct+kixy+kozot+liyr+laya+80, k1, ko, U1, l2, ¢, &o
are all constants witl, ks, 1, l2, ¢ # 0. Then by
use of the second equality in Eqg. (3), Eqg. (37) can be
turned into

Ak DU — k{*kg DU + K3k DU+
12k kS (DEU)? + 12k{ ks U DZ*U
—6I85 DU = 0.

(40)

Suppose that the solution of Eg. (38) can be ex-
pressed by

Emjaz DECy: (41)

whereG = G(¢) satisfies Eqg. (10). By Balancing the
order between the highest order derivative term and
nonlinear term in Eqg. (38), we can obtain = 2. So

we have

DegG D?G

Substituting (40) into (38), using the properties
(2)-(3) and Eq. (10), collecting all the terms with the

U(f) = ag + al( (42)
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oq . ,
£—) together, equating each coeffi-
cient to zero, yields a set of algebraic equations. Solv-
ing these equations, yields:

4A%c kS —6 A0S +8AEKS k3 —8 AEkS k!

ag = —

12k kg A2
—k;3aka32—8k;3ak;aCE+BQk3%a+8Ek3%ac
12k°‘k°‘A2
(Ak3kS — A3k — k3 kg C+E3* kS C)B
air = — ks A2 ’
4 — A%kOkS — AES kS —2AK3 kS C
2= ECkG AZ
i 2AK3 kY O+ kS C? — k3 kS C?
kS kg A2 :
172

Substituting the result above into Eq. (40), and
combining with (17)-(21) we can obtain the following
exact solutions to Eq. (37).

Family 1: whenB # 0, Ay > 0:

q1(t, w1, 72, y1,y2) =
 AAZ kY —6A%IIS+BAEKS K3 —8AEKS kS

12kSkS A2
—k}okg B2 8k} kg CE+B?k3*k{ +8Ek3* k3 C
12k kg A2
_ (AR$okS — ARk —k3okS C+E3*kS C)B
koS A2
{ B + VvV Al
2(A-C) 2(A-C)
" VA £ . VA1€%
C1sinh 2(A-O)(1ta) +Cx cosh 2(A—O)(1ta) ]} (43)
C'1 cosh VAa1ee VAa1ee

A=) (iFay TC2 sinh s myraray
{AQkBaka A2k3aka 2Ak3akac

+

l»c"‘kaA2
DAKEE kS C+ k3 C2 k3o k C?
—|— k‘o‘k‘O‘A2 } X
{ B + VAL
2(A—C) " 2(A=0)
Y/ ST VAL
G oinh st or(rre £ 2 00 G opriTa |2
/A P VALE ’
Cucosh sayrirey TO2 s sararay

whereC, Cs are arbitrary constant§,= ct+ k121 +
koxo +l1y1 +loys +&o. In particular, if we se€Cy = 0

in (41), then we obtain the following solitary solution-
s:

q2(t, x1, 2, Y1, y2) =
_ AA2O kY —6A%INIS+8AEKS k3 —8AEKS kS
12k$ kG A2
_ —k$*kg B2 —8k3*k§ CE+B2*k3*k§+8Ek3* k3 C
12k kS A2
—Ak3 k¢ —k3ks C+E3°k$C)B
kg A2

(oo + 2&_@ tanh

_ (AR3kg

VAL £ }
A0 (1Ta)
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where C{,Cy are
€ =ct + kizy + kawo + liyr + lays + &o-
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+ AZE3okg —A;i;%z If2—2Akfa ksC
1v2

ARk} C+EF kS C?—k3k{ C?

+ ko‘k‘O‘A2 }X

tanh

{ (ABC) + 2(\270) A= c 1+a)}2

Family 2: whenB # 0, A; < 0:

q3(t) T1,T2,Y1, yQ) -
_ 4A20ak“f‘—GAQZ?Z%-I—SAEK‘QJK?Q—SAEkgak“f‘

12ROk A2
—k3kg B2—8k3kg C E+ B2k3® kO +8EK3kC
- 12kS RS A2
(AK$ kS — AkSO kT —k3*k§ C+k3* kP C) B
- kokS A2 x
{ B + V—=A1
2(A—C) " 2(A=0)
IRV S VATt
—C sin A—CIT (1T a) +C cos 2(A—O)'(1+a) ]} (44)
VST in — VY =81€2
O 08 s—gyrtire) TO2 810 sy (re)
o AZE3OkS — A2KSOkY —2AK3 kS C
ko kg A2
2AKZ kG C+h3O kg C2— k3 k3 C2
+ 2 L kolzk.a%42 2 L }X
{ouoy + stie
2 A ) T 2(4-C)
/A ERVAY.ST
[—01 Sin 53—y 192 8 sa-or(ita) )2
— — )
C1 cos VAT +C2 sin NI

2(A—C)I(1+a) 2(A—C)D(1+a)

where (C;, (C; are arbitrary constants,
§ = ct + k1w + koo + l1y1 + lay2 + &o.
Family 3: whenB # 0, A; = 0:
qa(t, 1,2, y1,Y2) =
 4AZ kY —6A%ISISHBAEKS kI —8AEKSES
12k0kS A2
—E3%ks B2 —8k3 k3 C E+ B2 k3 kS +8Ek3“ kS C
12k kg A2
(Ak32kS — Ak kS — k3% kS C+E3Yk$ C)B
- .o A2 X
k¢ k A (45)
2(A-C) 01F(1+a +C2§°‘

{AQkBaka A2k3aka 2Ak3akac

+ k.ak,aAQ
2Ak3akac+k3aka02 k3okpC?
+ k‘o‘k‘O‘A2 }X

{ B + Coll'(14-a) }2
2(A-C) 01F(1+a +C2§°‘

arbitrary constants, and
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Family 4: whenB = 0, Ay > 0:

Q5(ta T1,T2,Y1, ?/2) -
. 4A26ak?76A2l‘f‘lg+8AEk‘2"k?a 78AEk§ak‘f

12k kG A2
_ —k$kg B2—8k3°kS CE+B2*k3*k§+-8Ek3* k' C
12k7kG A2
B (Ak:‘f%g—Ak:‘gak?—k{*akgOJrkgaklac)B{ NS
ko kg A2 (A-0)
: VAgE™ VBgE”
G oinh ey 2 0h Gyt 1y
. VALY e VA8
¢ cosh mr=eyrirray TO2sinh Geyrirray
A%R30 kG — AZESO kY —2AK3% kS C
+{
kS kg A2
+2Ak§ak?0+k§ak302—k§“kf02 19 N/
kokg A2 4=0)
. VAgEY . VBgE”
G oinh ey €2 Oh Gyt 12
VALY VAEY ’

C1 cosh W‘FCQ sinh (A=-O)T(1+a)
(46)
where C;, (5 are arbitrary constants, and
§=ct+ kixy + kaxo + liya + l2y2 + o-

Family 5: whenB = 0, A, < 0:

Q6(ta T1,T2,Y1, ?/2) -
_ AA2c kY —6A%IQIG+BAEKS k3 —8AEKS® kY
12k ks A2
_ —k3kg B2 —8k3*k$ CE4+ B2 k3 kS48 Bk kY C
12k kS A2
(Ak%akngkgak?fkil”akgCJrkg’“k%C)B{ —A;
k{ks A2 (A=0)

—C1sin ey T2 ©8 o (ita) )}
C1 cos (¥ ertigay +O2sin Yot
AZE3OKg — A3k —2 A3 kS C
+{ ROkG A2
| 2AKEORG CHRIORE C2 Kk O }{L=B2
k' kS A2 (A-C)
L /A V= B8gE”
—C1sin o (i T2 ¢ o aTa) 112
N~ V- Age® ’

A-OT (14« A-OT(14a)

C'1 cos T )+Cg sin T
(47)
whereC, C, are arbitrary constant§,= ct+ki1x1+

koo + liy1 + laya + o.

4 Conclusions

By use of a new fractional sub-equation, we have pro-

posed a new fractiond27%) method to seek exac-

t solutions for fractional partial differential equation-
s. As for applications, we apply this method to solve
the space-time fractional (2+1)-dimensional breaking

soliton equations and the space-time fractional Fokas

equation. Abundant new exact solutions including hy-
perbolic function solutions, trigonometric function so-
lutions, and rational function solutions for the two e-

guations have been successfully found. This method
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is based on the homogeneous balancing principle and
the fractional complex transformation. Being concise
and powerful, it can be applied to solve other fraction-
al partial differential equations.
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