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Abstract: −  In the present work we consider the problem of the kernel estimation of  the distribution 
function and the quantiles of this distribution in dose-effect relationship when the data are observed 
with error. We make both theoretical and computer research of estimations of the multivariate estima-
tors of  the distribution function in dose-effect relationship and in a case when measurements are made 
with an error having normal distribution. We offer also procedure of reduction of a measurement er-
ror. 
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1 Introduction 

 
The problem of nonparametrically estimating of 

the distribution function and the quantiles of this dis-
tributions at quantal response, when the data are ob-
served with an error, has attracted a great deal of in-
terest [1]-[7]. One of many methods of nonparametric 
estimation is the kernel method [8]-[16]. Pros of the 
kernel method: easy to compute and always work. 
Basically estimations of one-dimensional distribution 
function a random variables were studied. It was sup-
posed also that measurements are made without er-
rors. In the present work we make both theoretical 
and computer research of estimations of multivariate 
estimators of the distribution function at quantal re-
sponse and in case when measurements are made 
with an error having normal distribution. Also we 
offer the procedure of reduction of a measurement 
error. 

 
2 Problem Formulation 

 
Let 1 1 2 2( , ),( , ),..., ( , )n nW W WU U U  be indepen-

dent, identically distributed (iid.) random (d+1)-
vectors where { },1 ,i i n≤ ≤U  is d-vectors with 
bounded continuous density ( )f x , ( )i i iW I= <X U  
is the indicator of an event ( )i i<X U , d-vectors iX  
has distribution function ( ) ( )Q = <Px X x  and conti-
nuous density ( ) 0q >x . The problem is to estimate 
the distribution function ( )Q x  from the sample 

( ) {( , ),n
i iW= UU  1 }i n≤ ≤ .  

Usually as an estimate of ( )Q x  nonparametric es-
timators are used.  

In a case 1d =  kernel estimators  
         2 1

ˆ ( ) ( ) / ( ),n n nQ x S x S x=                          (1) 

are applied, where 1

1

1( )
n

j i
jn i

i

u xS x W L
nh h

−

=

− =  
 

∑ , 

1,2j =  and the kernel ( )L x  is nonnegative even 
function, and ( ) 1L x dx =∫ . We have ˆ ( ) 0nF x =  if 

1 ( ) 0nS x = . As h  we take 1/5h n−= . 
S.S.Yang [13] proposed as regression function 
( ) ( | )Q x W U x= =E  the statistic ( )nQ x∗  of the form 

       [ ]

1

1 / ( )( )
n

in
n n

i

i n F xQ x L W
nh h

∗

=

− =  
 

∑ ,            (2) 

where 1
1

( ) ( )n
n ii

F x n I U x−
=

= <∑  is the empirical dis-
tribution function random variable (r.v.) U , identical-
ly distributed with rv's 1 2, ,..., .nU U U  Let 

(1) ( ) ( )... ...i n
n n nU U U< < < <  be order statistics, and [ ]i

nW  
pared with ( )i

nU  is called concomitant of the i-th order 
statistics in the sample ( )nU . 

Let ( )k k n=  be a sequence of positive integers, 
and nρ ρ=  be the Euclidean distance between x  and 
its k-th nearest neighbor. The nearest neighbor esti-
mate is 

 2 1( ) ( ) / ( ),n n nQ x T x T x=                         (3) 

where 1

1

1( )
n

j i
jn i

i

u xT x W L
nρ ρ

−

=

 −
=  

 
∑ . 

WSEAS TRANSACTIONS on MATHEMATICS Mikhail Tikhov, Maxim Ivkin

E-ISSN: 2224-2880 684 Volume 13, 2014

mailto:tikhovm@mail.ru�
mailto:zhts.260980@mail.ru�


 

 

Let's notice that the estimate (2) is also a nearest 
neighbor estimate, but now neighbors are defined in 
terms of distance based on the empirical distribution 
function. 

The estimate ˆ ( )nQ x  has variance  
22

1 ( ( )(1 ( )) / ( ))(1 (1/ ( ))Q x Q x L f x o nhσ = − +  (see, 

[16]), where 2 2 ( )L L x dx= ∫ , therefore, if the densi-

ty ( ) 0f x = , then this case is better to use the esti-
mate (2).  

Consider an estimate of ( )Q x  given by 

          2

1

( )ˆ ( )
( )

n
n

n

TQ
T

=
xx
x

,                                     (4) 

where 

2
1 1

1 1( ) ( ),
n n

j
n j j jd

j j
T W L W L

n n ρρ ρ= =

− 
= = − 

 
∑ ∑

U x
x U x

1
1 1

1 1( ) ( ) ,
n n

j
n jd

j j
T L L

n n ρρ ρ= =

− 
= = − 

 
∑ ∑

U x
x U x   

( )nρ ρ= x  is the Euclidean distance between x  and 
kth nearest neighbor of x  among the 'sjU , ( )L x  is 
a bounded integrable weight function with 

( ) 1L d =∫ u u , ( )k k n=  is a sequence of positive in-

teger such that ,k →∞  / 0k n →  as .n →∞   
However the real data which we observe have 

measurement errors [3], [17]. Data measured with 
errors occur frequently in many scientific fields. Ig-
noring measurement error can bring forth biased es-
timates and lead to erroneous conclusions to various 
degrees in a data analysis. We will assume that the 
data measurements are made with an error, which is a 
random variable with a known or an unknown conti-
nuous distribution function ( )G x  and density ( )g x . 
In other words, instead of the data ( , ),1 ,i iW i n≤ ≤U  
(direct data) we observe ( , ),1 ,i iW i n≤ ≤Y  where 

,i i i= +Y U ε  ( )i i iW I= X < U  (indirect data). How 
can limit distributions of estimator ˆ ( )nQ x  change? In 
this paper we consider also the limit distributions of 
the estimators  

2

1

( )ˆ ( )
( )

n
n

n

TQ
T

=
xx
x

,                                         (5) 

where 

2
1

1( ) ( ),
n

n j j
j

T W L
n ρ

=

= −∑x Y x 1
1

1( ) ( ).
n

n j
j

T L
n ρ

=

= −∑x Y x  

 
3 Preliminary Results 
3.1. Asymptotic Normality of Linear Func-
tions of Concomitants of Order Statistics  

 

At the beginning we will quote results of work 
[8]. Let ( , )i iYX T T  be a 1N+R -valued time-series 
process on the probability space ( , , )Ω PA . Let 

(1) ( ) ( )... ...i n
n n nY Y Y< < < <  be the order statistics; and 

[ ]n
nX  paired with ( )i

nY  is called the concomitant of the 

i-th order statistics in the sample [ ] ( )
1{ , }i i n

n n iY =X . 

In [8] it is prove the n -asymptotic normality, 
under fairly mild regularity conditionals sush as 

[ ] ( )

1

1( ) ( / ) ( , )
n

i i
n n n

i
A F J i n b Y

n =

= =∑ X  

1

( ( )) ( , ) ( , )
N

n nJ F y b y dF y
+

= ∫
R

x x             (6) 

and 
1

*[ ] [ ]

1

1ˆ( ( ); ) [ ]
( 1)

n
s s

n n n
sn

g Y Y W
n h

α β
−

=

= − ×
− ∑   

( ( ) / ( 1)) ,n n

n

F Y s nK
h

α − −
×  

 
           (7) 

where ( )J ⋅  is a bounded smooth score function and 
( , )b yx  is some R -valued known function of 

1( , ) Ny +∈x RT T , ( )TF ⋅  is the empirical distribution 
function; ( )K ⋅  is a kernel (weight) function; 

* *( )i i i iY g ε∗ = + +Z XT Tα β , *
iZ T  and *

iX T  are ran-
dom covariate vectors; ( )g ⋅  represents an unknown, 
possibly non-differentiable, function; ε  denote i.i.d. 
mean-zero random errors; *( )t tY α = Z Tα , 

*( )t tW β = X Tβ ; and [ ] [ ] [ ]( ) ( , ( ))s s s
n n nY Wβ β=X  de-

notes a vector of the concomitant of the order statis-
tics ( ) ( )s

nY α  in the sample 1 1 1{( , ( ), ( )),...,Y W Yβ α∗   

1 1 1( , ( ), ( )),t t tY W Yβ α∗
− − − 1 1 1( , ( ), ( )),...,t t tY W Yβ α∗

+ + +  

( , ( ), ( ))}.n n nY W Yβ α∗  
Stute [22] shows that in the i.i.d. case, the asymp-

totic behavior of ˆ ( ; )g y β  is the same as that of 
1

[ ] [ ]

1

1ˆ ( ; ) ( / ( 1)){ },
1

n
s s

n n
s

g y J s n Y W
n

β
−

∗ ∗

=

= − −
− ∑  (8) 

where 
1( / ( 1)) (( ( ) / ( 1)) / )n n nJ s n h K F y s n h−− = − − . 

Let T  be a measure-preserving, I  denote the 
Borel algebra of invariant sets A∈A  such that 

1A A− =T . Let the quantity 
p

A  is the pL -norm of 

A , i.e. 1/{ [ ]}p pAE ; 
,p

A
I

 is the pL -norm of A  

condotional on I  , i.e. 1/{ [ | ]}p pAE I . 
Let  

WSEAS TRANSACTIONS on MATHEMATICS Mikhail Tikhov, Maxim Ivkin

E-ISSN: 2224-2880 685 Volume 13, 2014



 

 

       ( ; ) ( ( , ) | , )bm y b Y Y y= =E XI I , 
       ( ) ( ( , ) | )bm y b Y Y y= =E X . 
The following regularity conditions are introduced 

in [8]. 
C1  Moment Bounds: 

For a given integer, 1,p >   

1 1 1 1, 2 /( 1),
max{ ( , ) , ( , ) } .

p p p
b Y b Y

−
< ∞X X

I I
  

C2  Conditional Moments: 
(a)  1 ,

( ; ) ,b p
m Y ∗′ < ∞

I
I  where ( ; )bm′ ⋅ I  is the 

first derivative of ( ; ).bm ⋅ I  
(b)  

0 ,
lim sup | ( | ) ( | | 0,T y T Y q

Y y F y
∗→∞ ≤ − =P

I
IF   

where p∗  and q∗  are such integers that  
1/ 1/ 1 ( 1) / .p q p p∗ ∗+ = + −   

C3  Conditional Joint Moments: 
(a)  

0 02,
/( 1),1

|| ( ; ) ( ; )||
Yb t Y b t

p pt
m Y m Y

∞

−=

− < ∞∑ F
I

F I   

(b)  0 0
1

( ( , ) ( , ) | , )
tt t Y

t
b Y b Y

∞

=

−∑ E X X F I  

                     0 /( 1),
( ; ) ( ; ) .b t b p p

m Y m Y
−

− < ∞
I

I I   
 
Theorem 1 [8]. Suppose that Assumptions С1,С2, 
and C3 hold. Then 

                  2( ( ) ( )) (0, ( )),
d

n Wn
n A F A F N σ

→∞
− → I   

where 2 2 2
1 0( ) ( | ) ( | )W W Wσ ∗= =E EI I I . 

 
3.2. Distribution of k-Nearest Neighbour Dis-
tances 
 

Let us first consider the probability density ( )р x  
of the distance ρ  between x  and the kth nearest 
neighbor x . Let { : },rS r= − <z z x  ( ) ( ),rG r S= P  
and 

0

1( ) lim ( ) ( )
r rS S

G r f d f d
δδ δ +→

 ′ = − =  ∫ ∫t t t t  

                               ( ) ( ),
r

f dσ
− =

= ∫ x t
t t            (9) 

where P  is the probability measure with density f , 
and σ  is the surface area of the sphere r− =x t ,  

/2

(( 2) / 2)

d d

d
rс

d
π

Γ
=

+
, d dd cβ = ⋅ . 

Thus the density of ρ  is 

1!( ) ( )(1 ( )) ( ).
( 1)!( )!

k n k
n

np r G r G r G r
k n k

− − ′= −
− −

  (10) 

The joint density of the kth nearest neighbor h , the 
1k −  observations 1 2 1, ,..., k−Y Y Y  falling within the 

sphere about x  whose radius is determined by x  
and h , and the remaining ( )n k−  observations 

1 2, ,..., n k−V V V  falling outside this sphere, is given as 
following. Consider the joint density of 1,..., nX X . 
There are n  choices possible for h . Given that h  is 
chosen, there are ( )1

1
n
k
−
−  possible choices for the 1k −  

observations falling within the sphere (and this de-
termines the n k−  falling outside the sphere). The 
joint density of 1 2 1, ,..., k−Y Y Y , 1 2, ,..., n k−V V V  and h  is 
then (see, [15],[19]) 

1 2 1 1 2( , ,..., ; , ,..., ; | )k n kp r− − =y y y v v v h  

( )
1

1
1

1

( ) ( , )
k

n
k j j r

j

n f Sδ
−

−
−

=

 
= × 

 
∏ y y   

              
1

( ) ( , ( ) ) ( ),
n k

c
l l r

l

f S fδ
−

=

 
× 
 
∏ v v h        (11) 

where 

             
1 if ,

( , )
0 otherwise,

A
Aδ

∈
= 


z
z  

( )c
rS  is the complement of rS . This implies that the 

conditional distribution of the the 'sjY , 'slV  and h  
given rρ =  is 

1 2 1 1 2( , ,..., ; , ,..., ; | )k n kp r− − =y y y v v v h  
1

1 1

( ) ( ) ( ) ,
( ) 1 ( ) ( )

k n k
j l

j l

f f f
G r G r G r

− −

= =

   
=     ′−  
∏ ∏

y v h     (12) 

so that the 'sjY , 'slV  and h  are conditionally inde-
pendent given rρ =  with respective marginal densi-
ties  

      
( )
( )

jf
G r

y
, ( )

1 ( )
lf

G r−
v , and ( )

( )
f

G r′
h , 

{ : }r− <y x y , { : }r− >v x v , { : }r− =h x h  
where the conditional density of h  given ρ  is to be 
integrated with respect to the surface measure on the 
sphere of radius r  about x . 

We are interested in computing moments of various 
functions of ρ . It is clear from what has been stated 
above that ρ  has the same distribution as 1( )G ξ− , 
where ξ  is the kth order statistic from an i.i.d. uni-
form (0,1)  sample of size n . If we just assume f  is 
bounded and continuous we have 

( ) ( ) ( )
r

d
dB

G r f d c f r= = +∫ u u x   
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          ( ( ) ( )) ( ) ( )
r

d d
dB

f f d c f r o r+ − = +∫ u x u x  

as 0.r ↓   
Then ( )t G r=  it follows that when ( ) 0f >x  

/
1 /( ( )) ( )

( )

d
d

d

tG t r o t
c f

λ

λ λ λ−  
= = + 

 x
.    (13) 

In addition, from Theorem 1 [17] we have 
1/

1

0

( )
( )

d
zG z

c f
−  

= − 
 x

 

3/2
3/2

0 0

( ) ( )
2 ( ) ( )

d
dc f z o z

pc f c f
   ∇

− ⋅ +   
   

x
x x

   (14) 

under conditions 
2 ( ) , ( ) 1,L d L d< ∞ =∫ ∫y y y y y  

( ) ( ) 0, ,i i jy L d y y L d i j= = ≠∫ ∫y y y y  
2 ( ) 0iy L d >∫ y y  for any i . 

 

4 Main Results 
4.1. Direct Data 

Let's consider a difference ˆ ( ) ( )nQ Q−x x .  
We have (see [16]) 

( )nτ =x  

2 1 2

1

( )( ( ) ( )) ( ( ) ( ) ( ))
( ) ( ) ( )

n n n

n

T f T T Q f
T f f

− −
= +

x x x x x x
x x x

.  (15) 

If we show that 1 ( ) ( ) 0
p

n n
T f

→∞
− →x x  and  

2 ( ) ( ) ( ) 0
p

n n
T Q f

→∞
− →x x x , then from Slutsky's theorem 

(see [18], p.388, Theorem A.102), owing to bounded-
ness of ( ) ( )Q fx x  and using that 0( ) 0f c≥ >x  we 
obtain the convergence ( )nτ x  in probability to zero 

as n →∞ : ( ) 0
p

n n
τ

→∞
→x  for every fixed x . Besides, 

from this relation we receive the limiting distribution 
of ( )nτ x . 

Let's consider the characteristic function 1 ( )nϕ θ of 
the statistic 1 ( )nT x . Let  

             ( )( )1 1( ) exp ( )n ni Tϕ θ θ= E x . 
From (3) we derive 

( ) ( )
1

1 1 2 3( ) ( , ) ( , ) ( , ) ( ) ,
k n k

n n n n nr r r p r drϕ θ ψ θ ψ θ ψ θ
− −= ∫

                                                                          (16) 
where 

1
( )( , ) exp ( ) ( ) ,
( )n rr

i fr Q L d
n G r
θψ θ

− <

 = − 
 ∫ y x

yy y x y  

                                                                            (17) 

2
( )( , ) exp ( ) ( )

1 ( )n rr

i fr Q L d
n G r
θψ θ

− =

 = −  − ∫ t x

tt t x t  

                                                                              (18) 

3
( )( , ) exp ( ) ( ) .

1 ( )n rr

i fr Q L d
n G r
θψ θ

− >

 = −  − ∫ v x

vv v x v  

                                                                               (19) 
By (5), the first term is equals 

1
1( , ) exp ( ) ( ) .
( )n rr

ir L f r d
G r n

θψ θ
<

 = − 
 ∫ u

u x u u  (20) 

Lemma 1 [16].  For every 1α ∈R  and 0n ≥ , 
1

0

( ) | | 2 | |min ,
! ( 1)! !

k n nn
i

k

ie
k n n

α α α α+

=

 
− ≤  + 
∑ .          (21) 

Now, in virtue of the condition (4) on the kernel 
( )L x , using the fact that 1( )L M≤x , 2( )f M≤x , ap-

plying the results of  the Lemma 1, we conclude that 

( )1exp ( ) 1 ( )r rr

i L i L
n n
θ θ

<

  − − − − −  
 

∫ u
x u x u    

          ( )2
2

1 ( ) ( )
2 ri L f d

n
θ − − ≤


x u u u  

          ( )3 3
3

1 ( ) ( )
6 rr

L f d
n

θ
<

≤ − =∫ u
x u u u  

          
3

3
3 2 1

( ) ( )
6 p L f r d

n r
θ

<
= − ≤∫ u

u x u u  

     
3 3 3 3 2

1 2 1 2
3 2 2

| | | | ( )
6 6

d
d

M M M M c f
n r nk

θ θ
=

x  .                  (22) 

Hence, 

( )1exp ( ) 1 ( )r rr

i L i L
n n
θ θ

<

  − − − − −  
 

∫ u
x u x u   

  ( )2 3
2

1 ( ) ( ) ( ).
2 ri L f d O k

n
θ −− − =


x u u u          (23) 

Further,  
( )exp ( ) 1

( )rr

i fL d
n G r
θ

=

  − ≤  ′ ∫ t

x + tt t  

  
1

| | ( ) 1( ) ,
( )

f rL d O
n G r n
θ

=

 ≤ =  ′  ∫ u

x + uu u           (24) 

thus 2 ( , ) 1n rψ θ →  as n →∞ . 
Similarly, 

exp ( ) 1rr

i L
n
θ

>

  − − −  
 

∫ u
x u  

              ( )1 ( ) ( )ri L f d
n

θ − − ≤


x u u u   

              ( )
2

2
2 ( ) ( )

2 rr
L f d

n
θ

>
≤ − =∫ u

u x u u  
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 ( )
2 2 2

2 1 2
2 21

( ) ( )
2 2d d

M ML f r d
n r n r
θ θ

>
= − ≤ =∫ u

u x u u  

       
2 2

1 2 ( ) 1 1 .
2

dM M c f O o
nk nk n

θ    = = =   
   

x            (25) 

For further we use the results of works [15] under 
the conditions of Theorem 1 

2/

1 2/( ( )) ( ) ( )( )
( ( ))

d
d

n d
a kT f f

f n
 = + + 
 

E x x x
x

P  

 
2/

01

( ) 1( ) ,
d

dc f kL d o
k n k

Σ
=

  + + +     
∫ u

x u        (26) 

where 
,

( )( ) ( ) ( ),i j i j
i j

f u u L d D D f=∑∫x u u xP  

( ) ( ( ))f i jD D f= −x xH  Hessian matrix, 
2

2
1

( ) 1( ( )) ( )d
n

c fT L d o
k k

 = +  
 ∫D xx u u ,         (27) 

 2/( (( 2) / 2)) / (2 )d
da dΓ π= + , 

and, accordingly,  
21 ( )( )

1 ( )rr

fL d
n G r>

− =
−∫ v

vv x v  

          
2

2( ) 1( ) .dc f L d o
k k

 = +  
 ∫

x u u                   (28) 

Therefore uniformly in [ , ]T Tθ ∈ − , where T is a real 
number  

( )1exp ( ) ( )ri n L f dθ − − =∫ u x u u  

     21 2 2 11 ( ) (1/ 2) ( )di f k c f L kθ θ− −= + − +x x  

     ( )1o k −+ , ( )n →∞ ; 2 2 ( )L L d= ∫ u u .      (29) 

Decompose 1ln ( )n tϕ in a series on exponents  
222 ( )( )

2
dc f Lfi i

k k
θα β θ− = −

xx  to the second 

term and use the fact that for any real α , 
2

ln(1 )
2

i i αα α+ − ≤  (see [15]).                          (30) 

Let ( )f
k

α θ= x  and 
222 ( )

2
dc f L

k
θβ =

x
. 

Then 

( ) ( )ln 1 ln 1 ln 1
1

ii αα β β
β

 
+ − = − + + = − 

 

    ( ) ( )2 2 ,
1

i O k i O kαβ β α
β

− −= − + + = − + +
−

     (31) 

since  

( )
( )

( )
2

2 2 2 2
2,

1
O k O kαβ α

β
− −= ≤ =

−
, as 1

2
β < . 

Hence 

     ( ) ( )2ln 1 i i O kα β α β −+ − − + = .                  (32) 

Therefore, as n →∞ , 

( )21 2 2 1ln 1 ( ) (1/ 2) ( )di f k c f L kθ θ− −+ − −x x       

        ( )21 2 2 1( ) (1/ 2) ( )di f k c f L kθ θ− −− − =x x  

                             ( ) ( )2 1 ,O k o k− −= =                   (33) 

since a function ( )f x  for a fixed x  is bounded, and 
2L < ∞ , [ , ]T Tθ ∈ − , then (1)o  converges uniformly 

to zero.  
Since 1 1 0( )n n n nb p b r b+ , where 1 0,n nb b − appropriate 

normalizing multipliers, converges uniformly on any 
bounded interval ( ), , 0C C C− > to the density of the 
limit distribution (see [20]), and, given that the prob-
ability of hitting 1

1 0( )n nb bρ− −  into intervals 

( ] [ ), , ,C C−∞ − ∞  tend to zero (see [18)), and the 

function ( )21 2 2 1exp ( ) (1/ 2) ( )di f k c f L kθ θ− −−x x  

is bounded,  we have that  
       1(exp( ( ( ) ( ))))nit k T f− →E x x   

              ( )22 2exp (1/ 2) ( )dc f Lθ→ − x              (34) 

as n →∞ . Now from convergence of characteristic 
functions follows, that  

      22
1( ( ) ( )) (0, ( ) )

d

n dn
k T f N c f L

→∞
− →x x x ,  

Whence also follows that 

1 ( ) ( ) 0
p

n n
T f

→∞
− →x x .                              (35) 

We now show that 

       2( ( ) ( ) ( ))
d

n n
k T Q f

→∞
− →x x x  

                22 2(0, ( ) ( ) ).dN c Q f L→ x x                 (36) 
Let 

      2 2( ) (exp( ( )))n ni Tϕ θ θ= =E x  

          1

1
exp ( ) ( )) .

n

j j j
j

i n I Lρθ −

=

  
= < −     

∑E X U U x  

Passing on first to the conditional expectation pro-
vided jU , and then arguing as above with respect to 

the characteristic function of the statistics 1 ( )nT x , we 
obtain the following representation  

( ) ( )
1

2 1 2 3( ) ( , ) ( , ) ( , ) ( ) ,
k n k

n n n n nr r r p r drϕ θ λ θ λ θ λ θ
− −= ∫  

                                                                              (37) 
where 

1
( )( , ) exp ( ) ( ) ,
( )n rr

i fr Q d
n G r
θλ θ

− <

 = − 
 ∫ y x

yy y x yK  
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                                                                              (38) 

2
( )( , ) exp ( ) ( ) ,
( )n rr

i fr Q d
n G r
θλ θ

− =

 = −  ′ ∫ t x

tt t x tK       (39) 

3
( )( , ) exp ( ) ( ) .

1 ( )n rr

i fr Q d
n G r
θλ θ

− >

 = −  − ∫ v x

vv v x vK (40) 

Repeating the above arguments, but for functions 
1 ( , )n rλ θ , 2 ( , )n rλ θ , 3 ( , )n rλ θ  and 2 ( )nϕ θ  , we find 

that 
22 2

2( ( ) ( ) ( )) (0, ( ) ( ) ).(41)
d

n dn
k T Q f N c Q f

→∞
− →x x x x x K

Thus we have the following result. 
 
Theorem 2. Let the density be bounded and there 

is a third continuous bounded partial derivatives 

( )f x  and ( )Q x  , 
2

( )L d < ∞∫ u u u , ( )L d =∫ 0u u u . 

Then 

(i)  ( ) 22
1 ( ) ( ) (0, ( ) )

d

n dn
k T f N c f L

→∞
− →x x x ,      (42) 

(ii) ( )2 ( ) ( ) ( )
d

n n
k T Q f

→∞
− →x x x  

                    22 2(0, ( ) ( ) ).pN c f Q L→ x x           (43) 
 
The following theorem establishes the asymptotic 

normality of the estimator ( )nF x  of the distribution 
function ( )Q x .  

 
Theorem 3. Let the conditions of Theorem 1 hold. 
 Then 

( ) ( ) 2ˆ ( ) ( ) (0, ( ) 1 ( ) ). (44)
d

n n
k Q Q N Q Q L

→∞
− → −x x x x   

Proof.  Let 1 1 ( )nT T= x , 2 2 ( )nT T= x , 
           ( ) ( ) ( )Qf Qf Q f= =x x x , ( )f f= x . 

We have [9]: 

 ( )2 2
12

1

T Qf T Qf Qf T f
T f f f

−
− = − − +  

     ( )( ) ( )2
2 1 1

2 3 .p p

T Qf T f Qf T f
O O

f f

  − − −
 + +      

  

Arguing as in [20] with respect to the statistics 
1 ( )nT x  and 2 ( )nT x , it can be shown that with proba-

bility 1 

 
( )

( )( )
1

1
ln 1

lim sup ( ) ,
max ln 1 ,ln lnn c n h

n

nh T f
k c

h n
∞

→∞
≤ ≤

−
= < ∞

E
     (45) 

   
( )

( )( )
2

2
ln 1

lim sup ( ) .
max ln 1 ,ln lnn c n h

n

nh T Qf
k c

h n
∞

→∞
≤ ≤

−
= < ∞

E
   (46) 

where for sufficiently large ,n   

( )2 2
1 12

1

ln .T T Qf Qf nF T f C
T f f k

∞

  −
− − + − ≤ 

 
    (47) 

Thus,  

( )2 2
12

1

0.
p

n

T T Qf Qfk F T f
T f f →∞

∞

  −
− − + − → 

 
      (48) 

Further, 

( ) ( )
2

2
2 12 4

1

1 ( )T QfQ T Qf T f
T f f

  
− = − + − −  

 
D D D    

          ( )
2

1 23 2
ln2 , 1 p

Qf nT f T Qf O
f k

  
− − − + =      

Cov   

 ( ) ( )
2

2 12 4

1 ( )QfT T
f f

= + −D D  

    ( )
2

1 23 2
ln2 , 1 p

Qf nT T O
f k

  
− +     

Cov                (49) 

as n →∞ . 
Consider the expectation ( )1 2T T⋅E .  
We have 

( ) ( ) ( )1 2
1 1

1 1n n

i i i
i i

T T L W L
n nρ ρ

= =

 
⋅ = − ⋅ − = 

 
∑ ∑E E U x U x     

        ( )( )2

2
1

1 n

i i
i j

W L
n ρ

= =


= − +


∑E U x  

        ( ) ( ) .i j j
i j

L W Lρ ρ
≠


+ − − 


∑ U x U x               (50) 

By virtue of independent and identically distributed 
pairs, we conclude that 

( ) ( )( )( )2

1 2 1 1
1T T W L
n ρ⋅ = − +E E U x  

          ( )( ) ( )( )1 1 2
1n W L L

n ρ ρ
−

+ − − =E EU x U x  

          ( ) ( )( )2
1 1 1 1

1 ( )I L f d
n ρ= > − = +∫E U X U x U u u u  

 ( ) ( )( )1 1 1 1
1 ( )n I L f d

n ρ
−

+ < − = ×∫E X U U x U u u u    

          ( ) ( ) .L f dρ× −∫ u x u u                            (51) 

Making the replacement 1( )r−= −z u x , we have 

( )1 2
1 2( ) ( ) ( )dT T nr L Q r−⋅ = − ×∫E u x z + x         

          2 1 1( ) ( ) (1 )df r d r n− −× + − ×z + x z  

          ( )( ( ) ( ) )L Q r f r d× ×∫ z z + x z + x z  

          ( )( ( ) )L f r d× ∫ z z + x z , 

( )1 2( ) ( ) ( )dnr L Q r f r d− − =∫ u x z + x z + x z  
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       21 2 1( ) ( ) ( ).k Q f L o k− −= +x x                   (52) 
From the conditions on the kernel ( )L x and the 

conditions on the functions ( ), ( )Q fx x , we have 

( ) 1( ) ( ) ( ) ( ) ( ).(53)L Q r f r d Q f o k −= +∫ z z + x z + x z x x

Thus,  
22 1

1 2( ) ( ) ( )T T Q f L k −⋅ = +E x x , 
22 1 2

1 2( , ) ( ) ( ) ( ).T T Q f L k O k− −= +Cov x x  
So, as n →∞ , 

2 1ˆ( ( ) ( )) ( )(1 ( )) (1 (1)). (55)nQ Q Q Q L k o−− = − +D x x x x
Hence we conclude that 

( ) 2 ( ( ) ( )) (0, ( ) 1 ( ) ). (56)
d

n n
k Q Q N Q Q Lς

→∞
→− ∈ − x x x x

4.2. Indirect Data 
 

Let ( ) {( , , ), 1,.., }n
i i iY U W i n= =Y  be a sequence of 

tree-dimensional i.i.d. random vectors with probabili-
ty density function ( , )q y u  of the pair 1 1( , )Y U  respect 
to Lebegue measure and  

( ) ( , )p y f y u du
∞

−∞

= ∫ , ( | ) ( , ) / ( )f u y f u y p y= . 

Let 
( )( ) ( ) ( | ) ,
( )

m yR y Q u f u y du
p y

∞

−∞

= =∫   

( ) ( ) ( , ) ,m y Q u f y u du
∞

−∞

= ∫   

22 ( ) ( )(1 ( )) ( | ) .y L Q u Q u f u y duσ
∞

−∞

= −∫  

Consider the statistics 
[ ]

1

1 / ( )( )
n

in
n n n

i

i n F yQ Q y K W
nh h

∗ ∗

=

− = =  
 

∑      (57) 

and 
[ ]

1

1 / ( )( )
n

i
n n n

i

i n F yQ Q y K W
nh h

∗∗ ∗∗

=

− = =  
 

∑ ,      (58) 

where 
1

1( ) ( )
n

n i
i

F y I Y y
n =

= <∑  is the empirical distri-

bution function of Y-observations y , 
( ) ( )F y Y y= <P  and [ ]i

nW  is i-th concomitants of 
order statistics ( )i

nY .  
Theorem 4. Let {( , ),1 }i iW Y i n≤ ≤ be a random sam-
ple of size n −  that is, a sequence of the independent 
identically distributed two-dimensional random vec-
tors, where ( )i i iW I X U= < . Suppose the following 
conditions satisfied: the conditional density ( | )f u y  

has boundared continuous derivatives to third order 
inclusive with respect to y  at ( , )x y . 

Then 

           ( ( ) ( )) (0,1).
( )

d
n

n

n Q y R y N
y

ξ
σ

∗

→∞

−
→ ∈             (59) 

Proof. Let's notice that nQ∗  and nQ∗∗  are asymptotical-
ly equivalent in mean square. To see this, write 

1 / ( ) / ( )ni n F y i n F yK K
h n n

− −   − ≤   
   

  

                         2
1 | ( ) ( )|.nC h F y F y−≤ −              (60) 

The law of the iterated logarithm imply that with 
probability one (7) converges to zero uniformly in i  
as n →∞ . Hence, we may consider nQ∗∗  rather than 

nQ∗ . Let 1
0 0( ), ( )v F y y F v−= = . We apply theorem 2.  

Therefore 
1 ( )

n
F y vK

h h
µ µ

∞ ∞

−∞ −∞

− = = × 
 ∫ ∫   

    ( ( ) | , ) ( , )I X Y Y y U u f y u dydu× < = = =  

1 ( ) ( ) ( | ) ( )F y vK F u f u y p y dydu
h h

∞ ∞

−∞ −∞

− = = 
 ∫ ∫   

    
1

1

0

1 ( ) ( | ( ))t vK F u f u F t dtdu
h h

∞
−

−∞

− = = 
 ∫ ∫  

    
(1 )/

1

/

( ) ( ) ( | ( )) .
v h

v h

K z F u f u F v zh dzdu
− ∞

−

− −∞

= +∫ ∫  

For sufficiently large n  we will have 

   1( ) ( ) ( | ( )) .K z F u f u F v zh dzduµ
∞ ∞

−

−∞ −∞

= +∫ ∫    (61) 

If the function 1( | ( ))g u F v zh− +  is continuous 
function at each point z . Then we will have the fol-
lowing 

1lim ( ) ( | ( )
n

Q u f u F v zhµ
∞

−

→∞
−∞

= + =∫   

                0 0( ) ( | ) ( )Q u f u y R y
∞

−∞

= =∫ .                   (62) 

Furthermore, 
2

1 2 1 2
1 (( ( ) ( ) ( ))h F y y F y F y
h

σ
∞ ∞

−∞ −∞

⋅ = ∧ − ×∫ ∫   

1 2
1 2( ) ( )y v y vK K dF y dF y

h h
− −   × +   

   
 

2 ( ) ( )(1 ( )) ( , ) .F y vK Q u Q u f y u dydu
h

∞ ∞

−∞ −∞

− + − 
 ∫ ∫  (63) 

For the first summand we have (as n →∞ ) 

1 2 1 2
1 (( ( ) ( ) ( ))F y y F y F y
h

∞ ∞

−∞ −∞

∧ − ×∫ ∫   
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1 2
1 2( ) ( ) ( ).y v y vK K dF y dF y o h

h h
− −   × =   

   
(64) 

Reasoning as in the previous case we will receive 
2

2
1 ( ) ( )(1 ( )) ( , )F y vK Q u Q u f y u dydu
h h

∞ ∞

−∞ −∞

−  − 
 ∫ ∫ 

           
2

0( )(1 ( )) ( | ) .
K

Q u Q u f u y du
h

∞

−∞

−∫    (65) 

From here 

          ( ( ) ( )) (0,1).
( )

d
n

n

nh Q y R y N
y

ξ
σ

∗

→

−
→ ∈


     (66) 

Let's notice that for finite-sample performance 
of the distribution function it is better to use new 
Yang-type estimator of the form 

[ ]

1 1

/ ( ) / ( )( ) ,(67)
n n

in n
n n

i i

i n F x i n F xQ x K W K
h h= =

− −   =    
   

∑ ∑

which an asymptotically equivalent to an estimator 
nQ∗ . 

 
4.3. Indirect Quantiles 

 
When 1d = , i.e. when Y  is real-valued, the func-
tion nQ∗  has an inverse or quantile function 

1( ) inf{ : ( ) }, 0 1.n nQ y R Q yλ λ λ∗− ∗= ∈ ≥ < <   
This is scheduled for estimating the λ  quantile 

1( )Q λ−  of ( )Q ⋅ . In this subsection we derive the 
limit distribution of 

1/2 1 1( ) ( ) ( ( ) ( )), 0 1n nnh Q Qς λ λ λ λ∗− −≡ − < <     (68) 
fixed.  
For such an λ , write 1( )y Qλ λ−= . 
 
Theorem 5. Under the assumptions of the theo-
rem 4, if ( ) ( ) 0q y Q yλ ′= >  at y yλ=  and ( , )q y u  
is continuous we have 
          2( ) (0, )n N λς λ σ→  in distribution,        (69) 
where 
               22 2(1 ) / ( ( ))L q yλ λσ λ λ= − .          (70) 
Proof. For proof see [22].  
 
5  Reduction of a measurement error 

 
Let the dose U  is measured with an error, i.e. 
= +Y U ε , where ,U ε  are independent random va-

riables and d∈Rε  has normal distribution with d-
dimensional mean vector 0  and a known d d×  co-
variance matrix 0Σ , and the random vector U  has 
unknown density ( ) 0g >u . The regression curve of 
U  with respect to Y  it can be written in form  

        ( )( ) ( | )
( )q

= = =E r xu x U Y x
x

,                   (71) 

where 
( ) ( )g= ×∫r x u u  

0/2 1/2
0

1 1| exp ( ) ( ) ,
(2 ) | | 2

T
d d

π
 × − − − 
 

u x u x uΣ
Σ

(72) 

( ) ( )q g= ×∫x u  

0/2 1/2
0

1 1| exp ( ) ( ) .
(2 ) | | 2

T
d d

π
 × − − − 
 

u x u x uΣ
Σ

(73) 

Differentiating ( )q x  with respect to x  yields 
(see [23]) 
              1 1

0 0( ) ( ) ( )q q− −∇ = − +Σ Σx x x r x ,          (74) 
where the symbol ( )q∇ x  denote the 1 d×  matrix 
of first-order partial derivatives of the transfor-
mation from x  to ( )q x . 

Let the random vector Y  has normal distribu-
tion with d-dimensional unknown mean vector a  
and a known d d×  covariance matrix Σ . Then 

1
0 ln

( ) ( ) ( ) ( )
( (

q
qq q

−∇
= − + = ∇ = −Σ Σ

x r xx x x a
x x

,(75) 

from where 

     1 1
0 0 0

( )
( )

(
q

q
− −∇

+ − −Σ Σ Σ Σ Σ Σ
x

x = x a
x

.      (76) 

Since a  and Σ  are unknown, we will estimate 
them on sample 1 2, ,..., ny y y  with the help of the 
following the statistics 

       
1

1ˆ
n

i
in =

= = ∑a y y                                          (77) 

and 

1

1ˆ ( )( )
n

T
i i

in =

= = − −∑SΣ y y y y .                       (78) 

The regression estimation in this case will be 
equal  
            1 1

0 0ˆ ( ) ( )n
− −= −S S SΣ Σu x x + y .           (79) 

If instead of x  we will substitute observable 
value iy , then the corrected value of a vector ˆiu  
we calculate the corrected value of a vector  ˆiu  
using the formula 
    1 1

0 0ˆ ˆ ( ) ( )i n i i
− −= = −S S SΣ Σu u y y + y .         (80) 

 

6  Numerical properties 
 
In this section we report the results of a simula-

tion study illustrating the theoretical results and 
finite-sample behavior of the estimators of popu-
lation features considered in Sections 2-5. We 
consider                                  

For the error distribution, we consider the nor-
mal distribution 2(0,0.23 )N  . For each combina-
tion of the target and error distributions, we con-
sider two different sample sizes, 100=n  and 
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200=n  . In the simulation study for this section 
we choose the kernel  

2 215( ) (1 ) (| | 1)
16

K x x I x= − ≤ .                     (81) 

We consider the case when the initial data does 
not include measurement error and also the case 
when a measurement error is superimposed on 
the initial data.  

Case 1. Initial data without imposing a mea-
surement error  

 
Fig. 1. Empirical distribution function and esti-
mation of the initial data, 100=n  

 
Fig. 2. Empirical distribution function and esti-
mation of the initial data, 200=n . 

Case 2. The initial data with the imposition of a 
measurement error  

 

Fig. 3. Empirical distribution function and esti-
mation according to the superimposed measure-
ment error, 100=n  

 
Fig. 4. Empirical distribution function and esti-
mation according to the superimposed measure-
ment error, 200=n  
 

Case 3. The data overlay measurable error after 
conversion 

 
Fig. 5. Empirical distribution function and esti-
mation according to the superimposed measure-
ment error after conversion, 100=n  

 
Fig. 6. Empirical distribution function and esti-
mation according to the superimposed measure-
ment error after conversion, 200=n  

By construction, in the application package MatLab 
graphs easy to see that applying the error estimate of 
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the distribution function does not match the empirical 
distribution function. But after converting the data 
with the superimposed measurement error estimation 
function distribution shows good results as seen from 
the Fig. 5 and Fig. 6. 

 

7 Conclusion 
In the case where the response is binary, one way to 

describe is to build a logistic regression, which as-
sumes knowledge of the distribution close to her.  

Another method is the nonparametric estimation 
method - kernel estimation.  

It is usually assumed that the variables are meas-
ured without error. If the variables are measured with 
errors (convolution model), proceed as follows: build 
the kernel using the direct and inverse Fourier trans-
form, which would compensate the measurement er-
ror.  Our approach is based on the fact that we first 
reduce the measurement error, and then evaluate the 
new data measurement function.  

The results of numerical simulations show the suc-
cess of this approach. 
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