WSEAS TRANSACTIONS on MATHEMATICS

Rabha EI-Ashwah, Alaa Hassan

On some properties of certain subclasses of analytic functions defined
by using the subordination principle

RABHA EL-ASHWAH
Department of Mathematics,
Faculty of Science,
Damietta University,
Damietta 34517
EGYPT
r_elashwah@yahoo.com

ALAA HASSAN
Department of Mathematics,
Faculty of Science,
Zagazig University,
Zagazig 44519
EGYPT
alaahassan1986@yahoo.com

Abstract: - In this paper, we introduce some new subclasses of analytic functions related to starlike, convex,
close-to-convex and quasi-convex functions defined by using a generalized operator and the differential
subordination principle. Inclusion relationships for these subclasses are established. Moreover, we introduce

some integral-preserving properties.

Key-Words: - Starlike function; Convex function; Close-to-convex function; Quasi-convex function;

Subordination principle.

1 Introduction

Let A denotes the class of functions f (z) which
are analyticin U ={z e C:| z|<1} and be given by

f(z):z+ianz”. (1)
n=2

Also, for 0<a, B <1, let S™(a), C(a), K(B,a)

and K"(B,«)denote, respectively, the well-known
subclasses of A consisting of univalent functions
which are starlike of order « , convex of order « ,
close-to-convex order £ and type « and quasi-
convex of order £ and type a (see [23], [28], [32],
[34], [38], [40], [43], and [44] etc.).

Let M be the class of all functions ¢ which are
analytic and univalent in U and for which ¢(U)
is convex with @(0) =1 and Re{p(z)}>0; zeU.

We begin with recalling the principle of
subordination between analytic functions.

Definition 1. For two functions f(z) and g(z),
analytic in U, we say that f (z)is subordinate to
g(z) in U, writtenf <g or f(z2)<9(2), if
there exists an analytic function w(z) in U,
satisfying the following conditions: w(0) =0 and
[w(z)| <1, such that f(z)=g(w(z)).
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In particular, If g(z) is univalentin U, then f < g,
if and only if (see [31] and [6]) f(0)=g(0) and
f(U)cgU).

Definition 2. Making use of Definition 1, several
authors  have investigated the  subclasses

§™(a;), Cla; ), K(B,a;,p)and K™ (B, 0y, 0)
of the class A for 0<ea,f <land ¢@,weM,

which are defined as follows (see [9], [10], [11],
[20], and [27]):

S*(a;(p)z{f :f(z) e and 1L(Z;((ZZ))_

— aJ-qo(Z)
(0<a<lpeM,zeU) },

C(a;q)):{f : f(z)enand ﬁ[“z:'—((zz))_“}‘ﬂ(z)

(0<a<lpeM,zeUl) },

K(,B,a;y/,(p)z{ f:f(z)enand 3 g(z) e S (. 0);

1 (zf'(2) - Ay .
ﬁ[ 10 —ﬂ]<z//(z)(0a,/3 LyeM,z U)},
and
K*(,B,a;(,//,(p):{f:f(Z)eAandEIg(Z)eC(a,(p);

1—,3[ 0 ,b’} w(@2)(0<a,p 1,!//eM,ZeU)}.
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In particular, for ¢(z)=y(z)=(1+2)/(1-2), we
obtain the familiar classes S™(«),C(a), K(5, @)
and K*(3, «), respectively.

Furthermore, if we set =0 ande(z)=w(z)=
(1+Az)/(1-Bz) (1= B< A<1), we obtain the
following function classes:

s'[01tA2) s aB)andc( o122 ) _c(a B),
1-Bz —Bz

which were introduced by Janowski [18] (see also

[17]).

Following the recent work of EI-Ashwah and Aouf
[14] and [13, with p=1 ], for me N, = NuU{0},
N={123.}, 4>0]l>-1 and for
f(z)en given by (1.1), the integral operator
L2

function

:A — A is defined as follows:
f(2), m

0,

(2)

L (@)=

|+1 1_fJ' t%—ZLm-lf td, m=12,...

It is clear from (1.2) that:

L7, f(z)=z2 +:22(H/’t(ln+ll)HJ a,z" @)
Also, for x#>0anda,ceC, are such that
Re{c-a}>0, Re{a}>—u Raina and Sharma [39]
defined the
follows:

integral operator J;°:A—A, as

f(2);

a=g,

14 (2)= (4)

Fe+p) 1

j'(l—t)cia’1 7 (@t")dt; Re{c-a) 0.
I(a+u)T(c-a)5

For f (z) defined by (1.1), it is easily from (1.4) that:
I'(c+u) <T'(@+nw) 5
F(a+y)ZF(C+ny) ©)
(1 >0;a,ceC;Re{c—a}>0;Re{a} >—u)

() =2+

By combining the two linear operators L7 and J7°,
we define the generalized operator

17 (a,c,u): A—>A,
is defined for the purpose of this paper as following:

1M @cmf(@)=L],(32°F(2)=32(L,F (), (6)
which can be easily expressed as follows:
Ijl(a,c,y)f(z):ur(“”) F(a+ny)( 1+1 j 2z ©)
' F(@a+u) = Te+nu) \1+A(n-1)+1

(u>0a,ceC;Re{c-a}20;Re{a} > - A>0;l >-LmeN,).
In view of (1.3), (1.5) and (1.6), it is clear that:
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1° (a,c0)f(2)=3"F(z) and 17 (aawf(z)=L], f(2)
The importance of the operator 17, (a,C, 1) comes
from its generalization of a lot of previous

operators, as follows:

M 15-2,0)f@) =17, f(z) (A>01>-Lv>0;
m e Ny ) (see Aouf and El-Ashwah [2]);
(i)1;,(v-100f(2)=1’,f(2)(I1>-Lv>0seR)
(see Cho and Kim [9]);

(i) 17, (v-10Df(2) =17, f(2)(A>0,v>0;meZ)
(see Aouf et al. [4]);

(iv)1;i(aa u)f(z)=
(see Catas [8]);

M 17 @a ) f@)=3"(ANf(2)(A>01>-LmeN,)
(see EI-Ashwah and Aouf [14]);

(i) 15 (@8, u)f(z)=1]f(2)(A>0;neZ) (see
Patel [37]);

1"(ADf(z)(A>0;1>-LneN)

i1, (aan)f(z)=L,f(2)(v>0,a>0)
(see Komatu [21], see also Aouf [1]);

(viii) 1, (a,a, 1) f (z) = L7 f (2) (o> 0) (see  Jung
et al. [19], see also Liu [24]);

(ix) 1/ (a,a,u) f(z)=L"f(z)(BZ)(see Uralegaddi
and Somanatha [46], Flett [15]);

) 1 (aa,n)f(z)=1"f(z) and I 5 (a,a, 1) f(2) =
D"f(z)(neN,) (see Salagean [42]);

(i) 1}, (a,a, 1) F(2) =R"f(z)(v>0;1>-1) (see
Gao et al. [16]);

(i)l (@ a u)f(z)=L, f(z)(c>0) (see Owa
and Srivastava [36] and Srivastava and Owa [45]);

(xiii) Igv,(ﬁ,a+ﬂ—7+1,l)f(z)=ER C/}"f(z)(;/>0;a27—];
B >-1) (see Aoufetal. [3]);

xiv) 13, (B,a+ 1) f(2)=Q; f(2)(=20; 8>-1)

(see Liu and Owa [25], see also Jung et al. [19] and
Li [22]);
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(xv) I3, (a-1Lc-11) f(2) =L(a,c) f (z)(a,c e C\Z,,
> =10,-1-2, }) (see Carlson and Shaffer [7]);

(XV|)I (=L (2)=1,,f(2)(v>0n>-1)

(see Choi et al. [11]);

(xvi) 17,(2,0)f(z2)=D*f(2)(a>-1) (see

Ruscheweyh [41]);

(xviii) 13,@n)f(z)=D"f(z)(neN,)

Noor [33] and Noor and Noor [35]).

(see

Thus, the new results obtained in this paper can
ensure the results obtained in the earlier works also
introduce new results of the other well-known
operators as  special  choices of the
parametersa,c, #,m,l, 1, ¢, and v .

Using (1.7), we can obtain the following recurrence
relations, which are needed for our proofs in
following two sections:

(177 @c () —TIm (a.c,u)f(2)
1+1-4

177 (¢, 1) f(2), 8)

2(17,@,c ) 1(2)) =21 a+Le, 1) £ (2)
7,

Lim@ewf@). ©
Y7,

Definition 3. For x>0,a,ceC;Re{c—a}>0,
Re{a}>—,u,ﬂ,>0,l>—1,0£a,ﬂ<1,meNo

17 (a,c, ) f(z) defined by

(1.12), we introduce the following subclasses of the
normalized analytic functions class A, as follows:

and the operator

S (a;a,¢, 1, 9)

={f:f(2)erandI],(ac, u)f(z) S (a.0)},
Cli(aa,c, 1, 9)

={f:f()enand 1] (ac,u)f(z) eCla:0)},
Ki (B.a;a,¢, 1,v, )

{f:f@erandI],(ac.0)f (@) KBy o),

and
K1 (B.a;a,C, 1y, )

={f:f@erandl] (ac,u)f(2)eK (B.ay.p)}.

For the subclasses defined above, we note that:
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f(2) eC} (a;a,C, ;) < of (Z)eSM(aaC,ugo)

(10)

and
f(2) K (Baac my,9) & 2 (2) eK] (B aa.c v, 0).
(11)

Remark 1. If we set a=c in Definition 1, we
obtain the following subclasses of A :
S@p)={f : f(z)enandL], (2)eS (a.0)},

Cli(ap)={f : f()enand L] f(2)eClaip)},
KI\(B.asy,9)={f : f()enand L] f(2)eK(B,asp,0)},
KN(B.aiw,p)={f : f(2)enand L], f(2) K (B,asp.0)}.
Where L7, f(z) is defined by (1.7).

Remark 2. If we set m=0 in Definition 1, we
obtain the following subclasses of 2 :

S'(@a,c ) ={f : f(2)enandd}*f(2)eS (z:p)},

Claacmp)={f : f(z)erand)>*f(2)eClap)},
K(B.a:a.cuy,p)={f : f(2)enand I3 f(2) eK(B,ciy.p)},
K (Basa,cuy,0)={f : f(2)enandI}*f(2) K (B.ay.0)}.

Where J7°f(z) is defined by (1.10).

In order to introduce our main results, we shall need
the following lemmas.

Lemma 1 (see [12]). Let h be a convex univalent
function in U with h(0) =1 and Re{uh(z)+v}>0
(e,v € C). If p is an analytic function in U with
p(0) =1, then

zp'(2)

p(z) + <h(z); zeU,
up(z)+v

implies that

p(z) <h(z); zeU.
Lemma 2 (see [29] and [30]). Let h be a convex
function in U with h(0) =1 . Suppose also that w
be an analytic function in U with Re{w(z)}>0
(zeU). If p isan analytic function in U with
p(0) =1, then

p(z) +w(z)zp'(z) < h(z); z€U,

implies that

p(z) <h(z); zeU.

2 Inclusion Relationships

Unless otherwise mentioned, we shall assume
throughout the paper that x>0, a,ceC,
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Re{c-a}>0, Re{a}>-x,4>0, 1>-1 0<a,fp<1,

meN,, f(z)ea and ¢(z),p(z) e M. In this section,

we give several inclusion relationships for analytic
function classes, which are associated with the

generalized operator 17, (a,c, 1) defined by (1.12).

Theorem 1. Let max Re{q;(z)}<min{ .
a_

el ’ a_l

Then
S (aa+1c u0) S (@ac ) S, (aac mp). (12)
Proof. We begin with proving that
S\ (a;a+1c,u;0) =S (e;a,C, 1, 9). (13)

Let f(z)eS, (a;a+1c,u;0) and set
1 [ZUQK&CJDf(U)

1-a| 17(ac,u)f(2)

where p(z) =1+ p,z+ p,z°+... is analytic in
U and p(z)=0 forall zeU. Applying (9)
and (14), we obtain

a+u I @+Le0) (@) _
u 1N@ca)

By using the logarithmic differentiation on both
side of (15), we obtain

2(17,@a+Lc, 1) f (2))
17 (a+1c, ) f(2)

(h@ent@)

by using (14) again, we have

1 [z(ly,(aﬂ,c,y)f(z))' }
-
(04

—0!] =p(2), (14)

(1-a) p(2)+ 2 +a. (15)
U

(1-a)zp (2)
1-a)p(2)+ &+ ’

1- 17, (a+1c,u)f(2)

2p (2) (16)

(l-a) p(z)+%+a'

=p@)+

Since Re{(p(z)}<m forall zeU and
a-1

f(2)eS) | (a;a+1c, u;¢), from (16) we see
that

Re{(l—a)(o(z) +3+a} >0 (zeU),
u

and
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zp ()
Z)+

P() -a)p(2)+5+a
Thus, by using Lemma 1 and (14), we observe
that

<@(z) (zeU).

pP@) < ¢() (z€ V),
which implies that
f(z) €S}V (a;a,¢, 1, 9),
which proves the first inclusion relationship

(13). Now, we prove the second inclusion
relationship, asserted as following

S; (e a,¢, 1;0) = ST (e a,¢, 14 ).
Let f(z)eS, (a;a,c, 1) and set

1 [Z(UT%&CJOfUU

A7)

@) f(2)

where q(z) =1+qz+0,z° +... isanalytic in
U and q(z)#0 forall zeU. Then, by using

arguments similar to those detailed above with
(8), it follows that

q(z) < ¢(2) (zeU),

l-«o

aJ =q(2), (18)

which implies that
f(z) €S, (@ a,c, 1;9),
which proves the second inclusion relationship

(17). Combining the inclusion relationships (13)
and (17), we complete the proof of Theorem 1.

e

el a-1 a-1

Theorem 2. Let max Re{¢(z)}<min{

Then
C) (ana+1,c,1,0) cC (ara,¢, 1;0) C) (ara,c, 19). (19)
Proof. Applying (10) and Theorem 1, we
observe that
f(z) eCl (a;a+1,c, u; )

<17 (@a+1lc,u)f(2) eCla;p)
< z(17,(a+1,c, 1) f(2)) €S™(a; 9)
< 1) (a+1c,u)(2f (2)) e S (a5 9)
< 2f (2) € ST (a;a+1,c, 15 9)
= zf (2) € S} (a;a,¢, 145 9)
<17, (a,c, 1)(2f (2)) € S™ (5 )
<= z(1} (a,c, 1) f(2)) € S™(a; )
<17 (a,c, 1) f(z) e Ca; @)
<= f(2)eCl\(a;a,c, 1;9),
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and
f(z) eC]\(a;a,c, 1;9)

< 2f (2) € SV (a;a,C, ;)

= zf (z) € ST (a;a,c, ;)

< z(1]) (¢, 1) T(2)) €S (i 9)

<177 (@, 1) (z) eCla;9)

< f(z) eCl\ M (a;a,c, 13 ).
Which evidently proves Theorem 2.

SR

’ a-1

Theorem 3. Let m%x Re{(p(z)}<min{ .
1€l -

Then
K (B a;a+1.¢,15v,9)
=K} (B.a;a,¢, 1y, 9)

c KB aia,c, 1, 0).

Proof. We begin with proving that
K! (B aa+le,uy,0) K] (Baiac uy,0). (21)
Let f(z) eK] (B, a;a+lc, u;w,¢). Then, there

exists a function r(z) e S*(«;¢) such that

1 [z(lj,(aﬂ,c,y)f(z))'

(20)

1-p r(z)
Choose the function

17, (a+1c,1)9(2) =r(2),
0(z) e S} (a;a+1,c, 1;90) and

1 [z(lg“(a+1,c,y)f(z))'

g(z) such that

so that we have

1-p| 17 (a+Lc u)g(2)
Next, we set

1 [z(l;ﬁ.(a,c,u)f(n)

ﬁJ<W(Z) (zeU).(22)

1-p| 1Zi(acm9(2)

where p(z) =1+ p,z+ p,z°+... is analytic in
U and p(z)#0 forall zeU. Thus, by
using the identity (9), we obtain

1 [z(lj,(aﬂ,c,y)f(z))'_ﬁJ

1-p| 1i(@+lcm)9(2)

1 (1]@+Lc (2 (2))
1-p( Ih@+lewy@

ﬂJ= p(2), (23)
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. z(lgjl(a,c,ﬂ)(zf'(z)))#%|;1|(a,c,ﬂ)(zf'(z))

= - -p
=81 2(1f(ac ma(@) +217 (@19 (2)
z[l%(a,c,y)(zf'(z))] . |}T|(aycyﬂ)(zf'(z))
_ 1 M (@cme@ " # 1T (acw)g() 5
1-p 11 (a.c.)9(2)) La
N @cue@) A
(24)

Moreover, since
9(z) €SN (xa+lc, u0) = Sl (a;a,C, 19),
by using Theorem 1, we can put
1 [ z(17@c 1)9(2)
1-a| 17(ac,u)g(2)

a] =G(2), (25)

where G(z)<@(z) (zeU). Then, by virtue
of (23) and (24), we observe that

17 @.c.)( (2)=[(1-8)p@)+B)(1], @c.)o(@))  (26)

and
1 [2(10@+Lew (@)
5 Madomed
17, @[z ()]
1 (Ilg",(a,c/fy()g(z) )) +%[(1_ﬂ) p(Z)+ﬂ]
_1—,3 [(l—a)G(z)+a]+% -8
(27)

Upon differentiating both sides of (26), we have
z(lfyl(a,c,y)(zf'(z)))r
I (a,c,1)9(2)

=(1-B)zp (2) +[(1- B) p(2) + B][(1- &) G(z) + ] (28)
Making use of (22), (27), and (28), we get

1 [z(lj,(aﬂ,c,y)f(z))'_ﬂJ

1- 8 17 (a+1c,)9(z)

zp (2)
(1—a)G(Z) +a +%
_ Re{%}wf
Using max Re{p(z)} < —

zeU o—

(peM,zeU), then we have

=p(2)+ <y (2) (Z eU).(29)

and G(z)=<¢(2)
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Re{(l—a)G(z)+a+3}>0 (zeU).
7,

Hence, upon taking
1

(1-a)G(@D)+a+d

in (29), and applying Lemma 2, we obtain that
p(2)<w(z) (z€V),

then, in view of (23) we deduce that

f(z) eKy (B asa.c, v, 0) which proves

(21).For the second part, by using arguments

similar to those detailed above with (8), thus we

choose to omit the details. The proof of
Theorem 3 is completed.

w(z) =

2 a-1 a-1

Rei2 142
Theorem 4. Let max Re{(p(z)}<min{M,‘—+a},

Then
KT (B, a;a+L,c, 1w, 9)
c KN (B.aa.c my, )

cKT (B aiac iy, 0).  (30)
Proof. Just, as we derived Theorem 2 as a
consequence of Theorem 1 by using the
equivalence (10). Similarly, we can prove
Theorem 4 as a consequence of Theorem 3 in
conjunction with the equivalence (11).
Therefore, again, we choose to omit the details
involved.

Remark 3. (i) Taking a=v-1(v>0), c=0
and =1 in Theorems 1-3, we obtain the

results obtained by Aouf and El-Ashwah [2,
Theorems 1-3];

(ii) Taking m=s(seR),A=La=v-1(v>0),
c=0 and =1 in Theorems 1-3, we obtain

the results obtained by Cho and Kim [9,
Theorems 2.1-2.3];

(iii) Taking 1=0,a=v-1(v>0),c=0, and
#=1 in Theorems 1-3, we obtain the results
obtained by Aouf et al. [4, Theorems 1-3].

Taking a=c in Theorems 1-4, we obtain the
following corollary.

Corollary 1. For the subclasses S} (a; ),
Clilao) Ki(Bay,p) and KT (B, v, ¢)
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defined in Remark 1, we have the following
inclusion relations.

S (a;0) = S (@ 9),
C/TJ(“KD) CC;Tl(O(;¢),
KD (B v, 0) c KIV(B v, ),

KN (B, 0) € KB,y 9).
Remark 4. (i) Taking A=1m=p(u>0),1=a-1(a>0)
and  @(z)=w(z)=12% in Corollary 1, we
obtain the results obtained by Aouf [1,
Theorems 1-4];

(i) Taking A1=1=1m=0(c>0) and ¢(z)=y(2)

_ 1z

=1Z in Corollary 1, we obtain the results
obtained by Liu [24, Theorems 1-4].

Taking m=0 in Theorems 1-4, we obtain the
following corollary.

Corollary 2. For the subclasses S*(«;a,c, i; ),
Cla;ac,u;p),  K(B,aiacuy,p)  and
K*(B,a;a,c, i;w,9) defined in Remark 2, we
have the following inclusion relations.

S (aa+lc, mp) = ST (a5, 1459),
C(a;a+1,c, u;90) cC(a;a,c, 1;9),
K(B,a;a+1c, iy, 9) c K(B,aia,¢c, iy, 9),
K'(B,a;a+lc, iy, 0) c K'(B,a;a,¢, 1, 9).

Remark 5. Takinga =8=0, a=v-1(v>0),
c=A(A>-1) and x=1 in Corollary 2, we

obtain the results obtained by Choi et al. [11,
Theorems 1-3].

3 Integral-Preserving Properties

Now, we recall the definition of the
generalized Bernardi-Libera-Livingston integral
operator L : A— A, as following (see [36]):

L f(z)= G—’Ll it (®)dt (o> -1, f(z) € A). (31)
YA

0

The operator L_f(z)(ceN) was introduced

by Bernardi [5]. In particular, the operator
L f(z) was studied earlier by Libera [23] and
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Livingston [26]. Using (7) and (31), it is clear
that L_f (z) satisfies the following relationship:

(17, @a.c.p)L, f(2))

=(c+1)1] (ac, ) f(2)-ol] (ac, pL f(2).(32)
Now, we begin the Integral-preserving property
involving the integral operator L_ by the

following theorem.
a+o

a-1

f

Theorem 5. Let max Re{p(z)} <

f(z) €S} (a;a,¢, 1;9), then
L, f(z) eS; | (a;a,¢, 11, 0).
proof. Let f(z) €S (a;a,c, ;) and set

1 [ z(1](acmL, f(2)
17, (a,c. 1)L, T (2)

where p(z) =1+ p,z+ p,z° +... is analytic in
U and p(z)=0 for all zeU. By applying
(32) and (33), we have
17 (a,c ) f

(041) h@CAT@

17 (@ u)L, f(2)
By using the logarithmic differentiation on both
side of (34), we have

1 {z(l;“.(a,c,u)uz))_a]

1-a| 17 (ac,u)f(2)

_ zp (2)
- p(Z)+(1_a) p(2)+a+o (35)

l-«

—aJ p(2). (33)

(1-a)p(z)+a+0.(34)

+o

. a
Since max Re{p(2)} < . and

f(z)eS) (a;a,c, u; ), from (35), we have
Re{(l—a)(o(z)+a+a}>0
and
zp (2)
Z)+ <p(z) (z€U).
PO o sare <7D @V
Hence, by Using Lemma 1, we obtain
p(z) < p(z) (zeU),
then, in view of (33) we deduce that
L, f(z) €S} (a;a,c, 11;9), which completes
the proof of Theorem 5.
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Taking a=c in Theorem 5, we obtain the
following corollary.

a+o
Cf

Corollary 3. Let max Rel{o(z)! <
y nax Re{p(2)j<——

f(z2)eS)\(a;9), then L f(z) €S (a; ).
Remark 6. (i) Taking A=1 m=v(v>0),
I=a-1(a>0) and ¢(z)=%2 in Corollary 3,

1-z
we obtain the results obtained by Aouf [1,
Theorem 5];
(i) Taking A=I1=1,

o(z) =% in Corollary 3, we obtain the results

obtained by Liu [24, Theorem 5].

m=oc(c>0) and

Taking m=0 in Theorem 5, we obtain the
following corollary.
a+o

f

Corollary 4. Let max Re{p(z)} <

f(z)eS™(a;a,c, 1;9), then L f(2) €S (a;a,¢, ).
Remark 7. Taking «=0, a=v-1(v>0),
c=A(A>-1) andu=1 in Corollary 4, we

obtain the results obtained by Choi et al. [11,
Theorem 4].

The next Integral-preserving property involving
the integral operator L_ is given by the

following theorem

(e}

a+o

Theorem 6. Let max Re{p(z)} < . If
Z€ o —

f(2)eC] (a:a,c, 1;0), then L f(z) eC] (esa.c, ;).
Proof. Applying (10) and Theorem 5, we

observe that
f(2)eC)\(a;a,c, 1;0)
< 2f'(z) €S (@ a,C, 15 9)
= L, (2 '(2)) e S;T (s a,c, ;)
o z(L, F(2)) €SM(e;a,¢, 140)
oL, f(2)eCl (aa,c, ;).

The proof of Theorem 6 is evidently completed.

Taking a=c in Theorem 6, we obtain the
following corollary.
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a+o

Corollary 5. Let

max Re{p(2)} <

f(2)€C]\(a9), then L, f(2) C]\(a:0).
Remark 8. (i) Taking A=1 m=u(u>0),
I=a-1(a>0) and ¢(z)=% in Corollary 5,
we obtain the results obtalned by Aouf [1,
Theorem 6];

(i) Taking A=I=1,m=0(c>0)and ¢(z)=1Z
in Corollary 5, we obtain the results obtained by
Liu [24, Theorem 6].

Taking m =0 in Theorem 6, we obtain the
following corollary.
a+o

f
-1

Corollary 6. Let max Re{p(z)} <

f(z) eC(a;a,c, u; ), thenL f(z) eC(a;a,c, 1 9).
Remark 9. Taking a=0, a=u-1(x>0),
c=A(4>-1) and x=1 in Corollary 6, we

obtain the results obtained by Choi et al. [11,
Theorem 5].

Also, an Integral-preserving property involving
the integral operator L, is given by the

following theorem.

o

a+o

Theorem 7. Let .

max Re{p(2)} <

f(2) K}, (B, a;a,¢, 1;y,9), then

L, f(2) e K]\ (B, sa,c, iy, ).
Proof. Let f(z) e K}, (B,a;a,C, 1y, 9) . Then,
in view of (1.4), there exists a function
9(2) €Sl (asa,c, 1, 9) and

1 1ﬂ£z(|ﬂ(a,c,u) t(2) _ﬂJ (@ (22U).(36)

17 (ac.1)9(z)

Set
1 (z(f@ewLi@) ) (37)
1—/3[ 17 (a,c, 1)L, g(z) ﬁJ —P®
where p(z) =1+ p,z+ p,z°+... is analytic in
U and p(z)=0 for all zeU. Applying

(33), we obtain

1 |z
1-p

E-ISSN: 2224-2880
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1 IQ”,.(a,c,ﬂ)(zf'(z))_ﬂ

1-8 1], (ac,1)9(2)

1 [o(nenL (2 @) +o(1 @e L, (2 @)

1-p z(lj_‘l(a,c,p)LUg(z)) +o|z‘|(a,c,y)ng(z)
(M@enl@ @) (@)

_ 1 17/ (a,c,A)L,9(2) to I}?‘J(a,c,A)Lﬁg(z) —ﬂ

1-5 (17 (a,c,A)L,9(2))

-p

(38)
Since g(z) €S} (a;a,¢, i1, 0), by using Theorem

5, we have L _g(z)eS)|(a;a,c, ;) , then we

obtain

1 z(lj“l(a,c,y)LUg(z))’

1-a| 1] (acu)L 9(2)
Then, by using the same techniques as in the
proof of Theorem 3, we conclude from (36),
(37), (38) and (39) that

1 (21 @cnf@)
1-p 1i(acm9(2)
~ 2p'(2)

PO T i @rare
Hence, upon setting

1

)= .
0 vy ——
in (40), in view of Lemma 2, we obtain
p(2)<w(z) (zeU),
which leads to
L, f(2) e K]\ (B,asa,c, iy, ).
which completes the proof of Theorem 7.

—aJ H(z) < 0(z) (ZEU) (39)

<y (z) (zeU).(40)

Taking a=c in Theorem 7, we obtain the
following corollary.
Corollary 7. Let max Re{qo(z)}<a+:. If

f(2) e K7 (B, iy, ¢) then L f(2) KT\ (B, oy, ).
Remark 10. (i) Taking A=1 m=u(u>0),
| =a-1(a>0)and¢(z) =w(z) =< in Corollary

7, we obtain the results obtained by Aouf [1,
Theorem 7];
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(ii) Taking A=1=1,m=0(c>0)and ¢(z)=y(2)
=XZjn Corollary 7, we obtain the results
obtained by Liu [24, Theorem 7].

Taking m=0 in Theorem 7, we obtain the
following corollary.

a+o If

Corollary 8. Let max Re{g(z)} <
zeU a-—1

f(z) e K(B,a;a,c, 1y, 9), then

L, f(z) e K(B,;a,c,u;¢7,9).

Remark 11. Taking a=4=0, a=v-1(v>0),
c=A(A>-1) and u=1 in Corollary 6, we

obtain the results obtained by Choi et al. [11,

Theorem 6].

a+c7. If
1

Theorem 8. Let max Re{p(z)} <

f(2) eK1(B.a;a,¢,1p,9), then

L f(2) e K\ (B, a,c, iy, 9).
Proof. Just as we derived Theorem 6 from
Theorem 5 by using (10). Easily, we can deduce
Theorem 8 from Theorem 7 by using (11). So
we choose to omit the proof.

Remark 12. (i) Taking m=s(seR), 1=1,
a=v-1(v>0), ¢=0 and x=1 in Theorems

5-7, we obtain the results obtained by Cho and
Kim [9, Theorems 3.1-3.3];

(ii) Taking a=v-1(v>0), ¢=0 and w=1

in Theorems 5-7, we obtain the results obtained
by Aouf and El-Ashwah [2, Theorems 4-6];

(i) Taking 1=0, a=v-1(v>0), ¢=0 and
#=1 in Theorems 5-7, we obtain the results
obtained by Aouf et al. [4, Theorems 4-6].

Taking a=c in Theorem 8, we obtain the
following corollary.
Corollary 9. Let max Re{p(2)} <

f(2) eK]1(B,a;v, @), then

L f(2) e K1 (B.asy,9).

Remark 13. (i) Taking A=1 m=u(u>0),
=a-1(a>0) and ¢(z) =y(z)=%% in Corollary

9, we obtain the results obtained by Aouf [1,
Theorem 8];

a+o If

a-1
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(i) Taking A=I1=1, and
o(2) =y (z) =% in Corollary 9, we obtain the

results obtained by Liu [24, Theorem 8].

m=0(0'>0)

Taking m=0 in Theorem 8, we obtain the
following corollary.

ato
1

Corollary 10. Let max Re{p(z)} <

f(z2) e K'(B,a;a,c, u;w, ), then
L f(2)eK'(B.aac y,0).
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