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Abstract: In the present paper, we give an investigation on the quantitative convergence analysis of the kernel
regularized vector ranking with least square loss. We present with Gateaux derivative the qualitative relation
between the solution and the hiding distribution and quantitatively show the robustness for the solution. Finally,
we provide a learning rate in terms of the approximation ability and capacity of the involved vector-valued RKHS.
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Ranking is a new learning problem focusing on rel-
ative ranking of objects on the basis of their ob-
served features (see e.g.[2, 25]). It has been widely
used in many fields as information retrieval, bank-
ing, quality control or survival analysis,et al (see

1 Introduction
y = f:(z) : X — R,called a ranking rule, that x is

than 2 if y — ¢y’ < 0. Ranking with least square loss is
to regress the differences y; — y; with f(z;) — f(z;)

_ loss function I, : H X Z x Z — RT U{0} is defined
[1, 13, 14, 17, 26, 32, 35, 40]). Recently, ranking the-

ory is unified with the machine learning and the regu- .
larized kernel ranking is formed. For example, the ex- lg q( I, (mi,u:))
treme ranking learning and l»-coefficient regularized 2
ranking are defined in [15] and [12] respectively. The = (‘yz —yil — sgn(yi — y;)(f(z:) — f(%)))
semi-supervised ranking is considered in [24]. The 2
performance of the kernel regularized bipartite rank- = ((yl —y5) — (f(@:) — f(z; ))> J (D
ing with convex losses is discussed in [18].
where H is a function space with metric || - |3, and is
A general ranking setting defined by [2] is: called hypothesis space.
The learner is given examples of instances la- The corresponding ranking scheme takes the form
beled by real numbers, and the goal is to learn a rank- (see [2, 11])
ing in which instances labeled by larger numbers are . ) . 5
ranked higher than instances labeled by smaller num- [ = arg %171_1[ (5z (f)+A ||f||H)v 2
bers.
where
Let z = {(x;, yi)}i"y € Z™ = (X x R)™ be "
some observations with X being a given compact set EXf) = 1 Z
and Y = R the real number set. Then the aim of N m(m — 1) i T it
*Corresponding author X [(yz - yj) - (f(ﬂfz) - f($j))]2
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ranking is to find from the observations z a function

to be ranked preferred over 2’ if y — ¢’ > 0 and lower

(see [21, 22, 23, 26, 34]). In this case, the empirical
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is the empirical error and A > 0 are the regularization
parameters. The expected error £(f) is

|| w=v)-0@ -]
xdp(z,y) dp(x’,y').

To show the predictive ability of (2), one need to
compare the risk of f, with the risk of the best rule.
In learning theory, we use the probabilistic inequality
of the following form (see [26]):

Sn)zl—a,

to show the error £(f) — £(f;) with given confidence
o, where 77 > 0 is some small numbers which depends
on the level a,the number m of elements in the sample
and the hypothesis space H, but it is independent of
the unknown distribution p. In case of the least square
loss we choose

P(E(f)—E(f7) 3)

ﬁwzﬁy@wm

as the best rule since

fr= argg}ggé’(f%

where F is the set of all the measurable functions on
X.

On the other hand, we find that the vector rank-
ing with respect to the relevance vector machine has
been proposed (see e.g.[10, 33, 36]). To extend above
mentioned ranking theory to general vector form, we
first consider the Euclidean space R¢. Assume S =
{(x1,y1), -, (Tm,ym)} is a finite sequence of la-
beled training examples,where x; are instances in X
and y; are vector-valued labelsin Y = [0, M]? C R%.

For the labels y; = (yjl-, e yf)T € R, y; =
(yt, -+, yhHT € R?, we say y; > y; if and only if
for all k = 1,2,-~,dwehaveyf€ > yf.We say x; is
ranked over x; if y; > y; and lower than z; if y; < y;.
The case of neither y; > y; nor y; < y; indicates no
ranking preference between the two input instances.

Assume f, = (fL,---, f%) is a predictive rule
determined with the instances z. Then, according to
above ranking theory in real valued function, we need
to consider d least square single variable rankings:

lsq(fkv (xia yz))

= (o) — (M)~ fHa)
k=1,2---,d.
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The total number is m(m —
following weight means

1), therefore, there are

1 m d N
m(m — 1) i7j§¢J,§lsq 15 (@i 50))
1 m d
~ m(m >
z,]:l,l;ﬁj k=1
xow—yb—aﬁuw—fﬂwwf
1 m
- m(m —1) 3221:71?5]'
<|[(yi — y5) = (f (@) = f@)|Fas @

where || - || pa is the Euclidean norm. (4) is the vector
R%valued ranking corresponding to the strong order
>, extending the R%-norm ||-|| g« to the general vector
norm, we shall have a kind of vector-valued ranking.

1.1 Vector-valued ranking

Let A be a Hilbert space and X be a set. We call
‘H an A-valued Hilbert space on X if

‘H is a Hilbert space of functions from X to A and
|| ]l = 0 if and only if f(x) = 0 for all z € X.

For two Banach spaces A1 and A, we denote by
M(A1, A2) the set of all the bounded operators from
Aq to Ay and L£(A1, A) the subset of M(Aq, Ag) of
those bounded operators that are also linear.

If Ay = Ay = A, then, M (A1, Ag) is abbreviated
as M(A). For each T' € M(Aq,Az),we denote by
IT|| (A4, Ao) the greatest lower bound of all the non-
negative constants « such that

| Tul|a, < aflulla,, forallu € Ay.

When T is also linear, this quantity equals the op-
erator norm || 7| £, A,)-

We call an A-valued Hilbert space (H, || - [|3) an
RKHS on X if for all x € X there exists a positive
constant C';. such that

If@)la < Callfll,  VfeM

A bivariate symmetric function K (z,y) : X x

X — M(A) is called an A-valued positive definite

kernel if for all positive integers N, z,---,zny € X
andcy,---,cy €C,
Z ¢ (K (x5, 2:)v, v), >0, Vv € A.

,j=1
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Let H be an A-valued RKHS. Then, there exists a
function K (z,y) from X x X to M(A) such that for
all f € H, x € X and £ € A there holds

If A = R, then, the R-valued RKHS is the usual
RKHS (see [4]).

By [8, 9] we know that for a given A-valued pos-
itive definite kernel K (x, y), there is uniquely an
A-valued RKHS H on X with reproducing kernel
K(z, y).

Throughout the paper, we assume C'(X, A) is the
set of all the functions f(z) : X — A such that
| f(x)||a is continuous on X, K(x,y) : X x X — A
is continuous on X x Y and K(z,x) is a compact
operator for all z € X. Then, the inclusion I : H —
C(X,A) is compact (see the Proposition 13 of [9])
and there holds the inequality

Lf@)lla < Kl1f N2

where k = max 4 /HK(x, x)Hﬂ(A).

Let M) C A be a bounded set with upper bound
M, ie, My = {y € A : |ylla < M}. Let
p(z,y) = p(y|z)px(x) be an A-valued distribution
on Z = X x My, according to which the samples
z = {(w4,y;) }i~, are drawn independently. Then, the
vector ranking based on an A-valued RKHS # and the
least square loss is

zeX, feH, (6)

_ : 2
fon —arggrélggz(f%r/\llfllw (7

where &, (f) is the empirical error defined as

1 m
Ez(f) = W”L(m_l)i,j;,#j

[ (ws = wj) = (f@:) = f@;)3 @)

When A = R%, we have the R%-valued empirical error
(4). Therefore, framework (7) is the vector generaliza-
tion of (2). The purpose of the present paper is to give
a quantitatively performance analysis for (7).

1.2 The learning rate

Define the expected error corresponding to (7) as

& = [ [ |w-re@n-w -]
x dp(zx,y) dp(z', o).
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and
G={feF: f=aginl&(f)}.

where F is the class of all A-valued px measurable
functions (see from[31]). Then, by Lemma 2.1 in
Section 2 we know the A-valued regression function
fo(z) (defined as in [7])

fo@) = [ wdplyla) ©

satisfies
fheG={feF: f= arg?gggp(f)}? (10)

where F is the set of all the A-valued measurable
functions on X.

Since the learning problem we study is nontrivial,
we assume E,(f,) > 0. Also, the capacity of H is
borrowed to measure the learning rates.

Let (B,d) be a metric space with metric d and
e > 0. The covering number N (¢, B, d) is defined by

N(e, B,d)
= min{n : there is a covering of B by n
balls of radius < ¢}.
Let Br:={f€B: | flla <R} be the closed

ball of radius R. If there is s > 0 and a constant
cs > 0 only depends upon s such that,

N(n, Br, d) < c(?) V>0, (1)

then, we say B has logarithmic complexity exponent
s.

Basing on above notions we give a learning rate
for algorithm (7).

Theorem 1.1. Let H = Hg be a A-valued
RKHS with reproducing kernel kernel K (x,y), f. \
be the solution of (7) and f, satisfy (10). If H has
logarithmic complexity s > 0, then, for 0 < § <
ﬁm and A < k? D(f,, A), with confidence

1 — 5. holds
\/Sp(fZ,A) - \/5p(fp)

. 96 k*M log 3 x {/D(f,, )
- )
+D(fp7A)

VEolfy)
where

Dy N) = inf (£(F) — &) + A F1Be).

We now give some analysis on (12).

(12)
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e By Lemma 2.1 we know

Eo(f) = Eplfp) = 2Var[f(-) — fo()],
feH.

This estimates involve the approximation prob-
lem in the metric of variance (see [5, 20]). It
has been proved by [20] that for the weighted
Sobolev space whose reproducing kernel corre-
sponding to the Wiener sheet measure, the ap-
proximation order may attain n~12.So,the right
side of (12) tends to 0 if A\ — 0 and \ **/m —
+00. Therefore, in this case,

VElF=n) = /&) — 0

and thus

Ep(for) = Ep(fp) — 0,

which shows that
Varlf(-) = fp(-)] — 0.

For some particular A-valued RKHSs the re-
sult can be strengthened. In fact,if f, satisfies
E(f,) = 0 and H is an A-valued RKHS with
reproducing kernel K (z,y) and H = {f € Hx :
Jx f(xz)dpx = 0}. Then, we have by the Lem-
ma 2.6 in Section 2 that

120 = foll L2(ox)

< lfox = foallzeox) + 1 fox = follL2(ox)
< \/Var(fz,/\ - fp,)x) + \/D(fpy >‘)

96 k2 M log 3 x {/D(f,, )
<

N Rfm

+1/D(fp, A).

A key skill used in present paper is the parallelo-
gram laws about RKHS norm, which was extend-
ed to g-uniform convex Banach spaces in [37, 38]
and an inequality called the g-uniform convex in-
equality was established, combining which with
the method used in [29] and [27] we can extend
Theorem 1.1 to the case of vector valued RKBS
spaces (see [39, 41]).

The loss function used in this paper is the least
square loss,the method and the results can be es-
tablished for the other losses,for examples,the p-
loss and the Lipschits loss (see [28, 30]).
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2 Proofs

To show Theorem 1.1, we need some concepts and
lemmas.

Let (H, || - ||%) be a Hilbert space, F(f) : H —
RU{Foc} be a real function. We say F' is Gateaux
differentiable at f € H if there is a & € H such that
for any g € H there holds

L F(f 1)~ FUf)
t—0 t

=9, &n 13)

and write VF(f) = & as the Gdteaux derivative of
F(f) a f.

By Proposition 17.4 of [6] we know if F'(f) :
H — R|J{Foo} is a convex function, then, F'(f) at-
tains minimal value at fj if and only if VF'(fy) = 0.
Also, if F(f) : H — RU{Foo} is a Gateaux dif-
ferentiable function,then,by the Proposition 17.10 and
Proposition 17.12 of [6] we know F'(f) is a convex on
‘H if and only if for any f, g € H we have

Flg+ /)~ F(f) = (9. VE(])),. (4

(14) will be used to show the convexity of £,(f).

Lemma 2.1. Let f, be defined as in (9). Then,
for any f € L?(py), there holds

Ef) = Epfp) =2 Varlf(-) = [,(),  (15)

where Varf = [y(f(z) — E(f))?*dpx denotes the
variance of f.

Proof. By the equality
la—BlIx = llall3 + I1BlIx — 2(a, b)a
we have
& = [ [ Iw=re@) - - )R

xdp(z, y)dp(a’, y)
= 2( [ [ = r@IRdeta.y) dol',y)

- [ [ =@y = s
xdp(z,y)dp(a’, y’)) :

Since
|| =@y = 1@ dpta,y) dpla'.y)
zZJZ
=1l [, = @) doll (16)
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we have

&) = 2 [ lv=s@I3ds

Il [ -

= 2Var[-

dﬂ”A
—fC )]

By the definition of Var we have

Var[- —f(-)]
= Var [ —f,(-)+ f,(-) = ()]

= [ =fo@) = B = £,00)
() = F@) = B0 = FONIR dp
= [y =fo@) = B = L)1 do
~ B(1() = 1)
+ 2 [ (5= fyla) = B = £,0)

fol@) = f(@) = B(fp() = (), dp.

Since E(- — f,(-)) = 0, we have by above formulas
that

Var[-=f()]

= [ ly= @I do+ [ 1550 -

—E(f,(-) = FO)IA dp
2 [ (y=f@. @)= f@)
—B(f,() = £(-))) , dp
= [y =5@Rde+ [ 1f@) = f@)
—E(f,(-) = FC)IIA dp
= /Z ly — fo(2)||3 dp + Var [fp(') - f(')],
where we have used the fact

| (v=1o@) gyl = 1) = B0 = 1)
X dpx

A

= [ (] W= sola)) dotylo). fo(a) - @)
_E fp f())> dpx = 0.
Therefore,
&) = 2 [ ly=f@I3 dp
£2Var [f,()= 1) (D
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Also, since

| [t 5@y = e adotay) dota )
zZ JZ

we have

Eplfp) =

2
A

//Hy fol

xdp(z,y) dp(z’, y)
= //Ily Fol@)|3 dp(z,y) dp(z’,y/)

+ [ = 5@ Rdota.y) do@' )

+ | L= f@. o = £
xdp(z,y) dp(z',y)
= 2y~ £@I3 dp

(17) and (18) give (15).

(' = fp(2))

(18)

Lemma 2.2. For f € ‘H, we have

VE(f) = -2 /Z/Z (K(
x|y —y) = (f(2) = f())]
xdp(z,y) dp(z',y'). (19)
Proof. Since A is a Hilbert space, we have

2(a—b, b)a+lla—Db[3,
a,b € A. (20)

lalR = lIBlI} =

Then,

Iy = (F(@) + tg(@))] [y = (F@@) +ta(=))]I
Ity = f@) = & = F@))IA

= —2t{g(z) - 9(a'), (y = f(2)) = (4 — f(=)))
+2 [lg(x) - g(=) 3.

Therefore, by the definition of Gatéaux derivative we
have

A

(f+t9) Ep(f)

lim

t—0
_g%t// Iy
~[y = (f(2') + tg(a))]I3

Ity = @) = & = F@NIR) dp(z,)
x dp(z',y")

z) +tg(z))]

Volume 14, 2015
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:—2//<g (v— /@)

~(/ — fla >>>Adp<a: y)dp(a', )

= 2 / (9@), (v~ F@) - & — F@)))

/ /

xdp(,y) p(x )
2 [ [ (o).t~
x dp(x,y) dp(z’, ).
By (5) we know that above equality

2] formo-s

f(l"))}) dp(z,y) dp(a’, )

+2//g, (v = f(x)

<y — f@)]),, dex,y) dp(a’, o)

g, 2// )
x[(y = f(z)) = (¢ f(w’))]
x dp(z,y) dp(z’,y )),H-

(21) gives (19).
We show further the following result:

— (' — 1))

A

2

Lemma 2.3. £,(f) is a convex function on H.
Proof. By (20) we have

lalli — B3 > (a—b, 26}y, a, beA (@2
Therefore, for any f, g € H we have
Iy = 9(x)) = (v = 9(="))II3
~ly = £ @) = (& = F@)Il

> ((g(@) = (@) - (ga") = f(a),
~2[(y - f(@) - & = F@)])

A
and

(f)

Y

//

—2[(y — f(z

= (9(a") = f(@)),

@),

x dp(w y) dp(fc’,y')

_ // g(z) - f(z), —2[(y - f(x))

— f@))])
/ /

g(z) —

dp(z,y) dp(z',y')
f@"), =2[(y - f(2))

dp(z,y) dp(z’,y)

A

E-ISSN: 2224-2880
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Also, by (5) we know above equality

= | | (g=r.—2KC0) - (@)
—(y — @), dplz.y) dp(a’,y)

- [ [ (o= —2k0. )
x|y — f@) = (v — f(x ’m)
xdp(z,y) dp(z’,y’)

= (g—f,—2/Z/ZK(', )[(y =

—(y' = f(@"))dp(x,y) dp(a’, y’))

gf,2//K x))

~( = f@))dp(x,y) dp(«', y))

:gf,// )

x[(y — f(x) — f(z ))]dp(ar Y)
xdp(x,y))H

= (9-1.V&W),,

H

H

(23)

By (14) and (23) we know &,( f) is a convex func-
tion on H. But £,(f) is not a strict convex since G is
not a single set.

Define the integral form of (7) by

Jon = argmin&,(f) + N[ f 3 (24)

Since | f||3, is strict convex about f on H, we
know &E,(f) + A ||f HH is a strict convex function on
H, the solutlon fo,x 1s unique.

Lemma 2.4. Let f, ) be the solution of (7) and
[, be the solution of (24). Then, there hold inequal-
ities

2
Izl < M\fx (25)
and
D(fp, A
1ol < (f;) (26)
Also, f, x satisfies the equality
)‘fp A / / K 1‘ )
X y') - (pr( ) — pr( z’))]
x dp(w y) dp(z",y/). 27

Volume 14, 2015
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Proof.Proof of (25). By the definition of f, \ and
f» we have

Ez(fz,)\) + )‘Hfz,)\H%-l
< £.(0)
1 m

i =Lt

- y]”?\ S 2M2a

which gives (25).
Proof of (26). By the definition of f, we have

Ep(for) = Ep(fp) 20

Hence,

)‘pr,AH%-t gp<fp7/\) _gp(fp) "')‘prJ\Hg—[

D(fp, N)-

A

(26) then holds.
Proof of (27). By the definition of f, y we have

0 = v(e’( )+ MF13) =1,
= V&)= fmmufumrf fon
i
<[y =1) = (forlx >—fp,A<x’>>]
x dp(z,y) dp(z',y)
+2)\fp>\()
(27) thus holds.

Following Lemma 2.5 quantitatively shows the
dependence of f, \ upon the distributions p.

Lemma 2.5. Let f, ) and f, \ be the solutions
of (24) w.r.t.(with respect to) the distributions p and
respectively. Then,

2Va7’(fp7/\ - f'y,)\)
A _
170 IprA ~ il

2| [ [ ircta ")

x[(y ) (f/n\() pr( ))] dp(z,y)
Xdp(x y)

/ / )
y') — (fpx( z) — fou(@))]
de(m,y)dv(x ') N

f*y /\HH

IN

(28)
Proof. By (23) and the equality (20) we have

‘S’Y(f%)\) - 5’7(fp,>\)
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= (= ton=2 [ [ (K@) = K@)
[(y =) = (for(x) = for(z)))]
xdp(z,y) dp(z',y ))H

+2V&T(fp,/\ - fw,A)'

Therefore, by the equality (20) of Hilbert space H we
have

X

(29)

oz(

2 (Frn) + A llF) — (€ (fp A) + /\pr A7)

= o2 [ [ () - K6

[( ) (f,o,)\( ) fp,A( ))]
x dy(z,y) dy(2',y))y
+(f7,>\ - fp,)u 2)‘fp,)\)’}-[
+2Var(fox — fy,0)-

By (27) we have

(f'y,)\ - fp,)n —2 /Z /Z (K(.%', ) - K(xlv ))
[y =) = (for(x) = for(a’))]
xdy(e.y) dy(@'y)),

+<f7,A_fp,A72éé(K(xﬂ')_K(lj?'))

+ A [ fyx = Forll3

0

v

x [y =9") = (foal@) = for(z))]
x dp(x,y) dp(a, y’)) + Al fyx = fonll
—|—2Var(fp)\ fy A

= 2(fa S [ [ )

x[(y =) = (fpala) — fp,A( )] dp(z,y)
xdp(z',y)
/ / 7))
y') - (pr( ) for(a'))]

de(w, y) dy(a'y)),

A [ fox — fp)x”%i +2Var(fox — frn)-
It follows by the Cauchy’s inequality that
Ml fyx = Forll3 +2Var(fon = fo0)

<2(fpa = [ [ (K@) =K@, )

x[(y = v) = (for(x) = for(a"))] dp(z,y)
xdp(a’, y')
/ / )

y') — (fpx() for(@)] dvy(z,y)
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/ /
xdy(z'y ))H

< 2[[fpr — waH
H/ J, e Rl
y') - (pr( T) — pr( )] dp(z,y)
Xdp(w y)
/ J, o )
y) — (pr( ) for(@)] dy(z,y)
xdv(:v,y) ” (30)

(30) gives (28).

Lemma 2.6. Let f, ) be the solution of (7) and
fp.x be the solution of (24). If (#, || - ||3) has log-
arithmic complexity s > 0, then, for any 0 < ¢ <
ﬁm and A < k* D(f,, A), with confidence

e 32
1 — 4, holds

\/Var(fz,)\ - fp,)\)

48 k2 M log 4 x ¢/ D(f,, A
< g5 (fp )
- A Hm

Proof. Define an empirical distribution -, as

// :ry, x’,y

i f{ Tiy Yi), (xjﬁyj)}

1,7=1,i#j

Then, by (28) we have

3D

dvz

m(m -1)

[ fox = forlln
< A\ // )
Y') = (for(z) — fz)\( N dp(z,y)
X dp(x y')
1 m
B m(m—1)ij§1,:i¢j(K(xia‘)_K(xjv'))
<[y = 7) = (Fon(@s) = Lol
and
Var(fox— f2)
1for — szHH
< H/ J, ¢ )
y') — (sz() fox(@)] dp(a, y)
xdp(ar y)
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1 m
> (K(wi,) -
ij=1,i#j

X[(yi — yj) — (for(wi) — fz,A(:cj))]H .

H

K(zj,-))

m(m — 1)

Above two inequalities give

Var(fz,A - fp,)x)

= Var(fox — for) B
) ||sz*fp,\!T X Mea = Joall
= )\H/ / )
<[y —y) = (forlz ) sz( M) dp(z,y) dp(',y)
1 m
_m(m —) i}j:;i#j (K(xi,) — K (25,))

— (fows) — f“<x3>>]H

H// )

— (£, () pr( ")) dp(z,y) dp(z',y")

LY (K - K(,0)
i,j=1,i#j

—3) = (For(@0) = Foa(ay)]
_ %A(z) « B(2),

H// )

) (fz)\( ) fz/\( ))} dp(x,y)
X dp(ﬂ: y)
1 m

Y (K) -

H

x[(yi "

(32)

K("L‘JW ))

(for(@i) = far(z)))]

<[(yi — ;) —

H// )

) - (pr() For(@))] do(z, )
Xdp(w y)
LS (K

ij=1,i%j

<[(i = 43) = Fpr(@i) = foala))]|, -

H’

" - K(a;,")

H
Since || f||5 = sup (h,f)H, we have
lIRll2<
A(z) = sup // (K(x, 1))
2/l <1
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x[(y = 9) = (far(2) = f20(2))] dp(z, y)
x dp(z',y)

1 m
Umm_nugéfm@»—K@ﬁ»
X[( fz)\(l'z) fz>\ x] )H’

- y// K, )
||h||H<1
x|y~ >—<mao—ﬁﬁmeH
x dp(z,y) dp(z’,y')
X[ = 13) = (Fon(@s) = for(@))]), |
© su x) — h(z
N ||h||f<1‘/2/z<h( ),
(v — o) = (for(@) = fon@)]),
xdp(z,y) dp(a’, y')
T, 2 (i)
[ — 97) = (For(@s) = or (@), |

Also, since ||h||y < 1 we have by (25) and (6) that

€l ), (', y), b

(h(z) = h(2), (¥~ &)
~(f7(@) = f22(2))
(@) = k()|
x|y = ) = (for(@) = for(@)

(IR(@)lla + [[7(2)[2)
X(2M + [[fza(@)]|a + 1 fza (2

kbl (M + a1y )

4kM (1+ k;\/?)
W// )

A

IN

A

IN

la)

IN

IN

and

Y') = (for(z) = far(2'))]
X dp(:r y) dp(z',y")
1 m
T =1 > (K(wi,) — K(xj,))

i, j=1,i]
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<[ = 5) = (Fo(@:) = Fon@)]|
<zgg]//€l‘y ',y dp(z,y) dp(,

Z 5[($17 yz) (xja yj)]

m<m — DT
where
B = {&l@y), @ y).n]
€z ), @y, Bl < 4kM(1+ k\/i)
for any [(z,y), (2, ¥'),h| € Z x Z x 7-[}

Let N = N (B, ¢) be the covering number of
B for € > 0. Then, by the formal method used in
learning theory, there are {;}¥ =1 C B such that for
any £ € B we have a &, € {5] ", such that [|§ —

Sellox,n) <€

Prob{ Egg’// El(xyy), (2, 9)] do(z,y)
xdp(z’, yf)

1 m
_m(_DHZI:#jg[(%ayi), (SUj,yj)]‘ > 36}
S;Pmb{‘/z/z &l y), (@) dp(z,y)
xdp(z’,y)

_m(ml— 1) 2 fk[(wi’yi%(%yﬂ]\ >e}.
ij=Li#]

Recall the U-statistics inequality (see [3, 19]):

1
Prob{‘m(m — )

—E(U)‘ 25}

m

> Uz, z)

i,j=1,i#j

(m —1)g?
402+ (4/3)(b— a)s}’

2') < band Var[U] = o2, by

< Qexp{ —

where a < U(z,

which we have
‘// (z,9), (")) dp(x,y)

Prob{

sup

&eB
xdp(z',y)
1 m

< 2N (B, s)exp(— (m — 1)e? )

— 33
4712 + 87¢/3 9
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Since N'(H1, €) < exp{cs(L)®}, we have by defining
7= 4kM (14 ky/3) that

logN(B, e) < logN(H, ;) < CS(E)S,
i.e.,
N(B, E) < exp (68(2)5)‘

By (33) we have

Prob{ sup | [ [ llw.w). (@'0/)] dot)

EeB
x dp(z',y")
1 m
—m i,jzzl;iséjg[(l'iayi)v (wja y])]‘ > 36}
T s (m — 1)52
< 2exp {Cs(g) - m},
1.e.,
Prob{ sup ] /z/z El(z,y), (2,y)] dp(x,y)
x dp(z',y")
1 m
_Tn(?n_l)i’j:zl;i#jg[(xi’yi)’ (xjvyj)]‘ > h}
3r., (m—1)h?
<20 {es()" ~ 35a g )
Take

37 (m — 1)h? 0
2exp ey (0) — oo IV 2
exp{e (3) ~ 362 5m) = 2

We have by simple computations that

8T log%th B 3672 log%hs

h2+s .
m—1 m—1
8 x 3% s+1 35 % 2+s

By Lemma 7.2 of [16] we have following result:
Letci, ca, -+, cg>0ands>q > qa > --- >
qi—1 > 0. Then, the equation

¥ —cpx? —cgx® — - — gzt — =0
has a unique positive solution x*. In addition,
#* < max { (le) VO, (Iey) V) L

(lcl,l)l/(sfqlfl), (lcl)l/s}. (35)
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Above inequality and (34) give
h < h*

< Txmax(i

IA
\]
X
=
5
>
/N
3
Sz
|]lo2
._loﬂ
\.l\D
I3
[\v)
B~
3 x
| | oo
v}
s
V)
N———

IN

12k M log }
—— X
s+%
12k* M log 4 2
T VA
if0 < 6 < W and A < kQD(fpa A).

e 64
Therefore, with confidence 1 — g, holds

<

<

12k? M log 3 2
Repeating above procedure and use the fact (26)
we have

12k%M log § D(fp, )
B(z) < m X 3 )

By (32), (36) and (37) we have (31).
Proof of Theorem 1.1. By Minkowski inequality
we have

VEFon) = V&)

= ([ [ = ratan -/ = fes@];
xdp(z,y) dp($/73/,)>
( /Z /Z [ = for(e) = 0 = Fan@))|;
x dp(z,y) dp(xlvy/))
( /Z /Z |(For@) = £on(@))

~(forle) = For@)| dpta, ) dp(a’, )
= 2Var(for — f2). (38)

(37

[N

Nl

IA

Also, since £,(f. ) > &,(f,) and

b—a

Vb —+a < 7

for b>a >0,
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we have by (38) and (31) that

(12)

Vel F-n) = /& (1)
VE(F=0) = VEl,)

< V& fan) = & Fon)]
+\/gﬂ(fp,>\) - \/5p(fp)

Ep(fpA) = Ep(fp)
< W 2Var(f. = fou) + -2 brp
/ o )

96 k2 M log 3 x {/D(f,, A)
< Y s+\2/m
DUy N,
VEn(fp)
is proved.
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