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Abstract: In this paper, we introduce a study of generalized inverses for convolution type operators defined in
bounded intervals Ω.
The main results of this paper are organized as follows: First, the construction of equivalence relations between the
convolution type operators and new Wiener-Hopf operators (operators of convolution type defined on the half-line)
based on a decomposition method of higher order Wiener-Hopf operators. Second, we introduce the generalized
inverses of these operators, when they exist.
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1 Definitions and Notations
We will start this section by presenting a collection
of settings needed for our study. Note, however, that
we will not provide the definitions of formal and sys-
tematic way, since all of them can be considered as
belonging to an elementary part of the functional anal-
ysis.

Similarly, we will introduce some notations ne-
cessary for the development of this work. Of course
we do not want to make a list of notations, because,
throughout the article, they will appear in a natural
way as they are needed.

We know that a function ϕ defined on Rn is
rapidly decreasing if there exist constants CN such
that

|ϕ| ≤ CN |x|−N , |x| → ∞

for N = 1, 2, 3, ....
Another way to say the same for ϕ, is when, af-

ter multiplying ϕ by any polynomial p(x), p(x)ϕ(x)
must still tend to zero when |x| → ∞.

The Schwartz space of rapidly decreasing func-
tions will be denoted by S (Rn).

For functions ϕ, defined in the space S (Rn), the
Fourier transformation is given by

(Fϕ) (ξ) =

∫
Rn

eiξxϕ (x) dx

and the inverse Fourier transformation by(
F−1ϕ

)
(ξ) =

1

(2π)n

∫
Rn

e−iξxϕ (x) dx,

where x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn) ∈ Rn and
ξx = ξ1x1 + . . .+ ξnxn.

As usual, for 1 < p < ∞, the Banach space of
Lebesgue measurable functions ϕ on R such that |ϕ|p
is integrable will be denoted by Lp (R).

For a given domain Γ ⊆ R+ =]0,+∞[, we de-
note by LpΓ (R) the closed subspace of Lp (R) whose
elements have support in Γ. The space LpΓ (R) is en-
dowed with the subspace topology. For simplicity, we
write Lp+ (R) instead of LpR+

(R).
Throughout this work, we will use repeatedly the

projection operators defined by

PΓ :
[
Lp+ (R)

]n→ [
LpΓ (R)

]n
ϕ(ξ) 7→ (PΓϕ)(ξ) =

{
ϕ(ξ) if ξ ∈ Γ
0 if ξ /∈ Γ

and

QΓ :
[
Lp+ (R)

]n→ [
LpR+\Γ

(R)
]n

ϕ(ξ) 7→(QΓϕ)(ξ)=

{
0 if ξ ∈ Γ
ϕ(ξ) if ξ /∈ Γ

.

In order to simplify the notation we will write Pa
instead of P[a,+∞[ for a ∈ R.
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Considering Ω a bounded interval, we will study
operators of the form

WK,Ω :
[
LpΩ (R)

]n → [
LpΩ (R)

]n
WK,Ωϕ = PΩ (K ∗ ϕ) , (1)

such that

WK,Ω = PΩF−1K · F ,

where,

- ∗ denotes the convolution operation.

- F = Fx7→ξ denotes the Fourier transformation in
Rn and F−1 its inverse.

- K is a n × n matrix valued function, whose
components are distributions defined in the dual
space of S (R), denoted by S ′ (R), i.e, the space
of all linear and continuous operators in S (R).
In this space, with the necessary adaptations, we
define the Fourier transformation according to
the usual definition for S (R).

- F−1K = K, namely, K = FK, with K a n ×
n matrix belonging to the Fourier Lp-multiplier
algebra (see [16]).

Note that these operators are called convolution
type operators due to the fact that

PΩ (K ∗ ϕ) (ξ) =

∫
Ω
K (ξ − x)ϕ (x) dx, ξ ∈ Ω,

where ∗ is the convolution operation and PΩ denotes
an operator restriction to Ω.

Analogously we define

WK,R+
:
[
Lp+ (R)

]n → [
Lp+ (R)

]n
WK,R+

ϕ = PR+(K ∗ ϕ), (2)

the usually called Wiener-Hopf operators (or, in re-
lated works, pseudodifferencial operators, [5, 16, 17,
24]) defined with projectors on the half-line.

Under this considerations, the linear operators
WK,Ω and WK,R+

are well defined and are the both
bounded operators.

To continue, we will need to consider the next im-
portant extension operator relations.

Definition 1 [13] Let us consider two operators

A : X1 → Y1 and B : X2 → Y2,

acting between Banach spaces.

(i) The operators A and B are said to be alge-
braically equivalent after extension if there exist
additional Banach spaces Z1 and Z2 and inver-
tible linear operators

E : Y2 × Z2 → Y1 × Z1

and
F : X1 × Z1 → X2 × Z2

such that[
A 0
0 IZ1

]
= E

[
B 0
0 IZ2

]
F. (3)

(ii) If, in addition to (i), the invertible and linear ope-
rators E and F in (3) are bounded, then we will
say thatA andB are topologically equivalent af-
ter extension operators or simply say that A and
B are equivalent after extension operators. We
will denote the equivalence after extension rela-
tion between the operators by A ∗∼ B, [1].

(iii) A and B are said to be equivalent operators,
denoted by A ∼ B, in the particular case when

A = EB F,

for some bounded invertible linear operators

E : Y2 → Y1 and F : X1 → X2.

We remark that the equivalence between the
above notion of topological equivalence after exten-
sion relation and the concept of matricial coupling
was established for the first time in [1]. This last con-
cept is well-known to be very important in solving cer-
tain classes of integral equations, and it is also impor-
tant in (linear algebra) matrix completion problems.
From the just presented notions it is clear that differ-
ent consequences can be extracted from these differ-
ent operator relations. We refer to [3], [4], [13], [21],
[22] and [23] for a discussion on the differences be-
tween algebraic and topological equivalence after ex-
tension relations between convolution type operators
and some applications.

2 Extension Method
In this section we mention some properties and cha-
racteristics of the operators defined in (1) and (2) for
the construction of generalized inverses.

First we relate the convolution type operator
WK,Ω with a higher order Wiener-Hopf operator ac-
ting on the half-line, not without introducing some
concepts needed for this purpose.
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It is said that an operator A is a higher order o-
perator if it consists of addition and/or composition of
simple operators (in the sense that these simple opera-
tors not exhibit such additions and compositions), i.e.,
considering two Banach spacesX and Y ,A : X → Y
is a higher order operator if

A =
N∑
i=1

Mi∏
j=1

ai,j , N, Mi ∈ N, (4)

where ai,j denotes simple operators or also called
non-composite operators.

Based on the iterative method presented in [12],
we know that the extension by the identity of an ope-
rator of higher order can be written as a composition
of matrices whose components are simple operators.
We will address the method of [12] from a new pers-
pective to the extent that will cause decomposition by
blocks, i.e., considering A defined like in (4), we will
have [

A 0
0 I

]
= EBF,

where E, B and F are matrices whose components
are 0, IX , IY or ai,j , matricial operators. This last
identity can sometimes be identified with the iden-
tity (3). So, this iterative method is useful to obtain
this kind of relations between operators and has been
described and used in various publications, e.g. [2],
[6], [7]-[11], [14], [22], [23] and the references given
there.

In this new approach, we consider the compo-
nents of each matrix operator ai,j : X → X as simple
operators and Mi ≤ 2, i = 1, 2, . . . N . In the case of
not having these conditions, we apply the method of
[12] in each of the operators ai,j , i.e, in each of the
blocks. With this new approach, the iterative method
is simpler, is best suited to our needs and leads to a
more comprehensive construction of the relations bet-
ween operators.

We will have the following iterative method.
Consider, for the iteration r ∈ N0,

Ar =

N∑
i=1

Mi∏
j=1

ai,j

=

{
A if r = 0

B̃r−1 if r ≥ 1

and

B̃r =


N−1∑
i=1

Mi∏
j=1

ai,j if N ≥ 2

0 if N = 1

,

where, after setting an ordering of terms in Ar, for
example considering M1 ≤ M2 ≤ ... ≤ MN , we
define

αr =

{
aN,1 if MN = 2
I if MN = 1

,

βr = −aN,MN

and

Br+1 =



B̃r αr αr−1 · · · α1 α0

βr I 0 · · · 0 0
βr−1 0 I · · · 0 0

...
...

...
. . .

...
...

β1 0 0 · · · I 0
β0 0 0 · · · 0 I


.

For each iteration the parameters MN and N are
related to the operator Ar and the iteration method
ends when B̃r is not a higher order operator.

One of the most important results in this iterative
method is the fact that for each iteration we obtain a
factorization into simpler structured factors, with in-
vertible outer factors, in the form[

A 0
0 IXr+1

]
= Er+1Br+1Fr+1,

where,

Er+1 =


I −αr · · · −α1 −α0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
0 0 · · · 0 I


and

Fr+1 =


I 0 · · · 0 0
−βr I · · · 0 0

...
...

. . .
...

...
−β1 0 · · · I 0
−β0 0 · · · 0 I

 ,

with r ∈ N0.

Example 2 As example we will apply the iterative
method to an operator of the form

A = a1,1 + a2,1 + a3,1a3,2.

To r = 0, we have A0 = A. Thus, N = 3,
M1 = 1, M2 = 1 and M3 = 2.
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We obtain α0 = a3,1, β0 = −a3,2 and B̃0 =
a1,1 + a2,1. Therefore

B1 =

[
B̃0 α0

β0 I

]

=

[
a1,1 + a2,1 a3,1

−a3,2 I

]
,

E1 =

[
I −α0

0 I

]

=

[
I −a3,1

0 I

]
and

F1 =

[
I 0
−β0 I

]

=

[
I 0
a3,2 I

]
.

We obtain the equation[
A 0
0 I

]
= E1B1F1.

The operator B̃0 is not in the form of a simple
operator so, we do one more iterations.

To r = 1, we have A1 = B̃0 = a1,1 + a2,1. Thus,
N = 2, M1 = 1 and M2 = 1. So, α1 = I , β1 =

−a2,1 and B̃1 = a1,1. Therefore

B2 =

 B̃1 α1 α0

β1 I 0
β0 0 I



=

 a1,1 I a3,1

−a2,1 I 0
−a3,2 0 I

 ,

E2 =

 I −α1 −α0

0 I 0
0 0 I



=

 I −I −a3,1

0 I 0
0 0 I



and

F2 =

 I 0 0
−β1 I 0
−β0 0 I



=

 I 0 0
a2,1 I 0
a3,2 0 I

 .
We obtain the equation A 0 0

0 I 0
0 0 I

 = E2B2F2.

Observation 3 The iterative method presented here
differs from the method presented in the work [12].
In [12], A is a matrix operator whose components
are higher order operators. The iterative method will
break down each of these components in matrices
whose entries are simple operators. For this work,
based on the scalar case method in [12], we consider
A as a composition of matrix operators, ai,j , whose
entries are simple operators. Thus, the operators ai,j

can be regarded as blocks that do not change.

3 Equivalence Relations and Gener-
alized Inverses

We will now apply some equivalence relations (see
[4]) to our operator defined in (1) considering

Ω =]0, a[, (5)

where 0 < a < +∞, with a ∈ R.

Theorem 4 The convolution type operator WK,Ω,
presented in (1) with Ω defined in (5) is equivalent
after extension to the operator

W :
[
Lp+ (R)

]n → [
Lp+ (R)

]n
W = WK,R+

− Pa
(
WK,R+

− I
)
. (6)

Proof: It is crucial for our proof to be aware of the
following direct sum decomposition,[

Lp+ (R)
]n

= PΩ

[
Lp+ (R)

]n ⊕QΩ

[
Lp+ (R)

]n
=
[
LpΩ (R)

]n ⊕ [LpR+\Ω
(R)
]n
.

In this context, taking into account the direct sum
decomposition, we will define the new operator

W̃K,Ω :
[
Lp+ (R)

]n → [
Lp+ (R)

]n
W̃K,Ω = PΩWK,R+

PΩ +QΩ (7)
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in the form

W̃K,Ω =

[
WK,Ω 0

0 I[
Lp

R+\Ω
(R)
]n ] .

We have obviously the operator WK,Ω equivalent
after extension to the operator W̃K,Ω. Let us prove
now that the operators W̃K,Ω and W are equivalent
operators.

Note that,

PΩ = I − Pa and QΩ = Pa

where

Pa = PR+F−1τa · FPR+F−1τ−a · F ,

with τa the function defined by τa(ξ) = eiaξ, ξ ∈ R.
Thus,

W̃K,Ω = PΩWK,R+
PΩ +QΩ

= PΩWK,R+
(I −QΩ) +QΩ

= PΩWK,R+
I − PΩWK,R+

QΩ +QΩ

= PΩWK,R+
I +QΩ − PΩWK,R+

QΩ

= PΩWK,R+
+QΩ − PΩWK,R+

QΩPΩWK,R+

−PΩWK,R+
QΩQΩ

=
(
I − PΩWK,R+

QΩ

) (
PΩWK,R+

+QΩ

)
=
(
I − PΩWK,R+

QΩ

)
W, (8)

since

W = WK,R+
− Pa(WK,R+

− I)

= WK,R+
− PaWK,R+

+ Pa
= (I − Pa)WK,R+

+ Pa
= PΩWK,R+

+ QΩ.

In (8), we have

I − PΩWK,R+
QΩ :

[
Lp+ (R)

]n → [
Lp+ (R)

]n
and is an invertible and bounded operator where the
inverse is defined by

I + PΩWK,R+
QΩ :

[
Lp+ (R)

]n → [
Lp+ (R)

]n
,

since

(I − PΩWK,R+
QΩ)(I + PΩWK,R+

QΩ)

= I + PΩWK,R+
QΩ − PΩWK,R+

QΩ

−PΩWK,R+
QΩPΩWK,R+

QΩ

= I,

because QΩPΩ = 0. Likewise also

(I + PΩWK,R+
QΩ)(I − PΩWK,R+

QΩ) = I.

So we have W̃K,Ω equivalent to W .
Is very easy prove that the equivalence after ex-

tension and the equivalence are equivalence relations.
Thus, by transitivity, if WK,Ω

∗∼ W̃K,Ω and W̃K,Ω ∼
W , thus WK,Ω

∗∼W . ut
Now we introduce the result considering

Ω =]0, a[∪]b, c[, (9)

where 0 < a < b < c < +∞, with a, b, c ∈ R.

Theorem 5 The convolution type operator WK,Ω,
presented in (1) with Ω defined in (9) is equivalent
after extension to the operator

W :
[
Lp+ (R)

]n → [
Lp+ (R)

]n
W = WK,R+

− Pa
(
WK,R+

− I
)

+

Pb
(
WK,R+

− I
)
− Pc

(
WK,R+

− I
)
.(10)

Proof: Proceeding similarly to the proof of the previ-
ous theorem, we haveWK,Ω equivalent after extension
to the operator W̃K,Ω defined in (7). With

PΩ = I − Pa + Pb − Pc

and

QΩ = Pa − Pb + Pc,

like in (8), we obtain

W̃K,Ω =
(
I − PΩWK,R+

QΩ

)
W,

since

W = WK,R+
− Pa

(
WK,R+

− I
)

+

Pb
(
WK,R+

− I
)
− Pc

(
WK,R+

− I
)

= WK,R+
− PaWK,R+

+ Pa + PbWK,R+
−

Pb − PcWK,R+
+ Pc

= (I − Pa + Pb − Pc)WK,R+
+ Pa − Pb + Pc

= PΩWK,R+
+ QΩ,

with I−PΩWK,R+
QΩ an invertible and bounded ope-

rator. So W̃K,Ω is equivalent to W .
So, WK,Ω

∗∼ W̃K,Ω and W̃K,Ω ∼ W imply the
assertion of the theorem. ut

We will introduce now the concept of generalized
inverse. This concept plays an important role in the
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study of linear models and in other applications (see
[15, 18, 19, 20]).

Recall that L− denotes a generalized inverse of
a bounded linear operator L, acting between Banach
spaces, if LL−L = L.

We will now see that the generalized inverse of
the operatorW , defined in the two previous theorems,
generates a generalized inverse to the convolution type
operator WK,Ω defined as in (1).

Theorem 6 IfW− is a generalized inverse of the ope-
rator W defined in (6) (or defined in (10)) then

W−K,Ω :
[
LpΩ (R)

]n → [
LpΩ (R)

]n
W−K,Ω = PΩW

−
|PΩ[Lp

+(R)]
n

is a generalized inverse of WK,Ω with Ω defined by (5)
(or with Ω defined by (9)).

Proof: Suppose that W− is a generalized inverse of
W .

By the relation (8), immediately yields a gene-
ralized inverse of W̃K,Ω. Namely,

W̃
−

K,Ω = W−
(
I + PΩWK,R+

QΩ

)
. (11)

On the other hand, writing

W̃K,ΩW̃
−

K,ΩW̃K,Ω = W̃K,Ω

in matrix form, we have

W̃K,Ω =

[
WK,Ω 0

0 IQΩ[Lp
+(R)]

n

]
and

W̃
−

K,Ω =

W̃ −

K,Ω,1,1 W̃
−

K,Ω,1,2

W̃
−

K,Ω,2,1 W̃
−

K,Ω,2,2

 ,
with

W̃
−

K,Ω,1,1 = PΩ

(
W̃
−

K,Ω

)
|PΩ[Lp

+(R)]
n
,

W̃
−

K,Ω,1,2 = PΩ

(
W̃
−

K,Ω

)
|QΩ[Lp

+(R)]
n
,

W̃
−

K,Ω,2,1 = QΩ

(
W̃
−

K,Ω

)
|PΩ[Lp

+(R)]
n

and

W̃
−

K,Ω,2,2 = QΩ

(
W̃
−

K,Ω

)
|QΩ[Lp

+(R)]
n
.

Thus, we obtain,

WK,Ω

[
PΩ

(
W̃
−

K,Ω

)
|PΩ[Lp

+(R)]
n

]
WK,Ω = WK,Ω.

(12)
Applying (11) in the identity (12), we obtain the

following generalized inverse

W−K,Ω :
[
LpΩ (R)

]n → [
LpΩ (R)

]n
W−K,Ω = PΩ

[
W−

(
I + PΩWK,R+

QΩ

)]
|PΩ[Lp

+(R)]
n

= PΩW
−
|PΩ[Lp

+(R)]
n .

ut
We are able to apply the iterative method to our

operators.

Theorem 7 The operator W defined in (6) is equiva-
lent after extension to

W : [Lp+(R)]3n −→ [Lp+(R)]3n

W =

 WK,R+
I −Pa

−Pa I 0
−WK,R+

0 I

 . (13)

Proof: In order to apply the iterative method pre-
sented in the previous section for the decomposition
of higher order Wiener-Hopf operators, we identify
W by

W = WK,R+
− Pa(WK,R+

− I)

= WK,R+
+ Pa + (−Pa)WK,R+

= a1,1 + a2,1 + a3,1a3,2.

We have N = 3, M1 = 1, M2 = 1 and M3 = 2.
Applying the iterative method and considering the

Example 2, we have, to r = 0, A0 = W ,

B1 =

[
B̃0 α0

β0 I

]
,

where

α0 = a3,1

= −Pa,

β0 = −a3,2

= −WK,R+

WSEAS TRANSACTIONS on MATHEMATICS A. M. Simoes

E-ISSN: 2224-2880 967 Volume 13, 2014



and

B̃0 =
2∑
i=1

Mi∏
j=1

ai,j

=

M1∏
j=1

a1,j +

M2∏
j=1

a2,j

= a1,1 + a2,1

= WK,R+
+ Pa.

The operator B̃0 is not a simple operator so we do
one more iterations.

To r = 1, we have A1 = B̃0. Thus, N = 2,
M1 = 1 and M2 = 1. So, α1 = I , β1 = −a2,1 and
B̃1 = a1,1. Therefore

B2 =

 B̃1 α1 α0

β1 I 0
β0 0 I


=

 WK,R+
I Pa

−Pa I 0
−WK,R+

0 I


= W,

E2 =

 I −α1 −α0

0 I 0
0 0 I


=

 I −I Pa
0 I 0
0 0 I

 (14)

and

F2 =

 I 0 0
−β1 I 0
−β0 0 I


=

 I 0 0
Pa I 0

WK,R+
0 I

 (15)

with E2 and F2 two invertible bounded linear ope-
rators which allows us to write the equivalence after
extension relation in the explicit way W 0 0

0 IPΩ[Lp
+(R)]

n 0

0 0 IPΩ[Lp
+(R)]

n

 = E2WF2.

ut

Theorem 8 The operator W defined in (10) is equi-
valent after extension to

W : [Lp+(R)]7n −→ [Lp+(R)]7n

W=



WK,R+
I I I −Pa Pb −Pc

−Pa I 0 0 0 0 0
Pb 0 I 0 0 0 0
−Pc 0 0 I 0 0 0
−WK,R+

0 0 0 I 0 0
−WK,R+

0 0 0 0 I 0
−WK,R+

0 0 0 0 0 I


. (16)

Proof: In order to apply the iterative method we iden-
tify W by

W = WK,R+
− Pa

(
WK,R+

− I
)

+

Pb
(
WK,R+

− I
)
− Pc

(
WK,R+

− I
)

= WK,R+
− PaWK,R+

+ Pa +

PbWK,R+
− Pb − PcWK,R+

+ Pc
= WK,R+

+ Pa − Pb + Pc + (−Pa)WK,R+
+

PbWK,R+
+ (−Pc)WK,R+

= a1,1 + a2,1 + a3,1 + a4,1 +

a5,1a5,2 + a6,1a6,2 + a7,1a7,2.

To r = 0, we haveA0 = W . Thus,N = 7,M1 =
M2 = M3 = M4 = 1 and M5 = M6 = M7 = 2. So,
applying the iterative method we obtain

B1 =

[
B̃0 −Pc

−WK,R+
I

]
,

E1 =

[
I Pc
0 I

]
and

F1 =

[
I 0

WK,R+
I

]
with

B̃0 = WK,R+
+ Pa − Pb + Pc + (−Pa)WK,R+

+

PbWK,R+
.

We obtain[
W 0
0 IPΩ[Lp

+(R)]
n

]
= E1B1F1.

The element B̃0 is not a simple operator so, we
continue the iterative method until B̃r to be a simple
element.
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To r = 1, we have A1 = B̃0. Thus, N = 6,
M1 = M2 = M3 = M4 = 1 and M5 = M6 = 2.
Therefore

B2 =

 B̃1 Pb −Pc
−WK,R+

I 0
−WK,R+

0 I

 ,
E2 =

 I −Pb Pc
0 I 0
0 0 I


and

F2 =

 I 0 0
WK,R+

I 0
WK,R+

0 I


with

B̃1 = WK,R+
+ Pa − Pb + Pc + (−Pa)WK,R+

.

We obtain[
W 0
0 IPΩ[Lp

+(R)]
2n

]
= E2B2F2.

To r = 2, we have A2 = B̃1. Thus, N = 5,
M1 = M2 = M3 = M4 = 1 and M5 = 2. Therefore

B3 =


B̃2 −Pa Pb −Pc

−WK,R+
I 0 0

−WK,R+
0 I 0

−WK,R+
0 0 I

 ,

E3 =


I Pa −Pb Pc
0 I 0 0
0 0 I 0
0 0 0 I


and

F3 =


I 0 0 0

WK,R+
I 0 0

WK,R+
0 I 0

WK,R+
0 0 I


with

B̃2 = WK,R+
+ Pa − Pb + Pc.

We obtain[
W 0
0 IPΩ[Lp

+(R)]
3n

]
= E3B3F3.

To r = 3, we have A1 = B̃2. Thus, N = 4 and
M1 = M2 = M3 = M4 = 1. Therefore

B4 =


B̃3 I −Pa Pb −Pc
−Pc I 0 0 0
−WK,R+

0 I 0 0
−WK,R+

0 0 I 0
−WK,R+

0 0 0 I

 ,

E4 =


I −I Pa −Pb Pc
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


and

F4 =


I 0 0 0 0
Pc I 0 0 0

WK,R+
0 I 0 0

WK,R+
0 0 I 0

WK,R+
0 0 0 I


with

B̃3 = WK,R+
+ Pa − Pb.

We obtain[
W 0
0 IPΩ[Lp

+(R)]
4n

]
= E4B4F4.

To r = 4, we have A4 = B̃3. Thus, N = 3 and
M1 = M2 = M3 = 1. Therefore

B5 =


B̃4 I I −Pa Pb −Pc
Pb I 0 0 0 0
−Pc 0 I 0 0 0
−WK,R+

0 0 I 0 0
−WK,R+

0 0 0 I 0
−WK,R+

0 0 0 0 I

 ,

E5 =



I −I −I Pa −Pb Pc
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


and

F5 =



I 0 0 0 0 0
−Pb I 0 0 0 0
Pc 0 I 0 0 0

WK,R+
0 0 I 0 0

WK,R+
0 0 0 I 0

WK,R+
0 0 0 0 I


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with

B̃4 = WK,R+
+ Pa.

We obtain[
W 0
0 IPΩ[Lp

+(R)]
5n

]
= E5B5F5.

And finally, the last iteration, to r = 5 we have
A5 = B̃4. Thus, N = 2 and M1 = M2 = 1. There-
fore

B6 =



WK,R+
I I I −Pa Pb −Pc

−Pa I 0 0 0 0 0
Pb 0 I 0 0 0 0
−Pc 0 0 I 0 0 0
−WK,R+

0 0 0 I 0 0
−WK,R+

0 0 0 0 I 0
−WK,R+

0 0 0 0 0 I


,

E6 =



I −I −I −I Pa −Pb Pc
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I


(17)

and

F6 =



I 0 0 0 0 0 0
Pa I 0 0 0 0 0
−Pb 0 I 0 0 0 0
Pc 0 0 I 0 0 0

WK,R+
0 0 0 I 0 0

WK,R+
0 0 0 0 I 0

WK,R+
0 0 0 0 0 I


. (18)

The matricial operators E6 and F6 are two in-
vertible bounded linear operators which allows us to
write the equivalence after extension relation in the
explicit way[

W 0
0 IPΩ[Lp

+(R)]
6n

]
= E6WF6.

ut
The next statements are a direct consequence of

Theorem 4 and Theorem 7 and Theorem 5 and The-
orem 8 respectively, since the relation of equivalence
after extension enjoys the transitive property.

Corollary 9 The operator WK,Ω defined in (1) with
Ω defined in (5) is equivalent after extension to the
operatorW defined in (13).

Corollary 10 The operator WK,Ω defined in (1) with
Ω defined in (9) is equivalent after extension to the
operatorW defined in (16).

Finally, we present a generalized inverse of WK,Ω
in terms of a generalized inverse of our Wiener-Hopf
operatorsW .

Let consider

(A)nn :
[
Lp+(R)

]n → [
Lp+(R)

]n
as the restriction of the first n × n components of the
operator

A :
[
Lp+(R)

]n×···×n → [
Lp+(R)

]n×···×n
,

in terms of its matrix representation.

Theorem 11 If W− is a generalized inverse of the
operatorW defined in (13), then

W−K,Ω :
[
LpΩ(R)

]n → [
LpΩ(R)

]n
W−K,Ω = PΩ

[(
F−1

2 W
−E−1

2

)
nn

]
|PΩ[Lp

+(R)]
n

is a generalized inverse of the convolution type ope-
rator WK,Ω with Ω defined by (5), where E−1

2 and
F−1

2 are the inverses of E2 and F2 presented in (14)
and (15), respectively.

Proof: From the proof of Theorem 7 we know that W 0 0
0 I 0
0 0 I

 = E2WF2.

Since E2 and F2 are invertible operators, we have

W = E−1
2

 W 0 0
0 I 0
0 0 I

F−1
2 . (19)

Therefore, we can define a generalized inverse of
W in the form

W− = F2

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

E2. (20)

Consequently, using (19) and (20) in

WW−W =W,

we obtain WA1,1W WA1,2 WA1,3

A2,1W A2,2 A2,3

A3,1W A3,2 A3,3

 =

 W 0 0
0 I 0
0 0 I

 .
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From (20) we can also conclude that A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 = F−1
2 W

−E−1
2 ,

and thus,

A1,1 = (F−1
2 W

−E−1
2 )nn.

Then, we have W− = (F−1
2 W−F

−1
2 )nn.

Applying Theorem 6 we get the final result

W−K,Ω = PΩW
−
|PΩ[Lp

+(R)]
n

= PΩ

[(
F−1

2 W
−E−1

2

)
nn

]
|PΩ[Lp

+(R)]
n .

ut

Theorem 12 If W− is a generalized inverse of the
operatorW defined in (16), then

W−K,Ω :
[
LpΩ(R)

]n → [
LpΩ(R)

]n
W−K,Ω = PΩ

[(
F−1

6 W
−E−1

6

)
nn

]
|PΩ[Lp

+(R)]
n

is a generalized inverse of the convolution type oper-
ator WK,Ω with Ω defined by (9), where E−1

6 and F−1
6

are the inverses of E6 and F6 presented in (17) and
(18), respectively.

The proof is omitted because is similar to that of
Theorem 11.

Before finalizing the present work, let us say that
is clear that we can apply the present methods to show
the existence of generalized inverses for operators de-
fined in other geometries of Ω. Our finite interval Ω
can be changed by the union of one finite interval and
one infinite interval or by the finite union of several
finite intervals. We plan to present a generalization in
a future work.
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