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Abstract: The objective of this paper is to investigate optimal investment strategy for a pharmaceutical or petroleum
company under mean-variance criterion. The surplus of the company is modeled as a dual risk model. We assume
that the company can invest into a risk-free asset and n risky assets. Short-selling and borrowing money are
allowed. Since this problem is time-inconsistent, we study it within a game theoretical framework. The sub-
game perfect Nash equilibrium strategies (namely time-consistent strategies) are derived by solving the Extended
Hamilton-Jacobi-Bellman(HJB) equations in the classic diffusion dual model and in the diffusion dual approxi-
mation model, separately. Surprisingly when a coefficient parameter ρ = 0, optimal time-consistent investment
strategies and the value functions have the same expressions in both cases. Finally, We present economics impli-
cations and provide sensitivity analysis for our results by numerical examples.
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1 Introduction
Recently, quite a few interesting papers have been

published on the dual risk model. The dual risk mod-
el can be natural for companies that have occasion-
al profits. For companies such as pharmaceutical or
petroleum companies, the jump can be interpreted as
the net present value of future income from an inven-
tion or discovery. Many scholars investigated the dual
risk model under different criterions. For example,
Zhu and Yang [22] studied the ruin probability under
the dual model, while Avanzi et al. [1] [2] consid-
ered the dividend payment problems in the dual mod-
el. Dai et al.[8] and Yao et al.[18] investigated the dual
model under the objectives of maximizing the expect-
ed present value of the dividends minus capital injec-
tions, while the latter considered the transaction costs.

The objective of this paper is to investigate the
optimal investment problem in the dual model un-
der mean-variance criterion. Most of the literatures
exploited an embedding technique to deal with dy-
namic mean-variance problem. The embedding tech-
nique was proposed by Li and Ng(2000) and Zhou
and Li(2000). Since the iterated expectation property
does not hold for the variance operator, the optimal s-
trategy(precommitted strategy) derived by the embed-
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ding technique does not satisfy the Bellman Optimal-
ity Principle and is time-inconsistent. This precom-
mitted strategy implies that the strategy computed at t
will not necessarily coincide with the strategy derived
at t + ∆t. As a result, at t + ∆t the rational investor
will implement the strategy computed at t. A rational
investor will find a time-consistent strategy which en-
sures him to keep a consistent satisfaction. Another
possibility is to take the time-inconsistency more seri-
ously and study the problem within a game theoretical
framework. The basic idea is that when we decide on
a strategy at t we should explicitly take into account
that at future times we will have a different objective
functional, which means our preferences change in a
temporally inconsistent way as time goes by, and we
can thus view this problem as a non-cooperative game.
We then look for a subgame perfect Nash equilibrium
point for this game. The game theoretical approach to
address general time inconsistency via Nash equilibri-
um points has a long history starting with [17] where
a deterministic Ramsay problem was studied. Further
work along this line in continuous and discrete time
were provided in [11], [14] and [15].

Recently there has been renewed interest in these
problems. In the interesting papers [9] and [10], the
authors considered optimal consumption and invest-
ment under hyperbolic discounting in deterministic
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and stochastic models from the above game theoret-
ical point of view. They provided a precise definition
of the game theoretical equilibrium concept in contin-
uous time. Björk and Murgoci [3][4] studied time in-
consistency (in discrete and continuous time) and the
authors undertake a deep study of the problem within
a Wiener driven framework. Zeng and Li [19] studied
the diffusion risk model under mean-variance crite-
rion and obtained optimal time-consistent investment
and reinsurance policies. Zeng et al.[20] investigated
the optimal time-consistent investment problem in the
classic risk model. In the following paper, Björk et
al.[5] investigated mean-variance portfolio optimiza-
tion with state dependent risk aversion. Besides, there
are some other investment problems under different
models, see Li et al.[12], Chang and Lu [6], Chang et
al.[7] and references therein.

However, all of the above references do not con-
sider optimal investment problem in the dual risk
model under mean-variance criterion. Zhang et al.[21]
studied optimal investment strategy in a dual risk
model under mean-variance criterion and they as-
sumed that the financial market consisted of a risk-
free asset and a risky asset which price was mod-
eled by a diffusion process without jumps. In our
paper, we assume the prices of the risky assets are
described by a diffusion process with jumps. Short-
selling and borrowing money are allowed. Due to
lack of Bellman Optimality Principle, we exploit the
game theoretical approach to deal with this problem
and the time-consistent investment strategies are in-
vestigated in the classic diffusion dual model and
the diffusion dual approximation model. Similarly
as Björk and Murgoci [3], we give a series of ele-
mentary definitions and closed expressions for opti-
mal time-consistent investment and the corresponding
value functions are derived by solving the extended
Hamilton-Jacobi-Bellman equations.

This paper is organized as follows. In Section 2,
we describe the classic diffusion dual risk model and
the diffusion dual approximation model by consider-
ing the investment strategy, define the equilibrium s-
trategy and give the verification theorem for the dual
risk model. In Section 3, optimal time-consistent in-
vestment strategy and the value function are derived
by solving the extended HJB equation in the clas-
sic diffusion dual model. In Section 4 we give opti-
mal time-consistent investment strategy and the val-
ue function in the diffusion dual approximation mod-
el. The final Section provides economics implications
and sensitivity analysis for our results by numerical
methods.

2 Problem formulation
In this section, we start with the classic diffusion

dual model and the surplus process of the company is
given by

R(t) = x+

N1(t)∑
j=1

Zj − ct+ σ0W0(t), R(0) = x, (1)

where x is the initial capital, c is the rate of expens-
es, {N1(t)}t≥0 is a Poisson process with intensity
λ1 and Zj is the size of the jth positive incomes or
profits. The incomes are i.i.d.with the first and sec-
ond moment µz and σ2z , respectively. W0(t) is a s-
tandard Brownian motion which denotes the uncer-
tainty of profit. The expected increase of the surplus
per unit time satisfies the positive loading condition:
λ1µz − c > 0.

The company is allowed to invest its surplus in
a financial market consisting of a risk-free asset and
n risky assets. The total amount of money invested
in the ith risky asset at time t is described as li(t).
Denote the price of the risk-free asset S0 by

dS0(t) = r0(t)S0(t)dt, S0(0) = s0, (2)

where s0 is the initial price of the risk-free asset, r0(t)
represents the risk-free rate and it is a positive contin-
uous bounded function. The price process Si(t) of the
ith risky asset (i = 1, 2, ..., n) satisfies the following
stochastic differential equation

dSi(t) = Si(t)

(
ri(t)dt+

d∑
j=1

σij(t)dWj(t)

+d
N2(t)∑
j=1

Yj

)
, Si(0) = si,

(3)

where ri(t)>r0(t) is the appreciation rate, ri(t)
and σij(t) are positive continuous bounded func-
tions. W (t) = (W1(t),W2(t), ...,Wd(t))

T is a d-
dimensional standard Brownian motion. Yj is the jth
jump amplitude of the risky asset price and Yj , j =
1, 2, ... are i.i.d. random variables with the finite first-
order moment µy and second-order moment σ2y . Fur-
thermore, assume ri(t) + λ2µy>r0(t) which means
it is better to invest money into risky asset in the long
term andW0(t), W (t),

∑N1(t)
j=1 Zj and

∑N2(t)
j=1 Yj are

independent and P (Yi ≥ −1) = 1 which can make
the risky asset’s price remain positive. Here the su-
perscript ”T” denotes the transpose of a matrix or a
vector and d ≥ n. Let X l(t) denote the resulting
surplus process after incorporating strategy l into (1).
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The dynamics of X l(t) can be preserved as follows

dX l(t) =
(
r0(t)X

l(t) + rT (t)l(t)− c
)
dt

+σ0dW0(t) + lT (t)σ(t)dW (t)

+d
N1(t)∑
j=1

Zj + lT (t)e d
N2(t)∑
j=1

Yj ,

(4)

where r(t) = (r1(t)− r0(t), r2(t)− r0(t),...,rn(t)−
r0(t))

T , σ(t) = (σij)n×d and e = (1, 1, ..., 1)T .
Furthermore, denote Σ(t) = σ(t)σT (t) and let I
represents the identity matrix. We also assume that
Σ(t) + λ2σ

2
yI is reversible for all t ∈ [0, T ].

Similarly as Schmidli [16], the diffusion approxi-
mation of (1) can be described as

dR(t) = (λ1µz − c)dt+
√
λ1σ2zdW

∗(t)

+σ0dW0(t),
(5)

whereW ∗(t) is a standard Brownian motion. Assume
thatW0(t), W

∗(t), W (t) and
∑N2(t)

j=1 Yj are indepen-
dent except that W ∗(t) is correlated with W0(t) with
correlation coefficient ρ, i.e.,

E(W0(t)W
∗(t)) = ρt. (6)

When the company invest its money into the financial
market which is described above, the resulting surplus
process Y l(t) can be given by

dY l(t) =
(
r0(t)Y

l(t) + rT (t)l(t) + λ1µz

−c) dt+ σ0dW0(t) + lT (t)σ(t)dW (t)

+
√
λ1σ2zdW

∗(t) + lT (t)e d
∑N2(t)

j=1 Yj ,

(7)

Denote C1,2(Q) =
{
ϕ(t, x)|ϕ(t, .) is once con-

tinuously differentiable on [0, T], and ϕ(., x) is
twice continuously differentiable on R

}
where Q :=

[0, T ]×R, then for ϕ(t, x) ∈ C1,2(Q), the infinitesi-
mal operator of the surplus process X l(t) is

Alϕ(t, x) = ϕt(t, x) + ϕx(t, x) [r0(t)x− c

+rT (t)l(t)
]
+ 1

2ϕxx(t, x)
(
σ20 + lT (t)Σ(t)l(t)

)
+λ1 [Eϕ(t, x+ Z)− ϕ(t, x)]

+λ2 [Eϕ(t, x+
∑n

i=1 li(t)Y )− ϕ(t, x)] ,

(8)

and the infinitesimal operator of the surplus process
Y l(t) is

Blϕ(t, x) = ϕt(t, x) + ϕx(t, x) [r0(t)x+ λ1µz

−c+ rT (t)l(t)
]
+ 1

2ϕxx(t, x)
(
σ20 + ρσo

√
λ1σ2z

+lT (t)Σ(t)l(t) + λ1σ
2
z

)
+λ2 [Eϕ(t, x+

∑n
i=1 li(t)Y )− ϕ(t, x)] .

(9)

Next, we give a series of definition on the classic
diffusion dual process X l(t).

Definition 1. A strategy l ={l(t) = (l1(t),l2(t), ...,
ln(t))}t≥0 is said to be admissible if
(1) l(t) is a Ft-adapted process;
(2) l satisfies the integrability condition:
E
∫ t
0 l
T (t)Σ(t)l(t)ds <∞ almost surely, for all t ≥ 0;

(3) SDE(4) has a unique solution corresponding to l.

Denote the set of all the admissible strategies by
U . We mainly consider mean-variance criterion and
the objective of the company is find the maximization
of the following function

J(0, x; l) = E0,x

[
X l(T )

]
− γ

2
V ar0,x[X

l(T )], (10)

where γ is a pre-specified risk aversion coefficien-
t, E0,x[.] = E[.|X l(0) = x] and V ar0,x[.] =

V ar[.|X l(0) = x]. This problem is a static mean-
variance problem. Due to this criterion lacking
the iterated-expectation property, it leads to a time-
inconsistent problem. It means that the Bellman Op-
timality Principle does not hold. We formulate an in-
vestment problem in a game theoretical framework.

Furthermore, we take this problem as a non-
cooperate game, with one player for each time t,
where player t can be regarded as the future incarna-
tion at time t. For any fixed (t, x), the objective is to
find

sup
l∈U

J(t, x; l) = supl∈U
{
Et,x

[
X l(T )

]
−

γ
2V art,x

[
X l(T )

]}
.

(11)

This problem can be viewed as a dynamic mean-
variance problem.

Similarly as Björk and Murgoci [3], we provide
the definition of the equilibrium strategy and the veri-
fication theorem for problem(11).

Definition 2. (Equilibrium Strategy) For any
fixed chosen initial state (t, x) ∈ Q, Consider an ad-
missible strategy l∗(t, x). Choose two fixed real num-
ber l̃ > 0 and ε > 0 and define the following strategy:

lε(s, x) =

{
l̃, for (s, x) ∈ [t, t+ ε]× R
l∗(s, x), for(s, x) ∈ [t+ ε, T ]× R.

If for all l̃ ∈ R+ and (t, x) ∈ Q, we have

lim inf
ϵ→0

J(t, x, l∗)− J(t, x, lε)

ε
≥ 0, (12)

then l∗(t, x) is called an equilibrium strategy, and the
corresponding equilibrium value function is defined
by

V (t, x) = J(t, x, l∗) = Et,x
[
X l∗(T )

]
−γ

2V art,x
[
X l∗(T )

]
.

(13)
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By definition 2, we know that the equilibrium s-
trategy is time-consistent. So the equilibrium strategy
l∗ is called optimal time-consistent strategy for prob-
lem (11).

To solve problem (11), we use stochastic analysis
techniques described in [3] or [19] to derive the ex-
tended Hamilton-Jacobi-Bellman(HJB) equation and
the verification theorem.

Theorem 3. (Verification Theorem) If there exist t-
wo real functions W (t, x), h(t, x) ∈ C1,2(Q), which
satisfy the following extended HJB equation

sup
l∈U

{
AlW (t, x)−Al

(γ
2
h2(t, x)

)
+ γh(t, x)Alh(t, x)

}
= 0, (14)

W (T, x) = x, (15)

Al∗h(t, x) = 0, (16)

h(T, x) = x, (17)

where

l∗ = arg sup
{
AlW (t, x)−Al

(γ
2h

2(t, x)
)

+γh(t, x)Alh(t, x)
}
.

(18)

Then V (t, x) = W (t, x), Et,x(X l∗(T )) = h(t, x)
and l∗ is optimal time-consistent strategy.

Theorem 3 can be proved by the same procedure
stated in [3] or [19] ,while the only difference in the
proof is that diffusion process and jump diffusion pro-
cess have the different infinitesimal generator.

Remark 4. A series of definitions on Y l(t) can be
omitted, for we can do it in the same way as in classic
diffusion dual process Xt.

In the following two sections, optimal time-
consistent strategies and the corresponding value
functions can be explicitly derived in the classic diffu-
sion dual model and the diffusion dual approximation
model, respectively.

3 Optimal time-consistent strategy
and its equilibrium value function
in the classic dual model with dif-
fusion

This section studies optimal time-consistent in-
vestment strategy and the optimal equilibrium value

function in the classic dual model with diffusion. Nex-
t, we will construct the solution to problem (11). As-
sume that there exist two real functions W (t, x) and
h(t, x) satisfying the conditions stated in Theorem 3.
By virtue of the infinitesimal operator (8), (14) can be
rewritten as

sup
l∈U

{
Wt(t, x) +Wx(t, x) (r0(t)x− c

+rT (t)l(t)
)
+ 1

2(Wxx(t, x)− γh2x(t, x))

×
(
σ20 + lT (t)Σ(t)l(t)

)
+ λ1E [W (t, x+ Z)

−γ
2h(t, x+ Z) × (h(t, x+ Z)− 2h(t, x))]

+λ2E
[
W (t, x+ l(t)Y )− γ

2h(t, x+ Y
∑n

i=1

li(t))× (h(t, x+
∑n

i=1 li(t)Y )− 2h(t, x))]

−(λ1 + λ2)
[
W (t, x) + γ

2g
2(t, x)

]}
= 0

(19)

(16) becomes

ht(t, x) + hx(t, x)
(
r0(t)x− c+ rT (t)l∗(t)

)
+1

2hxx(t, x)×
(
σ20 + lT (t)Σ(t)l∗(t)

)
+λ1E [h(t, x+ Z)− h(t, x)]

+λ2E [h(t, x+
∑n

i=1 l
∗
i (t)Y )− h(t, x)] = 0

(20)

where l∗ is determined below. Since the linear struc-
ture of (19) and (20), and the boundary conditions of
W (t, x) and h(t, x) given by (15) and (17) are linear
in x, it is natural to conjecture that

W (t, x) =M(t)x+N(t),

M(T ) = 1, N(T ) = 0,

h(t, x) = m(t)x+ n(t),

m(T ) = 1, n(T ) = 0.

(21)

The corresponding partial derivatives are

Wt(t, x) = Ṁ(t)x+ Ṅ(t), Wx(t, x) =M(t),

ht(t, x) = ṁ(t)x+ ṅ(t), hx(t, x) = m(t),

Wxx(t, x) = 0, hxx(t, x) = 0.

(22)

Inserting (21)-(22) into (19), it yields

sup
l∈U

{
Ṁ(t)x+ Ṅ(t) +M (r0(t)x− c

+rT (t)l(t) + λ1µz + λ2µyl
T (t)e

)
−γ

2m
2(t)

[(
σ20 + λ1σ

2
z

)
+ lT (t)Σ(t)l(t)

+λ2σ
2
yl
T (t)l(t)

]}
= 0.

(23)
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Next, we construct a function

L(l) = Ṁ(t)x+ Ṅ(t) +M (r0(t)x− c

+rT (t)l(t) + λ1µz + λ2µyl
T (t)e

)
−γ

2m
2(t)

[(
σ20 + λ1σ

2
z

)
+ lT (t)Σ(t)l(t)

+λ2σ
2
yl
T (t)l(t)

]
.

(24)

Differentiating L(l) with respect to l and setting the
derivative to zero, we get

M(t) (r(t) + λ2µy e)− γm2(t) (Σ(t)

+ λ2σ
2
yI
)
l(t) = 0.

(25)

It follows from (25) that

l∗(t) =

(
Σ(t) + λ2σ

2
yI
)−1

(r(t) + λ2µy e)

γ (M(t))−1m2(t)
. (26)

Inserting (26) into (19) and (20), we have(
Ṁ(t) + r0(t)M(t)

)
x+ Ṅ(t)− cM(t)

+λ1µzM(t)− γ
2m

2(t)(σ20 + λ1σ
2
z)

+M2(t)ξ(t)
2γm2(t)

= 0,

(ṁ(t) + r0(t)m(t))x+ ṅ(t)− cm(t)

+λ1µzm(t) + M(t)ξ(t)
γm(t) = 0,

(27)

where

ξ(t) = (r(t) + λ2µye)
T (Σ(t) + λ2σ

2
yI
)−1

(r(t) + λ2µye) .
(28)

To ensure the above equations hold, we require

Ṁ(t) + r0(t)M(t) = 0, M(T ) = 1,

Ṅ(t) + (λ1µz − c)M − γ
2m

2(t)(σ20 + λ1σ
2
z)

+M2(t)ξ(t)
2γm2(t)

= 0, N(T ) = 0,

ṁ(t) + r0(t)m(t) = 0, m(T ) = 1,

ṅ(t) + (λ1µz − c)m(t) + M(t)ξ(t)
γm(t) = 0, n(T ) = 0.

Solving the system of ordinary equations, we have

M(t) = e
∫ T
t r0(s)ds,

N(t) = (λ1µz − c)
∫ T
t e

∫ T
s r0(u)duds

−γ
2 (σ

2
0 + λ1σ

2
z)
∫ T
t e2

∫ T
s r0(u)duds

+ 1
2γ

∫ T
t ξ(s)ds,

m(t) = e
∫ T
t r0(s)ds,

n(t) = (λ1µz − c)
∫ T
t e

∫ T
s r0(u)duds

+ 1
γ

∫ T
t ξ(s)ds.

(29)

Substituting (29) into (26), we have

l∗(t) =

(
Σ(t) + λ2σ

2
yI
)−1

(r(t) + λ2µy e)

γe
∫ T
t r0(s)ds

. (30)

According to the argument listed above, we can de-
rive the explicit expressions for W (t, x) and h(t, x)
and the results can be summarized as the following
theorem.

Theorem 5. In the classic dual model, optimal time-
consistent strategy l∗ is given by (30), and the equilib-
rium value function is given by

V (t, x) = e
∫ T
t r0(s)dsx+ (λ1µz − c)

×
∫ T
t e

∫ T
s r0(u)duds− γ

2 (σ
2
0 + λ1σ

2
z)

×
∫ T
t e2

∫ T
s r0(u)duds+ 1

2γ

∫ T
t ξ(s)ds

(31)

and

Et,x(X
l∗(T )) = e

∫ T
t r0(s)dsx+ (λ1µz − c)

×
∫ T
t e

∫ T
s r0(u)duds+ 1

γ

∫ T
t ξ(s)ds.

(32)

By Theorem 5 and the definition of the corre-
sponding value function given by (13), we have

V art,x(X
l∗(T )) = 2

γ [h(t, x)− V (t, x)]

= (σ20 + λ1σ
2
z)
∫ T
t e2

∫ T
s r0(u)duds

+ 1
γ2

∫ T
t ξ(s)ds.

(33)

Remark 6. It is easy to see that the optimal strategy
does not depend on the wealth process X l(t) and the
parameters of the surplus process have no impact on
the optimal strategy; The risk aversion coefficient and
the coefficients of financial market decide the optimal
strategy together.

Remark 7. The efficient frontier for problem (11) at
initial state (t, x) can be derived from (32) and (33).

Et,x(X
l∗(T )) = e

∫ T
t r0(s)dsx+ (λ1µz − c)

×
∫ T
t e

∫ T
s r0(u)duds+

{[
V art,x(X

l∗(T ))

−(σ20 + λ1σ
2
z) ×

∫ T
t e2

∫ T
s r0(u)duds

]
∫ T
t ξ(s)ds

} 1
2

.

(34)

This efficient frontier is not a straight line but a hyper-
bola in the mean-standard deviation plane.
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4 Optimal time-consistent strategy
and its equilibrium value function
in the dual diffusion approxima-
tion model

In this section, optimal time-consistent invest-
ment strategy and the optimal equilibrium value func-
tion can be derived in the dual diffusion approxima-
tion model by the same way as that in Section 3. De-
note the set of all admissible strategies for Y (t) by
U∗.

Next, we will construct the solution to this prob-
lem. Assume that there exist two real functions
Q(t, x) and g(t, x) satisfy the Extended HJB equa-
tion which have the same expression as in Theorem 3
except the different infinitesimal operator.

sup
l∈U∗

{
Qt(t, x) +Qx(t, x) (r0(t)x+ λ1µz

−c+ rT (t)l(t)
)
+ 1

2(Qxx(t, x)− γg2x(t, x))×(
σ20 + ρσo

√
λ1σ2z + λ1σ

2
z + lT (t)Σ(t)l(t)

)
+λ2E

[
Q(t, x+ l(t)Y )− γ

2g(t, x+
∑n

i=1 Y

li(t))×
(
g(t, x+

∑n
i=1 li(t)Y )− 2g(t, x)

)]
−λ2

[
Q(t, x) + γ

2g
2(t, x)

]}
= 0,

(35)

Q(T, x) = x. (36)

gt(t, x) + gx(t, x) (r0(t)x+ λ1µz

−c+ rT (t)l(t)
)
+ 1

2gxx(t, x)×(
σ20 + ρσo

√
λ1σ2z + λ1σ

2
z + lT (t)Σ(t)l(t)

)
+λ2E [g(t, x+

∑n
i=1 li(t)Y )− g(t, x)] = 0,

(37)

g(T, x) = x. (38)

where l is determined by the incoming equation (42).
Since (35)-(38) are linear in x, we can conjecture that
Q(t, x) and g(t, x) have the following structures

Q(t, x) = D(t)x+ F (t),

D(T ) = 1, F (T ) = 0,

g(t, x) = d(t)x+ f(t),

d(T ) = 1, f(T ) = 0.

(39)

By a simple calculation, the corresponding partial
derivatives are given by

Qt(t, x) = Ḋ(t)x+ Ḟ (t), Qx(t, x) = D(t),

gt(t, x) = ḋ(t)x+ ḟ(t), gx(t, x) = d(t),

Qxx(t, x) = 0, gxx(t, x) = 0.

(40)

By inserting(39)-(40) into (35), (35) can be reduced to
the following equation

sup
l∈U∗

{
Ḋ(t)x+ Ḟ (t) +D (r0(t)x− c

+rT (t)l(t) + λ1µz + λ2µyl
T (t)e

)
−γ

2d
2(t)

[(
σ20 + ρσo

√
λ1σ2z + λ1σ

2
z

)
+lT (t)Σ(t)l(t) + λ2σ

2
yl
T (t)l(t)

]}
= 0.

(41)

Differentiating the function in the left bracket of (41)
with respect to l and setting the derivative to zero, we
get

l(t) =
D(t)

(
Σ(t) + λ2σ

2
yI
)−1

(r(t) + λ2µy e)

γd2(t)
. (42)

Inserting (42) into (35) and (37), we have

(
Ḋ(t) + r0(t)D(t)

)
x+ Ḟ (t)

−cD(t) + λ1µzD(t) + D2(t)ξ(t)
2γd2(t)

−γ
2d

2(t)(σ20 + ρσo
√
λ1σ2z + λ1σ

2
z) = 0,

(43)

(
ḋ(t) + r0(t)d(t)

)
x+ ḟ(t)− cd(t)

+λ1µzd(t) +
D(t)ξ(t)
γd(t) = 0,

(44)

where

ξ(t) = (r(t) + λ2µye)
T (Σ(t) + λ2σ

2
yI
)−1

× (r(t) + λ2µye) .
(45)

In order to ensure the above equations hold, we re-
quire the functions D(t), F (t), d(t), f(t) satisfy the
following equations

Ḋ(t) + r0(t)D(t) = 0, D(T ) = 1,

Ḟ (t) + (λ1µz − c)D + D2(t)ξ(t)
2γd2(t)

− γ
2d

2(t)

×(σ20 + ρσo
√
λ1σ2z + λ1σ

2
z) = 0, F (T ) = 0,

ḋ(t) + r0(t)d(t) = 0, d(T ) = 1,

ḟ(t) + (λ1µz − c) f(t) + D(t)ξ(t)
γd(t) = 0,

f(T ) = 0.

(46)
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Solving the system of equations, we have

D(t) = e
∫ T
t r0(s)ds,

F (t) = (λ1µz − c)
∫ T
t e

∫ T
s r0(u)duds

−γ
2 (σ

2
0 + ρσo

√
λ1σ2z + λ1σ

2
z)

×
∫ T
t e2

∫ T
s r0(u)duds+ 1

2γ

∫ T
t ξ(s)ds,

d(t) = e
∫ T
t r0(s)ds,

f(t) = (λ1µz − c)
∫ T
t e

∫ T
s r0(u)duds

+ 1
γ

∫ T
t ξ(s)ds.

(47)

Substituting (47) into (42), we have

l(t) =

(
Σ(t) + λ2σ

2
yI
)−1

(r(t) + λ2µy e)

γe
∫ T
t r0(s)ds

. (48)

Summarizing the results discussed above, the explicit
expressions forQ(t, x) and g(t, x) can be given by the
following theorem.

Theorem 8. For the diffusion dual approximation
model, optimal time-consistent strategy l is given by

l(t) =

(
Σ(t) + λ2σ

2
yI
)−1

(r(t) + λ2µy e)

γe
∫ T
t r0(s)ds

. (49)

and the equilibrium value function is given by

V (t, x) = Q(t, x) = e
∫ T
t r0(s)dsx

+(λ1µz − c)
∫ T
t e

∫ T
s r0(u)duds

−γ
2 (σ

2
0 + ρσo

√
λ1σ2z + λ1σ

2
z)

×
∫ T
t e2

∫ T
s r0(u)duds+ 1

2γ

∫ T
t ξ(s)ds

(50)

and

Et,x(X
l∗(T )) = g(t, x) = e

∫ T
t r0(s)dsx

+(λ1µz − c)
∫ T
t e

∫ T
s r0(u)duds+ 1

γ

∫ T
t ξ(s)ds.

(51)

Remark 9. From (50) and (51), the relationship be-
tween the expectation and the variance of the terminal
wealth can be obtained as below:

Et,x(X
l∗(T )) = e

∫ T
t r0(s)dsx+ (λ1µz − c)

×
∫ T
t e

∫ T
s r0(u)duds+

{[
V art,x(X

l∗(T ))−

(σ20 + ρσo
√
λ1σ2z + λ1σ

2
z)
∫ T
t e2

∫ T
s r0(u)duds

]
∫ T
t ξ(s)ds

} 1
2

.

(52)

(52) shows that the efficient frontier is also a hyperbo-
la in the mean-standard deviation plane.

Remark 10. It follows from (30) and (49) that optimal
time-consistent investment strategies have the same
expressions in the classic diffusion dual model and the
diffusion dual approximation model. When W ∗(t) is
independent with W0(t), in other words ρ = 0, the
value functions and the same efficient frontiers are
the same in both cases. Thus, we can only present
economics implications and provide sensitivity analy-
sis for our results in the dual diffusion approximation
model.

Remark 11. A special case is considered in order
to analyze the effect of the parameters on the time-
consistent strategy and the equilibrium value function.
Assume that the wealth can only invest into a risk-
free asset and a risky asset where the dimension d of
W (t) equals to 1 and all the other parameters are all
constants. The optimal investment strategy, the corre-
sponding value function and the efficient frontier are
given by the following equations

l(t) =
r + λ2µy

γer0(T−t)
(
σ2 + λ2σ2y

) . (53)

V (t, x) = er0(T−t)x+ (λ1µz−c)
r0

(
er0(T−t) − 1

)
−γ(σ2

0+ρσo
√
λ1σ2

z+λ1σ
2
z)

4r0

(
e2r0(T−t) − 1

)
+ ξ

2γ (T − t)

(54)

and

Et,x(X
l∗(T )) = er0(T−t)x+ (λ1µz−c)

r0

×
(
er0(T−t) − 1

)
+

{[
V art,x(X

l∗(T ))

− (σ20+ρσo
√
λ1σ2

z+λ1σ
2
z)

2r0

(
e2r0(T−t) − 1

)]
×ξ(T − t)

} 1
2

,

(55)

where

r = r1 − r0, ξ =
(r + λ2µy)

2

σ2 + λ2σ2y
. (56)

5 Numerical analysis
In the next subsections, we study the effect of

parameters on optimal time-consistent strategy and
the corresponding value functions in the dual diffu-
sion approximation model and provide some numeri-
cal examples to illustrate the effects. For convenience
but without loss of generality, assume that d = 1,
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n = 1 and all the other parameters involved are con-
stants. For the following numerical illustrates, unless
otherwise stated, the basic parameters are given by
r0 = 0.06, r1 = 0.15, c = 0.6, x = 10, γ = 0.6, ρ =
0.3, λ1 = 1, µz = 1, σz = 1.1, λ2 = 0.6, µy =
0.5, σ2y = 1, σ = 0.3, σ0 = 0.2, T = 10.

Due to all the parameters are all constants, op-
timal investment strategy, the corresponding value
function and the efficient frontier are given by (53)-
(55).

5.1 Analysis of the time-consistent strategy
In this subsection, we will work on numerical

analysis of time-consistent strategy in the dual diffu-
sion approximation model. From (53), we can con-
clude that

(1) ∂l
∂γ = − l

γ < 0 which illustrates that optimal
time-consistent investment strategy is decreasing with
respect to γ, namely, the more the company dislikes
risk, the less amount the company invests in the risky
asset, see Figure 1(a)

(2) ∂l
∂r0

= − 1+(r+λ2µy)(T−t)
γer0(T−t)(σ2+λ2σ2

y)
< 0 which re-

veals that optimal time-consistent investment strategy
is decreasing with respect to r0, namely, the smaller
the risk-free rate is, the more amount the company in-
vests in the risky asset, see Figure 1(b).

(3) ∂l
∂r1

= 1
γer0(T−t)(σ2+λ2σ2

y)
> 0 which reveals

optimal time-consistent investment strategy is increas-
ing with respect to r1, namely, when the appreciation
rate r1 increases, the company should invests more
money in the risky asset, see Figure 1(c).

(4) ∂l
∂σ2 = − l

σ2+λ2σ2
y
< 0 which tells that op-

timal time-consistent investment strategy is decreas-
ing with respect to σ2, namely, when the volatility of
the risky asset increases, the company should invests
more money in the risk-free asset, see Figure 1(d).

(5) ∂l
∂µy

= λ2
γer0(T−t)(σ2+λ2σ2

y)
> 0 which illus-

trates that optimal time-consistent investment strategy
is increasing with respect to µy, namely, the bigger
the expectation of each jump amplitude of the risky’s
price, the more amount the company invests in the
risky asset, see Figure 1(e).

(6) ∂l
∂σ2

y
= − λ2l

(σ2+λ2σ2
y)

< 0 which illustrates

that optimal time-consistent investment strategy is de-
creasing with respect to σ2y , namely, the bigger the
second-order moment of each jump amplitude of the
risky’s price, the less amount the company invests in
the risky asset, see Figure 1(f).

(7) ∂l
∂λ2

=
µyσ2−rσ2

y

γer0(T−t)(σ2+λ2σ2
y)

2 which illustrates

that optimal time-consistent investment strategy is de-
creasing (increasing) with respect to λ2 when µy

σ2
y
<

r
σ2 (µy

σ2
y
> r

σ2 ). For example, when µy
σ2
y
< r

σ2 , the big-
ger the intensity of the jumps of the risky’s price, the
less amount the company invests in the risky asset, see
Figure 1(g).

5.2 Analysis of the equilibrium value func-
tion

In this subsection, we will work on numerical
analysis of the value function in the dual diffusion ap-
proximation model. Figure 2 shows that how the co-
efficients involved impact on the value function. For
convenience but without loss of generality, assume
ρ > 0 except the analysis of ρ and σ0 > 0. By (54)
and some simple calculations, we can have the follow-
ing findings:

(1) ∂V
∂γ = − (σ2

0+ρσo
√
λ1σ2

z+λ1σ
2
z)

4r0

(
e2r0(T−t) − 1

)
−

ξ
2γ2

(T − t) < 0 which illustrates that the value func-
tion is decreasing with respect to the coefficient
risk aversion γ, namely, the larger risk aversion the
company has, the smaller the optimal mean-variance
utilities is, see Figure 2(a).

(2) ∂V
∂r0

has a complex expression with respect
to r0. Thus we only analyze its impact on the val-
ue function from numerical methods. When all the
parameters except r0 are fixed, our numerical exam-
ple reveals when the risk-free rate increases, the value
function increases, see Figure 2(b).

(3) ∂V
∂r1

=
r+λ2µy

γ(σ2+λ2σ2
y)
(T − t) > 0 which illus-

trates that the value function is increasing with respect
to r1, namely, the bigger the appreciation rate is, the
bigger the optimal mean-variance utilities is, see Fig-
ure 2(c).

(4) ∂V
∂σ2 = − (r+λ2µy)2(T−t)

2γ(σ2+λ2σ2
y)

2 < 0 which reveals

that the value function is decreasing with respect to
σ2, namely, the bigger the volatility of the market’s
risky asset is, the smaller the optimal mean-variance
utilities is, see Figure 2(d).

(5) ∂V
∂σ2

0
= −

γ(1+ ρ
2

√
λ1σ

2
z

σ2
0

)

4r0

(
e2r0(T−t) − 1

)
< 0

which reveals that the value function is decreasing
with respect to σ20 , namely, when the volatility of the
risky asset increases, the optimal mean-variance utili-
ties decrease, see Figure 2(e).

(6) ∂V
∂λ1

= µz
r0

(
er0(T−t) − 1

)
−
γ( ρσo

2

√
σ2
z

λ1
+σ2

z)

4r0
×(

e2r0(T−t) − 1
)

which illustrates that the value
function is decreasing (increasing) with respect to λ1
when

µz
r0

(
er0(T−t) − 1

)
<
γ( ρσo

2

√
σ2
z

λ1
+σ2

z)

4r0

(
e2r0(T−t) − 1

)
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Figure 1: The effect of parameters on optimal time-
consistent strategy
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(µz
r0

(
er0(T−t) − 1

)
>
γ( ρσo

2

√
σ2
z

λ1
+σ2

z)

4r0

(
e2r0(T−t) − 1

) )
.

For example, when the value function is increasing
with respect to λ1, the bigger the intensity of the
jumps of the risky’s price becomes, the bigger the
optimal mean-variance utilities become, see Figure
2(f).

(7) ∂V
∂σ2

z
= −

γ( ρσo
2

√
λ1
σ2
z
+λ1)

4r0

(
e2r0(T−t) − 1

)
< 0

which illustrates that the value function is decreasing
with respect to σ2z , namely, the smaller the second mo-
ment of the positive income is, the bigger the optimal
mean-variance utilities become, see Figure 2(g).

(8) ∂V
∂µz

= λ1
r0

(
er0(T−t) − 1

)
> 0 which shows

that the value function is increasing with respect to
µz , namely, the bigger the expectation of the positive
income, the bigger the optimal mean-variance utilities
become, see Figure 2(h).

(9) ∂V
∂λ2

=
(2µyσ2−rσ2

y+λ2µyσ
2
y)(r+λ2µy)(T−t)

2γ(σ2+λ2σ2
y)

2

which illustrates that the value function is decreasing

(increasing) with respect to λ2 when λ2 >
rσ2

y−2µyσ2

µyσ2
y

(λ2 <
rσ2

y−2µyσ2

µyσ2
y

). For example, when λ2 >

rσ2
y−2µyσ2

µyσ2
y

, the bigger the intensity of the jumps of the
risky’s price, the bigger the optimal mean-variance u-
tilities become, see Figure 2(i).

(10) ∂V
∂µy

=
λ2(r+λ2µy)(T−t)
γ(σ2+λ2σ2

y)
> 0 which illus-

trates the value function is increasing with respect to
µy, namely, the bigger the expectation of each jump
amplitude of the risky’s price is, the bigger the opti-
mal mean-variance utilities become, see Figure 2(j).

(11) ∂V
∂σ2

y
= −λ2(r+λ2µy)2(T−t)

2γ(σ2+λ2σ2
y)

2 < 0 which shows

that the value function is increasing with respect to
σ2y , namely, the bigger the second-order moment of
each jump amplitude of the risky’s price , the smaller
the optimal mean-variance utilities become, see Fig-
ure 2(k).

(12) ∂V
∂ρ = −γσ0

√
λ1σ2

z

4r0

(
e2r0(T−t) − 1

)
< 0

which reveals that the value function is decreasing
with respect to ρ, namely, when ρ increases, the opti-
mal mean-variance utilities decrease, see Figure 2(l).

6 Conclusion
In this paper, we investigate the dual model with

diffusion including the classic dual model and the d-
ual approximation model. We are concerned on opti-
mal time-consistent investment strategy under mean-
variance criterion. We assume that companies can in-
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(d) The effect of σ2 on the equilibrium value function
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Figure 2: The effect of parameters on the equilibrium
value function
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vest into a financial market which has a risk-free asset
and n risky assets. Short-selling and borrowing mon-
ey are allowed. Surprisingly optimal time-consistent
investment strategy and optimal value function have
the same expressions in both cases when ρ = 0. How-
ever, in practice, the company can not be allowed to
borrow at the risk-free rate to invest in risky asset. An
interesting further research topic is to investigate the
precommitted strategy where Short-selling and bor-
rowing money are not allowed. It is necessary to com-
pare the precommitted strategy with time-consistent
strategy. Another interesting further research topic is
to investigate the optimal strategy for the dual model
with regime switching. This is a challenge to derive
the optimal strategy and optimal value function.
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