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Abstract: In this paper, the global asymptotic stability of second-order neutral type Cohen-Grossberg neural
networks with time-varying delays are investigated. First, by choosing properly variable substitution the system is
transformed to first-order differential equation. Second, some sufficient conditions which can ensure the existence
and global asymptotic stability of equilibrium point for the system are obtained through using homeomorphism
and the differential mean value theorem, constructing suitable Lyapunov functional and applying the positive
matrix. Finally, two examples are given to illustrate the effectiveness of the results.
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1 Introduction
We note that second-order neutral type differential e-
quations have applications in problems dealing with
vibrating masses attached to an elastic bar and in
some variational problems of physics, biology, and e-
conomics. There is a constant interest in obtaining
new sufficient conditions for the oscillation or non-
oscillation of the solutions of varietal types of the
second-order equations, see, [1-7]. For example, In
[1], the authors discussed the positive periodic solu-
tions for second-order neutral differential equations
with functional delays described by

ẍ(t) + p(t)ẋ(t) + q(t)x(t) = Cẋ(t− τ(t))

+f(t, h(x(t)), g(x(t)− x(t− τ(t)))).

In [2], the authors studied the periodic solutions for a
second-order nonlinear neutral differential equations
with variable delays:

ẍ(t) + p(t)ẋ(t) + q(t)x(t)

= ġ(t, x(t− τ(t))) + f(t, x(t), x(t− τ(t))).

Since neutral neural networks contain some very
important information about the derivative of the past
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state, thus it is very important for us to study such
complicated system. And so far, the stability analysis
for neural networks of neutral type has been investi-
gated [8-13]. For example, in [12] the authors inves-
tigate the existence of periodic solutions for a class
of Cohen-Grossberg type neural networks with neu-
tral delays. Zhang et al.[13] investigated the global
asymptotic stability to a generalized Cohen-Grossberg
BAM neural networks of neutral type delays.

This paper is devoted to presenting a theoretical
stability analysis for second-order neutral type Cohen-
Grossberg neural networks with time-varying delays,
they can provide the theoretical basis of the practical
application.

We consider the following class second-order
neutral type Cohen-Grossberg neural networks with
time-varying delays

ẍi(t) = −diẋi(t)− αi(xi(t))[hi(xi(t))

−
n∑
j=1

aijfj(xj(t))−
n∑
j=1

bijfj(xj(t− τij(t)))

−
n∑
j=1

cij ẋj(t− τij(t)) + Ii], (1)

where i = 1, 2, . . . , n, di > 0 is constant, xi(t) de-
notes the states variable of the ith neuron at the time
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t, αi(·) denotes an amplification function; hi(·) is the
behaved function, aij and bij are connection weights
of the neural networks; fj denotes the activation func-
tion of jth neuron at the time t; τij(t) is time delay,
0 < τij(t) < τ and 0 < τ̇ij(t) ≤ η < 1, where τ, η
are constants; cij is coefficient of the time derivative
of the delayed states; Ii denotes the external inputs on
the ith neuron at the time t.

When n = 1, α(x(t)) = q(t), h(x(t)) = x(t),
then system (1) is the one of [1][2].

The initial values of system (1) are

xi(s) = ϕi(s), ẋi(s) = ψi(s), (2)

where −τ < τij(t) ≤ s ≤ 0, ϕi(s), ψi(s) are bound-
ed and continuous functions.

This paper is organized as follows. Some pre-
liminaries are given in Section 2. In Section 3, the
sufficient conditions are derived to ensure the exis-
tence and global asymptotic stability of equilibrium
point for second-order neutral type neural networks
with time delays. In Section 4, an illustrative exam-
ple is given to show the effectiveness of the proposed
theory.

2 Preliminaries
For the sake of convenience, we introduce some nota-
tions and definitions as follows. E denotes the unit
matrix, for any matrix A, AT stands for the trans-
pose of A,A−1 denotes the inverse of A. If A is
a symmetric matrix, A > 0(A ≥ 0) means that A
is positive definite (nonnegative definite). Similarly,
A < 0(A ≤ 0) means that A is negative definite (neg-
ative semidefinite). λM (A), and λm(A) denote the
maximum and minimum eigenvalue of a square ma-
trix A.

Let Rm be an m−dimensional Euclidean space,
which is endowed with a norm ‖.‖ and inner prod-
uct (., .), respectively. Given column vector x =
(x1, x2, . . . , xm) ∈ Rm, the Euclidean vector norm

is ‖x‖ = (
m∑
i=1

x2i )
1/2.

Definition 1 [14] A map H : Rn → Rn is a home-
omorphism of Rn onto itself if H is continuous and
one-to -one and its inverse map H−1 is also continu-
ous.

Lemma 2 [14] If H(u) ∈ C0, and it satisfies the fol-
lowing conditions

1) H(u) is injective on Rn,

2) ‖H(u)‖ → +∞, as ‖u‖ → +∞,
then H(u) is a homeomorphism of Rn.

Lemma 3 If x, y ∈ Rn are two vectors, for any ε >
0, then

2XTY ≤ εXTX + ε−1Y TY.

Throughout this paper, we make the following as-
sumptions.

(H1) : For each i = 1, 2, . . . , n, αi(x) is con-
tinuous bounded and satisfies inequality 0 < αi ≤
αi(x) ≤ ᾱi, for all x ∈ R.

(H2) : For each i = 1, 2, . . . , n, hi(x) is differ-
entiable and satisfies condition 0 < hi ≤ h′i(x) ≤ h̄i,
for all x ∈ R.

(H3) : fj satisfies Lipschitz condition, i.e., there
exists constant lj > 0, such that

|fj(v1)− fj(v2))| ≤ lj |v1 − v2|,

for j = 1, 2, · · · , n, v1, v2 ∈ R.
Introducing variable transformation:

yi(t) = ẋi(t) + xi(t), i = 1, 2, . . . , n,

then (1) and (2) can be rewritten as

ẋi(t) = −xi(t) + yi(t),
ẏi(t) = (di − 1)xi(t)− (di − 1)yi(t)

−αi(xi(t))[hi(xi(t))−
n∑
j=1

aijfj(xj(t))

−
n∑
j=1

bijfj(xj(t− τij(t)))

−
n∑
j=1

cij ẋj(t− τij(t)) + Ii]

(3)

for i = 1, 2, . . . , n, and{
xi(s) = ϕi(s), ẋi(s) = ψi(s),
yi(s) = ϕi(s) + ψi(s)

.
= ϕ∗i (s),

(4)

for i = 1, 2, . . . , n, −τ < τij(t) ≤ s ≤ 0.
System (3) can be written in the vector-matrix for-

m as follows:

Ẋ(t) = −X(t) + Y (t),

Ẏ (t) = RX(t)−RY (t)

−α(X(t))

[
H(X(t))−Af(X(t))

−Bf((X(t− τij(t)))

−CẊ(t− τij(t)) + I

]
,

(5)
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where

X(t) = (x1(t), x2(t), . . . , xn(t))T ,
Y (t) = (y1(t), y2(t), . . . , yn(t))T ,
f(t) = (f(x1(t)), f(x2(t)), . . . , f(xn(t)))T ,
R = diag(d1 − 1, d2 − 1, . . . , dn − 1),
α(X(t)) = diag(α1(x1(t)), . . . , αn(xn(t))),
H(X(t)) = (h1(x1(t)), . . . , hn(xn(t)))T ,
A = (aij)n×n, B = (bij)n×n, C = (cij)n×n,
I = (I1, I2, . . . , In)T .

Definition 4 A point X∗ = (x∗1, x
∗
2, . . . , x

∗
n)T is

called equilibrium point of system (1) if

−hi(x∗i ) +
n∑
j=1

aijfj(x
∗
j ) +

n∑
j=1

bijfj(x
∗
j )− Ii = 0,

i = 1, 2, . . . , n.
(6)

or

−H(X∗) +Af(X∗) +Bf(X∗)− I = 0. (7)

3 Main results
In this section, we can derive some sufficient con-
ditions which can ensure the existence and global
asymptotic stability of equilibrium point for the sys-
tem (1).

Theorem 5 Under the hypotheses (H1) − (H3), if
1 + hiαi − di > 0, and there exists positive con-
stants β, δ, γ and a positive diagonal matrix Q =

diag(q1, q2, · · · , qn), and 0 < qi <
√
di − h̄iᾱi < 1,

(i = 1, 2, · · · , n) such that

P1 = 2H − (β + δ + 1)E > 0,
P2 = (E −Q2 −G)L−2 − 1

βA
TA > 0,

P3 = 2R− E −G− (β + δ + γ)(ᾱ)2 > 0,
P4 = (1− η)Q2L−2 − 1

δB
TB > 0,

P5 = (1− η)E − 1
γC

TC > 0,

then system (1) has a unique equilibrium point, which
is globally asymptotically stable, where

L = diag(l1, l2, · · · , ln),
H = diag(h1, h2, · · · , hn),
ᾱ = diag(ᾱ1, ᾱ2, · · · , ᾱn),
G = diag(1 + h̄1ᾱ1 − d1, · · · , 1 + h̄nᾱn − dn),
0 < τ̇ij(t) ≤ η < 1,

li, hi, ᾱi, di are given by hypotheses (H1)− (H3).

Proof. In order to prove the existence and uniqueness
of the equilibrium point, we consider the following
mapping associated with system (1):

W (X) = −H(X) +Af(X) +Bf(X)− I,

If X∗ = (x∗1, x
∗
2, . . . , x

∗
n)T is an equilibrium

point of (1), then X∗ satisfies the following
equation:W (X∗) = 0.

It is obvious that W (X) = 0 is an equilibrium
point of (1). Therefore, we can directly conclude from
Lemma 2 that for the system defined by (1), there ex-
ists a unique equilibrium point for every input vector
I if W (x) is homeomorphism of Rn.

Now we will show thatW (x) is a homeomorphis-
m of Rn under the conditions of Theorem 5.

First, we prove that W (x) is an injective map on
Rn. Let us choose two vectors X,Z ∈ Rn such that
X 6= Z, we have

W (X)−W (Z) = −[H(X)−H(Z)]
+A[f(X)− f(Z)] +B[f(X)− f(Z)]. (8)

2(X − Z)T is multiplied by both sides of (8), we ob-
tain

2(X − Z)T (W (X)−W (Z))

= 2(X − Z)T {−[H(X)−H(Z)]
+A[f(X)− f(Z)] +B[f(X)− f(Z)]}

= −2(X − Z)T (H(X)−H(Z))

+2(X − Z)TA[f(X)− f(Z)]

+2(X − Z)TB[f(X)− f(Z)]

= −2(X − Z)T (H(X)−H(Z))

+2(X − Z)TA[f(X)− f(Z)]

+2(X − Z)TB[f(X)− f(Z)]

(X − Z)T (E −Q2)(X − Z)

−(X − Z)TQ2(X − Z)

+(X − Z)T (X − Z). (9)

By Lemma 3, there exists positive constants β, δ, such
that 

2(X − Z)TA[f(X)− f(Z)]
≤ β(X − Z)T (X − Z)

+ 1
β [f(X)− f(Z)]T

×ATA[f(X)− f(Z)]
2(X − Z)TB[f(X)− f(Z)]
≤ δ(X − Z)T (X − Z)

+1
δ [f(X)− f(Z)]T

×BTB[f(X)− f(Z)]

(10)

On the other hand, when 0 < qi < 1 we have

(X − Z)T (E −Q2)(X − Z)
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=

n∑
i=1

(1− q2i )(xi − zi)2

≥
n∑
i=1

1− q2i
l2i

(f(xi)− f(zi))
2

= [f(X)− f(Z)]T (E −Q2)L−2

×[f(X)− f(Z)]. (11)

(X − Z)TQ2(X − Z) =

n∑
i=1

q2i (xi − zi)2

≥
n∑
i=1

q2i l
−2
i (f(xi)− f(zi))

2

= [f(X)−f(Z)]TQ2L−2[f(X)−f(Z)]. (12)

From assumption (H2), 0 < hi ≤ h′i(x) ≤ h̄i, for
any finite values x, y, let x > y, using differential
mean value theorem, we have

hi(x)−hi(y) = h′i(y+θi(x−y))(x−y), 0 < θi < 1,

we can get

(X − Z)T (H(X)−H(Z))

=

n∑
i=1

(hi(xi)− hi(zi))(xi − zi)

=
n∑
i=1

h′(zi + θi(xi − zi))(xi − zi)2

≥
n∑
i=1

hi(xi − zi)2

= (X − Z)TH(X − Z). (13)

From (9)-(13), we can obtain

2(X − Z)T (W (X)−W (Z))

≤ −2(X − Z)TH(X − Z)

+β(X − Z)T (X − Z)

+
1

β
[f(X)− f(Z)]TATA[f(X)− f(Z)]

+δ(X − Z)T (X − Z)

+
1

δ
[f(X)− f(Z)]TBTB[f(X)− f(Z)]

−[f(X)− f(Z)]T (E −Q2)L−2×
×[f(X)− f(Z)]

−[f(X)− f(Z)]TQ2L−2[f(X)− f(Z)]

+(X − Z)T (X − Z)

≤ −(X − Z)T [2H − (β + δ + 1)E](X − Z)

−[f(X)− f(Z)]T [(E −Q2)L−2

− 1

β
ATA][f(X)− f(Z)]

−[f(X)− f(Z)]T [Q2L−2

−1

δ
BTB][f(X)− f(Z)]

≤ −(X − Z)TP1(X − Z)

−[f(X)− f(Z)]TP ∗1 [f(X)− f(Z)]

−[f(X)− f(Z)]TP4[f(X)− f(Z)]T , (14)

where P ∗1 = (E −Q2)L−2 − 1
βA

TA.

Since P2 = (E−Q2−G)L−2− 1
βA

TA > 0, we
have

P ∗1 = (E −Q2)L−2 − 1

β
ATA > GL−2 > 0.

When X 6= Z, P1 > 0, P ∗1 > 0, P4 > 0, (14) implies
that 2(X − Z)T (W (X) −W (Z)) < 0, we conclude
that W (X) 6= W (Z) for all X 6= Z. So W (X) is an
injective on Rn.

Next, we prove that ‖W (X)‖ → +∞ as ‖X‖ →
+∞. From (14), we have

2XT (W (X)−W (0))

≤ −XTP1X
−[f(X)− f(0)]TP ∗1 [f(X)− f(0)]

−[f(X)− f(0)]TP4[f(X)− f(0)]. (15)

Using Schwartz inequality

−XTY ≤ ‖XTY ‖ ≤ ‖X‖‖Y ‖, X, Y ∈ Rn,

from (15), we get

2‖X‖‖W (X)−W (0)‖
≥ XTP1X

+[f(X)− f(0)]TP ∗1 [f(X)− f(0)]

+[f(X)− f(0)]TP4[f(X)− f(0)]
≥ λm(P1)‖X‖2 + λm(P ∗1 )‖f(X)− f(0)‖2

+λm(P4)‖f(X)− f(0)‖2
≥ λm(P1)‖X‖2. (16)

From (16), we obtain

‖W (X)−W (0)‖ ≥ 1

2
λm(P1)‖X‖. (17)

Since ‖W (X)−W (0)‖ ≤ ‖W (X)‖+‖W (0)‖, from
(17) we have

‖W (X)‖ ≥ 1

2
λm(P1)‖X‖ − |W (0)‖. (18)

Therefore ‖W (X)‖ → +∞ as ‖X‖ → +∞. From
Lemma 2, we know that W (x) is a homeomorphism
on Rn. Thus, system (1) has a unique equilibrium
point.
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If x∗ is equilibrium point of equation (1), then
we can obtain (x∗

T
, y∗

T
) is also equilibrium point

of system (3), and vice versa. In the following
we only prove the unique equilibrium point x∗ =
(x∗1, x

∗
2, · · · , x∗n)T of system (3) is globally asymptot-

ically stable.
Let ui(t) = xi(t) − x∗i , zi(t) = yi(t) − y∗i , i =

1, 2, . . . , n. From (5), (7), we can obtain
U̇(t) = −U(t) + Z(t),

Ż(t) = RU(t)−RZ(t)
−α(U(t))[H(U(t))−Af(U(t))
−Bf(U(t− τij(t)))
−CU̇(t− τij(t))],

(19)

where

U(t) = (x1(t)− x∗1, · · · , xn(t)− x∗n)T ,

Z(t) = (y1(t)− y∗1, · · · , yn(t)− y∗n)T ,

α(U(t)) = diag(α1(u1(t) + x∗1),

· · ·αn(un(t) + x∗n)),

H(U(t)) = (h1(u1(t) + x∗1)− h1(x∗1),
· · · , hn(un(t) + x∗n)− hn(x∗1))

T ,

f(U(t)) = (f1(x1(t))− f1(x∗1),
· · · , fn(xn(t))− fn(x∗n))T .

Define the following positive definite Lyapunov func-
tional

V (t) = UT (t)U(t) + ZT (t)Z(t)

+

∫ t

t−τij(t)
UT (t)Q2U(t)dt

+

∫ t

t−τij(t)
U̇T (t)U̇(t)dt. (20)

Calculating the upper right Dini-derivative D+V (t)
of V (t) along the solution of (19), we can obtain as
follows

D+V (t) = 2U̇T (t)U(t) + 2ŻT (t)Z(t)

+UT (t)Q2U(t) + U̇T (t)U̇(t)

−(1− τ̇ij(t))UT (t− τij(t))Q2U(t− τij(t))
−(1− τ̇ij(t))U̇T (t− τij(t))U̇(t− τij(t))
= U̇T (t)[2U(t) + U̇(t)] + 2ZT (t)Ż(t)

+UT (t)Q2U(t)

−(1− τ̇ij(t))UT (t− τij(t))Q2U(t− τij(t))
−(1− τ̇ij(t))U̇T (t− τij(t))U̇(t− τij(t))
= [−UT (t) + ZT (t)][U(t) + Z(t)]

+2ZT (t)[RU(t)−RZ(t)

−α(U(t))[H(U(t))−Af(U(t))

−Bf((U(t− τij(t)))− CU̇(t− τij(t))]]
+UT (t)Q2U(t)

−(1− τ̇ij(t))UT (t− τij(t))Q2U(t− τij(t))
−(1− τ̇ij(t))U̇T (t− τij(t))U̇(t− τij(t))
= −UT (t)U(t) + ZT (t)Z(t)

+2ZT (t)RU(t)− 2ZT (t)RZ(t)

−2ZT (t)α(U(t))H(U(t))

+2ZT (t)α(U(t))Af(U(t))

+2ZT (t)α(U(t))Bf((U(t− τij(t)))
+2ZT (t)α(U(t))CU̇(t− τij(t))
+UT (t)Q2U(t)

−(1− τ̇ij(t))UT (t− τij(t))Q2U(t− τij(t))
−(1− τ̇ij(t))U̇T (t− τij(t))U̇(t− τij(t)).

(21)

From assumption (H2), we have

hi(x)− hi(y) = h′i(y + θi(x− y))(x− y),

for 0 < θi < 1.
Let

H ′(t) = diag(h′1(x1 + θ1(x1 − x∗1))(x1 − x∗1),
h′2(x2 + θ2(x2 − x∗2))(x2 − x∗2), · · · ,
h′n(xn + θn(xn − x∗n))(xn − x∗n)).

Since 0 < hi ≤ h′i(x) ≤ h̄i, we can obtain

H(U(t)) = H ′(t)U(t),

and

1 + h̄iᾱi − di
≥ 1 + αih

′
i(xi + θi(xi − x∗i ))− di

≥ 1 + hiαi − di > 0;

2ZT (t)RU(t)− 2ZT (t)α(U(t))H(U(t)

= 2ZT (t)RU(t)− 2ZT (t)α(U(t))H ′(t)U(t)

= −2ZT (t)[α(U(t))H ′(t)−R]U(t)

= −2

n∑
i=1

[1 + αih
′
i(xi + θi(xi − x∗i ))− di]ziui

≤
n∑
i=1

[1 + αih
′
i(xi + θi(xi − x∗i ))− di](z2i + u2i )

≤
n∑
i=1

[1 + ᾱih̄i − di](z2i + u2i )

= UT (t)GU(t) + ZT (t)GZ(t);

ZT (t)α(U(t)αT (U(t))Z(t)
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=

n∑
i=1

α2
i (ui(t) + x∗i )z

2
i

≤ ZT (t)ᾱ2Z(t).

By Lemma 3, there exists positive constants β, γ, δ,
such that

2ZT (t)α(U(t)Af(U)

≤ βZT (t)α(U(t))αT (U(t))Z(t)

+
1

β
fT (U)ATAf(U)

≤ βZT (t)ᾱ2Z(t) +
1

β
fT (U)ATAf(U),

2ZT (t)α(U(t))Bf(U(t− τij(t)))
≤ δZT (t)α(U(t))αT (U(t))Z(t)

+
1

δ
fT (U(t− τij(t)))

×BTBf(U(t− τij(t)))
≤ δZT (t)ᾱ2Z(t)

+
1

δ
fT (U(t− τij(t)))BTBf(U(t− τij(t))),

2ZT (t)α(U(t))CU̇(t− τij(t)))
≤ γZT (t)α(U(t))αT (U(t))Z(t)

+
1

γ
U̇T (t− τij(t))CTCU̇(t− τij(t))

≤ γZT (t)ᾱ2Z(t)

+
1

γ
U̇T (t− τij(t))CTCU̇(t− τij(t)). (22)

On the other hand,

UT (t)(E −Q2 −G)U(t)

=
n∑
i=1

(di − q2i − ᾱih̄i)(xi − x∗i )2

≥
n∑
i=1

(di − q2i − ᾱih̄i)l−2i (fi(xi(t))− fi(x∗i ))2

= fT (U(t))[E −Q2 −G]L−2f(U(t)). (23)

U(t− τij(t))TQ2U(t− τij(t))

=

n∑
i=1

q2i (xi(t− τij(t))− x∗i )2

≥
n∑
i=1

q2i l
−2
i (f(xi(t− τij(t)))− f(x∗i ))

2

= fT (U(t− τij(t)))Q2L−2f(U(t− τij(t))
(24)

From (21)-(24), we can obtain

D+V (t)

≤ −UT (t)U(t) + ZT (t)Z(t) + UT (t)Q2U(t)

−(1− η)UT (t− τij(t))Q2U(t− τij(t))
−(1− η)U̇T (t− τij(t))U̇(t− τij(t))
+UT (t)GU(t) + Z(t)TGZ(t)− 2ZT (t)RZ(t)

+(β + δ + γ)ZT (t)ᾱ2Z(t) +
1

β
fT (U)ATAf(U)

+
1

δ
fT (U(t− τij(t)))BTBf(U(t− τij(t)))

+
1

γ
U̇T (t− τij(t))CTCU̇(t− τij(t))

≤ −UT (t)[E −Q2 −G]U(t)

−ZT (t)[2R− E −G− (β + δ + γ)ᾱ2]Z(t)

−(1− η)U(t− τij(t))TQ2U(t− τij(t))
−U̇T (t− τij(t))[(1− η)E

−1

γ
CTC]U̇(t− τij(t)) +

1

β
fT (U)ATAf(U)

+
1

δ
fT (U(t− τij(t)))BTBf(U(t− τij(t)))

≤ −fT (U(t))[(E−Q2−G)L−2− 1

β
AAT ]f(U(t))

−ZT (t)[2R− E −G− (β + δ + γ)ᾱ2]Z(t)

−fT (U(t− τij(t)))[(1− η)Q2L−2

−1

δ
BTB]f(U(t− τij(t)))

−U̇T (t−τij(t))[(1−η)E− 1

γ
CTC]U̇(t−τij(t))

≤ −fT (U(t))P2f(U(t))− ZT (t)P3Z(t)

−fT (U(t− τij(t)))P4f(U(t− τij(t)))
−U̇T (t− τij(t))P5U̇(t− τij(t)). (25)

Since P2 > 0, P3 > 0, P4 > 0, P5 > 0, (25) implies
that D+V (t) < 0. Then, according to the standard
Lyapounov theory, it concludes that the unique equi-
librium point of system (1) is globally asymptotically
stable. This completes the proof of Theorem 5. ut

When αi(xi(t)) = αi, hi(xi(t)) = xi(t), the sys-
tem (1) becomes the following second-order neutral
type neural networks with time delays

ẍi(t) = −diẋi(t)− αixi(t)

+

3∑
j=1

aijfj(xj(t)) +

3∑
j=1

bijfj(xj(t− τij(t)))

+
3∑
j=1

cij ẋj(t− τij(t)) + Ii. (26)

From Theorem 5, we can get the following Theorem

Theorem 6 Under the hypotheses (H3), if 1 + αi −
di > 0, and there exists positive constants β, δ, γ and
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a positive diagonal matrix Q = diag(q1, q2, · · · , qn),
and

0 < qi <
√
di − αi < 1, (i = 1, 2, · · · , n),

such that

P1 = (1− β − δ)E > 0,

P2 = (E −Q2 −G)L−2 − 1

β
ATA > 0,

P3 = 2R− E −G− (β + δ + γ)(ᾱ)2 > 0,

P4 = (1− η)Q2L−2 − 1

δ
BTB > 0,

P5 = (1− η)E − 1

γ
CTC > 0,

then system (26) has a unique equilibrium point,
which is globally asymptotically stable, where

L = diag(l1, l2, . . . , ln), ᾱ = diag(α1, α2, . . . , αn),

G = diag(1 + α1 − d1, 1 + α2−d2, · · · , 1 + αn−dn)

0 < τ̇ij(t) ≤ η < 1,li is given by hypotheses (H3).

4 Numerical Example
In this Section, we give two examples to show our
results.

Example 7 We consider the following second-order
neutral type Cohen-Grossberg neural networks with
time delays

ẍi(t) = −diẋi(t)− αi(xi(t))[hi(xi(t))

−
3∑
j=1

aijfj(xj(t))−
3∑
j=1

bijfj(xj(t− τij(t)))

−
3∑
j=1

cij ẋj(t− τij(t)) + Ii], (27)

where i = 1, 2, 3, d1 = 2.3, d2 = 2.1, d3 = 2.3,

α1(x1) = 2 +
1

1 + x21
, h1(x1) = 2

3x1,

α2(x2) = 2.5− 1

1 + x22
, h2(x2) = 3

4x2,

α3(x3) = 1.6 +
1

2(1 + x23)
, h3(x3) = 5

6x3,

τij(t) =
2− e−t

3
, t > 0, i, j = 1, 2, 3.

fj(xj) = tanh(xj), I1 = −2
3 ln 2 + 31

2340 ,

I2 = −0.75 ln 3− 31

2340
, I3 = −5

6 ln 5 + 31
2340 .

A =
1

72

 1 −1 1
−1 −1 1
1 1 −1

 , B =
1

72

 1 −1 1
−1 −1 1
1 1 −1

 ,

C =
1

36

 1 −1 1
−1 −1 1
1 1 −1

 .
We have

2 ≤ α1(x1) ≤ 3, 1.5 ≤ α2(x2) ≤ 2.5,

1.6 ≤ α3(x3) ≤ 2.1, h′1(x1) =
2

3

h′2(x2) = 3
4 , h′3(x3) =

5

6
,

τ̇ij(t) = e−t

3 , t > 0, i, j = 1, 2, 3

|fj(x)− fj(y)| ≤ |x− y|.

By assumptions (H1)− (H3), we select

α1 = 2, ᾱ1 = 3, α2 = 1.5, ᾱ2 = 2.5,

α3 = 1.6, ᾱ3 = 2.1, h1 = h̄1 = 2
3 ,

h2 = h̄2 =
3

4
, h3 = h̄3 = 5

6 ,

l1 = l2 = l3 = 1, τ =
2

3
, η = 1

3 ,

β =
1

81
, δ =

1

27
, γ = 1

81 ,

Q = diag(0.4, 0.3, 0.2), L = diag(1, 1, 1).

We have the following results by simple calcula-
tion

R =

 d1−1 0 0
0 d2−1 0
0 0 d3−1

=

 1.3 0 0
0 1.1 0
0 0 1.3



H =

 h1 0 0
0 h2 0
0 0 h3

 =

 2
3 0 0
0 3

4 0
0 0 5

6

 .

ᾱ =

 ᾱ1 0 0
0 ᾱ2 0
0 0 ᾱ3

 =

 3 0 0
0 2.5 0
0 0 2.1

 .

G =

 g11 0 0
0 g22 0
0 0 g33

 =

 0.7 0 0
0 0.775 0
0 0 0.45

 .

WSEAS TRANSACTIONS on MATHEMATICS Chunfang Miao, Yunquan Ke

E-ISSN: 2224-2880 979 Volume 13, 2014



where gii = 1 + h̄iᾱ1 − di, i = 1, 2, 3.

1 + h1α1 − d1 =
1

30
> 0,

1 + h2α2 − d2 =
1

40
> 0,

1 + h3α3 − d3 =
1

30
> 0,

0 < q1 <
√
d1 − h̄1ᾱ1 =

√
0.3 < 1,

0 < q2 <
√
d2 − h̄2ᾱ2 =

√
0.225 < 1,

0 < q3 <
√
d3 − h̄3ᾱ3 =

√
0.55 < 1.

P1 =
1

162

 46 0 0
0 73 0
0 0 100

 > 0,

P2 =
1

64

 5.96 −1 1
−1 36.04 3
1 3 26.44

 > 0,

P3 =
1

81

 27.9 0 0
0 5.2 0
0 0 71.1

 > 0,

P4 =
1

192

 17.48 −1 1
−1 8.52 3
1 3 2.21

 > 0,

P5 =
1

48

 23 −3 3
−3 23 9
3 9 23

 > 0.

From (27), we can get the equation of the equilibriums

2
3x1 −

1
72 tanh(x1) + 1

72 tanh(x2)
− 1

72 tanh(x3)− 2
3 ln 2 + 47

2680 = 0,
3
4x2 + 1

72 tanh(x1) + 1
72 tanh(x2)

− 1
72 tanh(x3)− 3

4 ln 3− 31
2680 = 0,

5
6x3 −

1
72 tanh(x1)− 1

72 tanh(x2)
+ 1

72 tanh(x3)− 5
6 ln 5 + 31

2680 = 0.

(28)

By calculation, there exists a unique equilibrium point
of (28),i.e.,

(x∗1, x
∗
2, x
∗
3)
T = (ln 2, ln 3, ln 5)T .

Then, the conditions of Theorem 5 hold. Using The-
orem 5 there exists a unique equilibrium point of sys-
tem (27), which is globally asymptotically stable.

Figure 1: Transient response of state variables x1(t)
of Example 7.

Figure 2: Transient response of state variables x2(t)
of Example 7.

On the other hand, we give any eight groups ini-
tial conditions

[ϕ1(0), ϕ2(0), ϕ3(0), ψ1(0), ψ2(0), ψ3(0))] =:

[3, 3, 3, 4, 5, 6]; [2, 2, 4, 4,−5,−6];

[4, 4, 2.5, 5, 1.5, 1.6];

[0.5, 1.5, 1,−4, 2.5,−1.6];

[−1,−4, 1.2,−1.4,−1.5, 3.6];

[−3,−1.2, 2,−4,−4.5,−3.6];

[−1.5,−3,−0.5,−0.4, 4.5,−0.6];

[2.5,−2, 0.5, 0.4, 0.5, 0.6].

Numerical results are presented in Figs.1-Figs.3 using
Eqs.(27). Its depict the time responses of state vari-
ables of x1(t), x2(t), x3(t) of system in Example7, re-
spectively. Evidently, this consequence is coincident
with the result of Theorem 5.

Example 8 For system (27), let

α1 = 2, α2 = 1.5, α3 = 1.6,

hi(xi(t)) = xi(t), I1 = 2 ln 2− 47

2340

I2 = 1.5 ln 3 +
31

2340
, I3 = 1.6 ln 5− 31

2340
.

the other parameters are the same as that in Example
7.
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Figure 3: Transient response of state variables x3(t)
of Example 7.

We have the following results by simple calcula-
tion

R=

 d1−1 0 0
0 d2− 1 0
0 0 d3−1

=

 1.3 0 0
0 1.1 0
0 0 1.3



ᾱ =

 α1 0 0
0 α2 0
0 0 α3

 =

 2 0 0
0 1.5 0
0 0 1.6

 .
G =

 g11 0 0
0 g22 0
0 0 g33

 =

 0.7 0 0
0 0.4 0
0 0 0.3

 .
where gii = 1 + α1 − di, i = 1, 2, 3.

1 + α1 − d1 = 0.7 > 0,

1 + α2 − d2 = 0.4 > 0,

1 + α3 − d3 = 0.3 > 0,

0 < q1 <
√
d1 − α1 =

√
0.3 < 1,

0 < q2 <
√
d2 − α2 =

√
0.6 < 1,

0 < q3 <
√
d3 − α3 =

√
0.7 < 1.

P1 =
77

81

 1 0 0
0 1 0
0 0 1

 > 0,

P2 =
1

64

 6.96 −1 1
−1 29.64 3
1 3 39.24

 > 0,

P3 =
5

81

 10.58 0 0
0 10.71 0
0 0 18.51

 > 0,

P4 =
1

192

 17.48 −1 1
−1 8.52 3
1 3 2.21

 > 0,

P5 =
1

48

 23 −3 3
−3 23 9
3 9 23

 > 0.

From (27), we can get the equation of the equilib-
riums

2x1 − 1
36 tanh(x1) + 1

36 tanh(x2)
− 1

36 tanh(x3)− 2 ln 2 + 47
2340 = 0,

1.5x2 + 1
36 tanh(x1) + 1

36 tanh(x2)
− 1

36 tanh(x3)− 1.5 ln 3− 31
2340 = 0,

1.6x3 − 1
36 tanh(x1)− 1

36 tanh(x2)
+ 1

36 tanh(x3)− 1.6 ln 5 + 31
2340 = 0.

(29)

By calculation, there exists a unique equilibrium
point of (29), i.e.,

(x∗1, x
∗
2, x
∗
3)
T = (ln 2, ln 3, ln 5)T .

Then, the conditions of Theorem 2 hold. Using
Theorem 6 there exists a unique equilibrium point of
system (27), which is globally asymptotically stable.

On the other hand, we give any three groups ini-
tial condition

[ϕ1(0), ϕ2(0), ϕ3(0), ψ1(0), ψ2(0), ψ3(0))] =

[2, 3, 1, 4, 5, 6];

[1.2,−0.5, 4, 4,−5,−6];

[−1.5, 2, 2.5, 5, 1.5, 1.6].

0 5 10 15
−2

−1

0

1

2

3

t

x 1(t
)

Figure 4: Transient response of state variables x1(t)
of Example 8.

Numerical results are presented in Fig.4-Fig.6 us-
ing Eqs. (27). Its depict the time responses of state
variables of x1(t), x2(t), x3(t) of system in Example
8, respectively. Evidently, this consequence is coinci-
dent with the result of Theorem 6.
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0 5 10 15
−2

−1

0

1

2

3

4

t

x 2(t
)

Figure 5: Transient response of state variables x2(t)
of Example 8.

0 5 10 15
0

1

2

3

4

t

x 3(t
)

Figure 6: Transient response of state variables x3(t)
of Example8.

5 Conclusions

In this paper, global asymptotic stability for a class
second order neutral-type Cohen-Grossberg neural
networks with time-varying delays was considered.
Some effective criteria which can ensure the exis-
tence and stability of equilibrium point for this class
of second-order neutral-type systems were derived by
using homeomorphism and the standard Lyapounov
theory, constructing suitable Lyapunov functional and
applying the inequality technique. Novel existence
and stability conditions are stated in simple algebra-
ic forms and their verification and applications are s-
traightforward and convenient. Finally, an illustrative
example for this class of system was presented.
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