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Abstract: Here we construct the basic splines of two variables which can be used for approximation functions. The
approximation can be constructed in every elementary rectangular separately if the values of the function in nodes
and the values of the integrals over elementary rectangles are known. The purpose of the article is to describe
representation of surfaces using the local basic splines of two variables. We discuss the construction of surfaces

with given accuracy. As a result we present examples and suggest directions for further investigations.
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1 Introduction

Nowadays there are many splines for solving differ-
ent problems [1-10]. Polynomial integro-differential
splines were first used by Kireev V.I. Local splines can
be used to solve different problems of mathematical
physics and to plot surfaces.

The problem of construction images was regarded
in [11-14]. Integro-differential nonpolynomial ap-
proximations of one variable were suggested in [15,
16]. We create the surface if the values of the function
in nodes and the values of the integrals are known.

2 Construction of the approximation

Let n, m be integer numbers, such thatn > 2, m > 1,
Supposing a, b, c, d are real numbers. Let us consider
a rectangular domain Q = Q (JI" where

Q={(z,y)la<z<bec<y<d}

and T" is the boundary of 2. We introduce A, :
a =20 <21 < ... < Tpy1 = b Ay :c =
Yo < Y1 < ... < Ymy1 = d, and a mesh of lines
on Q which divides the domain € into the rectangles

Qjk =k UT ks

Qi ={(z,y)|lz € (), j41), ¥ € Yk, Yrt1)}
I is the boundary of Q;;, j = 0,...,n, k =
0,....m, hj =xjr1 —xj, hy = Yrr1 — Y-

We use u; i, to denote u(z;, yx). We associate the
mesh A, x A, with the data: (z;,yx,ujr), j =
0,1,....n+ 1, k=0,1,...,m 4+ 1. It is supposed
that we know

Iy :// u(z,y)dady,
o
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<—1> A A
I = / / u(z,y)dxdy.
Tj—1Y Yk

Let us take the approximation @(z,y) of u(z,y) in

€1 1 in the form:
a(z,y) = uj Wiz, y) + ujp1xWa(z,y)+

k1 W3 (2, y) + w1 k1 Walz, y)+
HI Wa(a,y) + Ly P We(e,y), (1)

where we obtain the basic splines W;(z, y) from:
a(z,y) = u(zx,y) foru(z,y) = 1,z,y, zy, 22, y>

Using Taylor’s formula ?

u(z,y) = u(wj, yp) + (@ — x5)u (25, yr)+

2

1
+(y - yk)u;(‘r]’yk) + 5{(1" - xj) ugx(mja yk)+

3..m

(.I‘—.T)j) uxx:c(8)+3(x_xj)2(y_yk)ug;y(8)+

2.1 3,

+3( - x])(y - yk) uxyy(s) + (y - yk) uyyy(s)}7

s = (zj+7(xj41—2;), Y+ 7(Yrr1—Yx)), 7 € [0,1],
we can obtain W;(x, y) from the system of equations:

r =

)

8

Wl(x7y) + W2($a y) + W3($7y)+

A Wi, y) + L7 Wa(z,y) + L5 We(z,y) = 1,

thQ (l’, y)+th4(a?, y)+//(a:—:cj)dafdyW5(a?, y)—i—
Qi
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Tj Yk+1
+ / / (x — zj)dedyWe(z,y) = © — xj,
Tj—1 Yk
hWs(x,y) + hiWa(z,y) +// (y — yr)dady x
Qj K
Tj Yk4+1
W)+ [ [ -pdadsWiote.) = v
Tj—1 Yk
B Wali, ) +EWs(a, )+ [flo—a; Pdedy V(o)
Qjk
Tj Yk+1
[ [ @y Pdedy W)=t - 2,7,
Tji—1 Yk

hjth;),(ac, y) -+ hjth4<1', y)+

" // (2 — )y — yi)dady Wa (2, ) +
a.

J,k

TjYk41

+ / / (2—2;) (g ddy Wiz, ) = (2—5) (43,

Tj—1Yk

B2Ws (2, ) +h2Wa (2 )+ // (g dady Ws(z, y)+
Q.

J,k

TjYk+1

+ / / (y — y)*dady We(x,y) = (y — yi)*.

Tj—1Yk
The value of the determinant of the system is the
following: D = —(1/6)hShj. We can obtain for
T,y € Qjp:

Wi(z,y) = —1/(2h}h3) - (—4h3y? —4h3hik? +
6hryhs — 6hikh? + xhihi — jhihi + x°hj +
j2h§hi+8h?hkyk—2hjhkxy+2hjhixk+2h§hkjy—
2h3hi gk — 2xjhihi — 2h3h3),

Wa(z,y) = 1/(2hph3)- (xhihi—jhihi+a?hi—
2wjhih}+j2h3h; —2h;hyey+2h;hiak-+2h3 hy.jy—
2h2hZ gk + 2h3y? — 4hShyyk + 203 Rk — 2hyyh? +
2hikh?),

Ws(z,y) = —1/(2hzh§) - (x2h3 — 2xjh;hi +
J2h3hi — 4h3y? + 8h3hyyk — Ah3hik* — whihi +
Jh3hE + 2hiyh? — 2hikh3 + 2h;hyxy — 2h;hyxk —
2h3hyjy + 2h3hejk),

Wy(z,y) = 1/(2hihj2-) - (2?h3 — 2xjh;hi +
J2h3hE + 2h3y® — AR3hyyk + 2h3hk? — 2hiyhs +
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thkiﬁ — zh;hi + jh?hi + 2hjhgzy — 2hjhixk —

2h?hkjy + 2hj2~hijk),

Ws(z,y) = —1/(h3h}) - (5h3y* + ShIhZk? —
10h2hyyk — 2xjh;hi — Shyyhs + Shikh3 + 2Ry +
PR — whih2 + h3R2),

We(z,y) = 1/(B3h}) - (=h3y* — h3hpk? +
2h§hkyk — 2xjh;hi + hkyh? — hikh? + 2?h} +
th?h% — zhjh? +jh?h%).

If hy = hj = h, x = x; +th,y = x + t1h,
t,t1 € [0,1], then we get Wi(xj + th,y, + t1h) =
—(1/2)t2 +2t2 — 3ty — (1/2)t +tt + 1,

Wa(zj+th, yp+t1h) = —tt1+13—t1+(1/2)t2+
(1/2)t,

Ws(zj + th,yr + tih) = —tt1 + 263 — t; —
(1/2)t2 + (1/2)t,

W4(£L‘j +th,yp+t1h) = tty —Hﬁ —t1+ (1/2)t2 —
(1/2)t,

p vgs)(:cj +thyy +t1h) = —(1/h*)(5t] — 5t1 +
Wg(a:j+th,yk+t1h) = (1/h2)(—t%+t1+t2—t).
Figure 1 shows the basic functions Wi(x,y)

(left), Wa(z, y) (right). Figure 2 shows the basic func-

tions Wi (x, y) (left), Wy(z, y) (right). Figure 3 shows

the basic functions W5 (x,y) (left), Wg(z, y)(right).

A\
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S
(X

Figure 3: Plots of W5(z,y) (left), Wg(z, y) (right)
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Let us denote Qy, = {(x,9)|a+h <2 <b,c<
y < df,

Theorem 1. Let function u(x, y) be such that u €
C3(€2), We assume that (1), (2) are fulfilled, h; =
hi = h.

For (z,y) € Q1 C Qp, we have

la(z,y) —u(z,y)| < BPK|u"|q, K =1.
Proof follows from Taylor’s formula

> %,f(ﬁ)( )+ o,
11=0

0= n+1/ Z

O 18= n+1

flz+8) =

f(ﬁ) (z+t)(1 —t)"dt,

3)
y), and the relations: |W;| < 1,
Wil < 1, |Ws| < 1.5/R2,

where n = 2, z = (z,
Wa| < 1, [W3] <1
|Ws| < 0.25/h2.
Example 1. Let us take Q = [-0.5,0.4] x
[-0.5,0.4], h = 0.1. Table 1 shows the error of
the approximation: m%x]ﬂ(sj,k) —u(sjr)ls Sjk =
7,

(xj + 0.05,y, + 0.05). Table 2 shows the error of
the approximation: m%xm(sj,k) —u(sjk)l, 86 =
J

(2+0.05, yg). Calculations were made in Maple with
Digits=10.

Table 1.
N[ ulz,y) e[, ) — (s
1| 2%y? 0.208334e — 5
2 | (sin(z) cos(y))? | 0.247076e — 5
3 | 2yt 0.319319¢ — 5
4 | sin(3z + 3y) 0.502999e — 4
5 | sin(bx + 5y) 0.385416e — 3
Table 2.
N[ ulz.y) e[ ) — (s
1| 2%y? 0.154167e — 3
2 | (sin(z) cos(y))? | 0.913953¢ — 3
3 | zty? 0.612051e — 4
4 | sin(3z + 3y) 0.112559% — 2
5 | sin(bx + 5y) 0.521490e — 2

Figure 4 shows u(s; ) and 4(s; k) — u(s;jx) in

Q = [-0.5,0.5] x [0505]1fu(a:y)—x2y,
h = 0.05. Figure 5 shows u(s;x) and u(s;x) —

u(sjx) in Q@ = [—0.5,0.5] x [—0.5,0.5] if u(z,y) =

sin(5z + 5y), h = 0.05. Figure 6 shows u(s;x) —
u(s;x) in Q = [~0.5,0.5] x [—0.5,0.5] if u(z,y)

(sin(z) cos(y))?, u(z,y) = sin(3x + 3y), h = 0.05.
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1.3021e;

1.302¢
1.3019¢
1.3018et
1.3017e;

Figure 4: Plots of u(s; ;) (left) and u(s; ) —
(right), u(z,y) = 2%y?

u(sjk)

Figure 5: Plots of u(s;,
(right), u(z,

k) (left) and u(s;x) —
y) = sin(bx + 5y)

u(sjk)

3 Second order approximation

Now it is supposed that we know

Ij<,k?> :// u(z, y)dxdy.
ijk

1) We construct an approximation @(x,y) of u(x,y)
in €2, in the form:

w(z,y) = u(zj, yu) Wi k(z, y)+

—|—U(£13j+1, yk)WZ,j,k(x7 y) + I]<7]S>W]fk0> ($7 y)? (4)

where basic splines Wy ;i(z,y), Wa,r(z,y),
Wfko> (x,y) we obtain from the relations:

(5)

w(z,y) = u(z,y) foru(z,y) = 1,x,y.
Using Taylor’s formula

u(z,y) = u(zj, ) + (¢ — x5)ug (x5, yo)+

+(y — yr)uy (x5, yr) + 7,
where
= o{(@ — z)*ul,(s) + 2(z — z5)(y —
Yk )u Zy( 5) + (y — yk)2 Zy(S)},
[ f— (zj+T1(2jr1 —25), Yo +T(Yre1 —Yr)), T €
0,1].
We obtain Wi jk(x,y), Woik(x,y),

Wﬁ?> (x,y) from the system of equations:

Wl,j,k(x7y) + WQ,j,k(xvy) + Ij<,13>m/;k0>(33>y) = 17
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-2¢

Figure 6: Plots of u — u, u(z,y) = (sin(z) cos(y))?

(left), u(z,y) = sin(3z + 3y)(right)

hiWa jr(x,y —i—// a:—a:j)d:cdny,?>(a?,y) = r—xj,

//y yr)dedyW 307 (x,y) = y — yk.

The value of the determinant of the system is: D =
hZhi /2.

We can obtain:

Wik(z,y) =
hihjk)/(hjh),

Wajk(z,y) =
hihik)/(hjh),

W3~ (@,y) = =2(—y + khi,) / (hihy),

If hj = hy = h, and we put x = x; + th,y =
yrp+tih, t,t1 € [0, 1] then we get Wy ;i (z;+th, yp+
tth)y=1—t—t,

W27j7k($j + th,yr + t1h) =t — t1,

W]$IS>(CL'j + th, yr + tlh) = 2t1/h2.

(hjhk — hgx + hjhgy — hjy +

—(—hkx + hjhkj + hjy —

Theorem 2. Let function u(x, y) be such that u €
C?(€)). We assume that (4), (5) are fulfilled and hj =
hi = h.

For (z,y) € Q; C Q we obtain

a(z,y) — ulz,y)| < WK |u"|q, K = 1.
Proof. The above follows from Taylor’s for-
mula (3) where n = 1, z = (x,y) and the re-

lations: [Wyjr(z,y)] < 1, [Wor(z,y)] < 1,
(W07 (2, y)] < 0.2/h%

2) We construct an approximation (z,y) of
u(x,y) in §j in the form:

’l:fb(x, y) = 'LL({E], yk)Wl,j,k(x7 y)+

Fulzjn, y) Wa gk (@, y) + L W32~ (2, ),

where we obtain the basic splines Wi ;i(z,y),
Wa k(. y), W<0>(ac7 y) from the relations:

u(z,y) = u(z,y) foru(z,y) = 1,e%, e’
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Figure 7: Plots of u—wu, u(x, y) = sin(5z +5y) (left),
u(z,y) = ziy? (right)

Example 2. Let us take Q@ = [-0.5,0.4] x
[—0.5,0.4], h = 0.1. Figure 7 shows w(s; ) —u(s; )
in Q if u(x,y) = sin(5x + 5y), u(x,y) = zty.

Table 3 shows the errors of approximations

H;E}CX [u(sjk) — u(s;jk)| and mf}gx [ulsje) — ulsjk)l
of the function u(z,y), s; r = (x; +0.05, y; 4+ 0.05),
Q =1[-0.5,0.4] x [-0.5,0.4], h = 0.1.
Table 3.
N | u(z,y) max |u — u| | max |u — ul
1| 2%y? 0.33819e—3 | 0.24576e—2
2 | sin®(z) cos?(y) | 0.82393e—3 | 0.91366e—3
3 | aty? 0.16815e—2 | 0.82013e—1
4 | sin(3z + 3y) 0.74588e—2 | 0.81701e—2
5 | sin(5z + 5y) 0.20609e—1 | 0.21895e—1
6 | e”eY 0.20504e—2 | 0.49988e—4
7 | e*+eY 0.13071e—-2 | 0.

4 Continuous approximation

In this part we suggest a way to construct a continu-
ous approximation with integro-differential splines on
the line parallel to axe x using interpolation. We can
use cubic polynomial interpolation. We divide A into
4 parts, put hy = h/4 and we introduce additional
nodes X, 1, X;, X1, X;12. Now we can construct

a continuous approximation u € C/[z;,z; 2] in the
form:

() = WG wj1 (@) + WX )w; (@)+

WX wja (@) + (X jr2)wja(x),
g/here T € [Xj,XjJrl] - [:L‘j+1 — h1,13j+1 + hl],
a(l’) = 17(1’), x e [J,’j, Tjt1— hl] @] [afj+1 +hq, .73j+2},
wi—1(z) = (z — X;)/(Xj—1 — Xj) - (& —
Xjt1)/(Xj1 = Xjp1) - (2 — Xjp2) /(X1 — Xji2),
wi(z) = (v — X;-1)/(X; — Xj-1) - (2 —
Xjr1)/(Xj = Xjr1) - (@ = Xjt2) /(X — Xjp2),
wiy1(z) = (v — Xj-1)/(Xjp1 — Xj-1) - (. —
X))/ (Xj1 — Xj) - (2 = Xj12)/(Xjr1 — Xjt2),
wiy2(z) = (v — Xj-1)/(Xjy2 — Xj-1) - (. —
X))/ (Xjy2 — Xj5) - (2 — Xj11) [ (Xjp2 — Xj11)-
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We take nodes so that X; 1,X; € [z; +
hi, @i =], X1, Xjyo € [500+ha, w00 — hal.
We can use X;_1 = x; + h1, Xj = xj41 — hq,
Xjr1 = xjp1 + ha, Xjpo = 20 — .

Now we apply this approach to construct the con-
tinuous approximation. Let us take z € [0,1], y =
0.05, h = 0.1 and assume that u® is the approxima-
tion with the additional interpolation.

Plot of the error u — u of the approximation of the
function u(z,y) = 1/((1+2522)(1 +25y?)) without
the additional interpolation is on graph 8 (left). Plot
of the error u* — u with the additional interpolation is
on graph 8 (right).

Plot of % —u, where u(z,y) = 1/((1+2522)(1+
25y%)), y = 0.0, without the additional interpolation
is on graph 9 (left), plot of u® — u with the additional
interpolation is on graph 9 (right).

Plots of u(z,y) and u(x,y), where u(z,y) =
1/((1 + 2522)(1 + 25y?)), y = 0.05, are on graph
10 (left), plots of the the error of the approximation
with and without the additional interpolation are on
graph 10 (right).

Plots of the error of the approximation of the
function u(z,y) = 1/((1 + 252%)(1 + 25y?)) with
and without the additional interpolation for y = 0.01
are on graph 11 (left), for y = 0.0 are on graph 11
(right).

L bbb

Figure 8: Plots of u — wu (left), u* — u (right), here

u(e.y) = 1/((1+25a%)(1+25), y — 0.5
h=0.1
JJ.oozoj". D’?”"‘xf?’““"we 08 1

Figure 9: Plots of u — wu (left), u* — w (right), here
w(z,y) = 1/((1 + 2522)(1 + 25¢2)), y = 0.0

Table 4 shows the error of approximation func-
tions without additional interpolation and the error of
approximation with additional interpolation, A = 0.1,
x €10,1], y = 0.05.
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0 02 04 06 08

Figure 10: Plots of u(z,y), u(x,y) (left), u® — u
and u(x,y) — u(z,y) (right), here u(z,y) = 1/((1 +
2522)(1 + 25y2)), y = 0.05

e

L L4 4

q

coo o

L6

Figure 11: Plots of u®(z,y) — u(z,y) and u(z,y) —

u(z,y),

y = 0.01 (left), y = 0.0 (right), here
u(z,y) = 1/((1 + 2522)(1 + 25y2)).

Table 4.
N | u(z,y) max |[u—u| | max |u®—u]
1| 2%y? 0.2399¢—3 | 0.1697e—3
2 | sin?(z)cos?(y) | 0.2472e—3 | 0.2782e—2
3 | 2yt 0.6556e—5 | 0.5997e—5
4 | sin(3z +3y) | 0.2195e—2 | 0.7603e—2
5 | sin(5z +5y) | 0.9963¢e—2 | 0.1282e—1
6 | e®e¥ 0.2235¢—3 | 0.6852¢—2
7 | e +e¥ 0.1047e—3 | 0.6502e—2

Table 5 shows the error of approximation func-
tions without additional interpolation and with addi-
tional interpolation, h = 0.1, z € [0,1], y = 0.01.

Table 5.
N | u(z,y) max |u—u| | max [u®—u]
1| 222 0.7899e—4 | 0.7864e—4
2 | sin?(z)cos?(y) | 0.1073e—3 | 0.2715¢—2
3 | atyt 0.7286e—5 | 0.7282e—5
4 | sin(3x + 3y) 0.1435e—2 | 0.8257e—2
5 | sin(bx + 5y) 0.6588¢—2 | 0.1693e—1
6 | e¥eY 0.1462e—3 | 0.6507e—2
7 | et +eY 0.6674e—4 | 0.6553e—2

S On interpolation splines

Now we interpolate the function u(z,y) in Q2 in the

following form:

u(x,y) = Uj,kwj,k(x7 y) + uj+1,kwj+1,k($a y)+
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Fj k105 k11 (2, Y) + Ui k101 k1 (T, Y)+
i1 g wi—1,6(2,Y) + Uj—1 p—1Wj—1 k—1(2, ).
From the relation

a(‘r? y) = u(‘x.? y) for u(x7 y) = 17x7 y? xy’ m27y27

we have the value of the system determinant:

D = —4hjhy,
and

wik(@,y) = —1/(hF hE) - (5> h3 hi — W3 hi +
Jhiyhe — jhikhi — 2xjhihi — 2ykhy hf —
hjxyhg +y> h3 + k> b h3 + 2 hi + hjx k hy),

wit1k(T,y) = 1/(2h§h2) (xhjh —jh? h? +
:c2h% — 2xjhjhi + th?hi — 2hjzyh, +
2hjakhy + 2jh3yhy — 2jh3 kR + y*h} —
2ykhkhj2+k2hih? —yh?hk+khzh?),

wik1(z,y) = =1/ (hh3) - (wy hi — x kb —
jhjyhk—i-jhjkhi—yzhj+2ykhkhj—k2h,2€hj),

Wit g1 (,y) = 1/(2h03) - (2xyhy —
2xkhz — 2jhjyh, + 2jhj/~ch2 — y2hj +
kahkhj—thzhj—l-yhjzth—k?hkhj),. )

wi—1 (T, y) = 1/(2hjhk) “(=2xjhjhi +
jzh?hz —|—:B2hz+2yk:hkh§ —th? —I{:thhg +
yh?hk — khih? —xhjhi—l—jh?hi),

wi—1-1(2,y) = 1/(2h3) - (=y + khy) (i —
Y+ khk)

Ifweuse hj = hy, = h,x = x;+th,y = yp+t1h,
then we have the resulting formulas:

wig(z,y) =1+t —t2 — 13,

wipk(e,y) = —tty + (1/2)8* + (1/2)t] +
(1/2)t = (1/2) ta,

wj p1(z,y) = —t1 (t — ),

Wit k+1(z,y) = (1/2) 8 (2t —t1 + 1),

wi—1k(@,y) = (1/2) 8 = (1/2) 8 + (1/2) t1 —
(1/2)t,

wj_ljk_l(x,y) = (1/2) tl (—1 + t1).

Thus we get:

lwj—1 x(x,y)| <0.15, |wjk(z,y)| <1,

(wjt 1k (@, y)] <1, [wjr (@, )] <1,

lwj—1k-1(z,y)| < 0.125.

Table 6 shows the errors of approximation
max [u(sj k) — u(s;k)| by interpolating spines. Here
J

we take b = 0.1, 51, = (2 + 0.05, yj + 0.05).

Table 6.
N | u(z,y) max [u(sjk) — ulsjk)l
1| 222 0.731250e — 3
2 | (sin(z) cos(y))? | 0.541150e — 3
3 | atyt 0.605585¢ — 3
4 | sin(3z + 3y) 0.131990e — 1
5 | sin(5z + 5y) 0.591601e — 1
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Now construct a continuous approximation with
interpolating splines on the line parallel axe x using
the additional interpolation.

The error of the approximation of the function
uw(z,y) = 1/((1 + 2522) - (1 + 25¢?%)), h = 0.1,
y = 0.05 are on graph 12 (left) and with the addi-
tional interpolation are on graph 12 (right).

The error of the approximation of the function
u(z,y) = 1/((1 + 2522) - (1 + 25y2)), h = 0.1,
y = 0.01 are on graph 13 (left) and u(x,y), u(x,y)
are on graph 13 (right).

004y -+ . 0.04
003y | 0.03
0024+ 0.02
001 L > l0.01
MWWWW
0 02 04 06 08 1 0 02 04 06 08 1

Figure 12: Plots of u — u (left), with the additional
interpolation (right), u(x,y) = 1/((1 + 2522)(1 +
25y2)), y = 0.05

0 02 04 06 08 1 9

Figure 13: Plots of u(z,y), u(x,y) (right), u(x,y) —

u(z,y), with the additional interpolation and without

the additional interpolation (left), u(z,y) = 1/((1 +
2522)(1 + 25%2)), y = 0.05

6 Calculation of the integral

Assuming that functions f(z) and v(y) are as follows
f € C%a,b], v € Cc,d|, besides {X;} is a set of
nodes on [a, b], {Y} is the set of nodes on [c, d].

The approximation f(x) of f(z), z € [X;, Xj41]
we construct in the form:

flz) = f(Xj—Dwj—a(z) + f(Xj)wj(z)+
f(Xjp)wit1 (@) + f(Xjp2)wj ().
Here w;_1,w;,wj41,wjy2 we obtain from

f(x) = f(x) for f =1,z,22, 25

We get

wi—1(x) = (2 = X;)/(Xj1 — Xj) - (z -
Xj+1)/(Xjo1 = Xj41) - (2 — Xj12) /(Xjo1 — Xjt2),

wi(r) = (v — X;0)/(X; = Xja) - (& =
Xjr1)/(Xj = Xj1) - (2 = Xji2) /(X = Xjpa),

wit1(z) = (x = Xj1)/(Xjp1 = Xj1) - (2 —
X)) (Xjr = Xj) - (2 = Xjpo) /(X1 = Xjpa),
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wi+2(2) = (2 — Xjo1)/(Xjy2 — Xj-1) - (2 —
X;)/(Xjr2 = Xj) - (& = Xj11) /(X402 — Xjt).

We construct the approximation ¢(y) of v(y), y €
[Yk, Yi11] in the form:

o(y) = vMe—Dwr—1(y) + v(Yi)wr(y)+
V(Y1) wi1(y) + v(Yet2)wit2(y),
where w;(y), i = k—1,k, k+1, k+2, can be obtained
from 4(y) = v(y) forv = 1,5y, y°.

The functions w;(y), 1 = k — 1,k k+ 1,k + 2,
can be presented as:

wp-1(y) = (Y = Yi)/ (Ve — Vi) - (y —
Y1)/ (Vo1 = Yir1) - (4 = Yag2) /(Yo — Yig),

wr(y) = (= Yi)/ (Ve = Vi) - (y —
Y1)/ (Ve = Y1) - (¥ = Yig2) / (Ve = Yisa),

wr1(y) = (¥ — Y1)/ (Yer1r — Y1) - (y —
Yi)/(Yir1r — Yi) - (y — Yir2)/(Yey1 — Yiy2),
wry2(y) = (¥ — Y1)/ (Yoo — Y1) - (y —

Vi)/(Yire = Yi) - (¥ = Yiy1)/ (Yer2 — Yey1)-
If X;11 —Xj =h,Y,1 — Y, = h, then we get:
Xjt1

[ wite(z)de =

Yit1

| wrga(y)dy = —(1/24)h,

X; Yy
Xjt1 Yiq1
J wini(x)de = [ wra(y)dy = (13/24)h,
X; Yi
Xj+1 Yit1

[ wj(z)de = Yf wi(y)dy = (13/24)h,

X;

Xj+1 Yit1
| wjsi(@)de = [ wi_1(y)dy = —(1/24)h.
X; Y

Now we have

X1 Y Xj+1
/ /U(:U,y)dydx: / F(z)dx,
X; Y X;
where
Y1
F(z)= [ Ulz,y)dy.
Y
and
Xjt+1 Yeq1
/U(x,y)dydmm
X, Y
2 2 Yk+1 Xj“v’l
Z Z Ujtpk+s / W+5(y)dy / wjt+p(@)dz.
p=—1s=—1 Y, X;

7 Application

It is well known that the RGB color model is an addi-
tive color model in which red, green, and blue light are
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added together in various ways to reproduce a broad
array of colors. The RGB color specification requires
three floating-point values for each color. The three
values must each be between 0 and 1 and specify
the amount of red, green, and blue light in the final
color. For example, COLOR(RGB,1.0,0.0,0.0)
is red, while COLOR(RGB,1.0,1.0,0.0) is yellow.
So we can take (xj, Yk, u;k), j = 0,1,...,n + 1,
kE =0,1,...,m + 1, where (x;,y) are the coordi-
nates of the point in the plane and u; x is the value of
the color (red, green or blue), 0 < w;; < 1. The ap-
plication the integro-differential splines can be used
to solve the problem of compressing the image and
restoring it with the given accuracy.

Graph 14 shows the value of the function of the
color given by the function sin(5z — 5y) cos(5x — 5y)
and the error of approximation. Graph 15 shows the
value of the function of the color produced by the
function sin(15z) sin(15y) and the error of the ap-
proximation.

Figure 14: Plots of u(x,y) = sin(5x — 5y) cos(bx —
5y) (right), and u(x, y) — u(z,y) (left)

Figure 15: Plots of u(x,y) = sin(15x)sin(15y)
(right) and u(z,y) — u(z,y) (left)

8 Conclusion

Here we obtain the formulas for the approxima-
tion functions of two variables by integro-differential
splines. We compare the results of the approxima-
tions with the interpolation splines of two variables
and integro-differential splines of two variables. If the
values of integrals are unknown we can use the cuba-
ture formulaes. To improve the application of integro-
differential splines for image construction, detailed
properties of constructing integro-differential splines
will be studied in our future work.
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