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Abstract: Let G be a finite group. Moghaddamfar et al defined the prime graph I'(G) of group G as follows.
The vertices of I'(G) are the primes dividing the order of G and two distinct vertices p, ¢ are joined by an edge,

denoted by p ~ g, if there is an element in G of order p - g. Assume |G| = p{* -

-pp¥ with Py < -+ < pj, and

nature numbers «o; with i = 1,2,--- k. For p € 7(G), let the degree of p be deg(p) = |{q € 7(G) | ¢ ~ p},
and D(G) = (deg(p1),deg(p2),--- ,deg(py)). In this note we give an example showing that Sa7 is 9-fold OD-
characterizable, which gives a negative answer to an open Problem of Yan et al.
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1 Introduction

In this paper, all groups under consideration are finite,
and for a simple group, we mean a non-Abelian sim-
ple group. Let G be a group. Then w(G) denotes the
set of orders of its elements of G and 7(G) denotes
the set of prime divisors of |G|. Associated to w(G) a
graph is called prime graph of G, which is denoted by
I'(G). The vertex set of I'(G) is 7(G), and two dis-
tinct vertices p, ¢ are joined by an edge if p- ¢ € w(G)
which is denoted by p ~ gq.

Through this paper, we also use the following
symbols. For a finite group G, then socle of G is de-
fined as the subgroup generated by the minimal nor-
mal subgroups of G, denoted by Soc(G). Syl,(G)
denotes the set of all Sylow p-subgroups of GG, where
p € 7(Q), P, denotes the Sylow r-subgroup of G for
r € m(G). Sy and A,, denotes the symmetric and al-
ternating groups of degree n, respectively. Let p be a
prime and we use Exp(m,p) to denote the exponent
of the largest power of a prime p in the factorization
of a positive integer m(> 1). The other symbols are
standard (see [5], for instance).

Definition 1 [/2] Let G be a finite group and |G| =
a1 o ay, . .
pLpy? - pp¥, where pis are primes and o;s are in-
tegers. For p € w(G), let deg(p) := |{q € ©(G)|p ~
q}|, which we call the degree of p. We also define
D(G) = (deg(p1),deg(p2),--- ,deg(py)), where
p1 < p2 < -+ < pg. We call D(G) the degree pattern

of G.

Given a finite group M, denote by hop (M) the
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number of isomorphism classes of finite groups G
such that (1) |G| = |M| and (2) D(G) = D(M).

Definition 2 [/2] A finite group M is called k-fold
OD-characterizable if hop(M) = k. Moreover, a
1-fold O D-characterizable group is simply called an
O D-characterizable group.

A group G is called Cyp-group if p € 7(G), and
the centralizer of any nontrivial p-element in G is a
p-group. A group G is called to be a K,,-group if G
is nonabelian simple group and |7(G)| = n. Many
finite groups are k-fold O D-characterizable.

Proposition3 A  finite group G is OD-
characterizable if G is one of the following groups:

(1) The alternating groups A,, Apy1 and Apio,
where p is a prime [10].

(2) The alternating groups Ay 3, where p is a prime
and 7 # p € w(100!) [6, 8].

(3) All finite almost simple Ks-groups except
Aut(Ag) and Aut(Uy(2)) [17].

(4) The symmetric groups Sy, and Sp41, where p is a
prime [10].

(5) All finite simple Cy 2-groups [10].

(6) All finite simple K 4-groups except A1g [23].
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(7) The simple groups of the Lie type Ls3(q), Us(q),
2By(q) and *G4(q) for a certain prime power q

[12].

(8) All sporadic simple groups and their automor-
phism groups except Aut(Jz) and Aut(M€L)
[10].

(9) The almost simple groups of Aut(Fy(2)) and
Aut(0%(2)) [14].

(10) Lo(q) where q is a prime power of prime p [25].
) [18]
)

. Us(5).2, Us(2), Us(2).2, Lo(49) and
9).2 [27, 24, 22]

(
(11) L7(3
(12) Us(o
Ly (4
(13) L4(q) where q =4, 8, 9, 11, 13, 16, 17, 19, 23,
27,29, 31, 32,37 [1, 2]

2, L10(2), L11(2) and
(2)) with 2P is a Mersenne prime [9].

(14) L,(2) for n >
Aut (L,

(15) Cp(2) with 2P — 1 > 7 Mersenne prime[3].

Proposition 4 A finite group G is 2-fold OD-
characterizable if G is one of the following groups:

(1) Bs(5) and Cs(5) [4].

(2) S6(3) and O7(3) [12].

(3) A1g and Aut(MCL) [11, 23],
(4) Us(2) [26]

Proposition 5 A finite group G is 3-fold OD-
characterizable if G is one of the following groups:

(1) Aut(Jy) [11].

(2) Spi3 with (p < 1000) prime [6, 8, 15, 16].
(3) GL(3) [18].

(4) Us(5).3 and Ug(2).3 [27, 24].

Proposition 6 [17, Main Theorem] Aut(Ag) is 4-
fold O D-characterizable. In particular, Aut(Uy(2))
is at least 4-fold OD-characterizable.

Proposition 7 [27] Us(5).S3
characterizable.

6-fold OD-

are

Proposition 8 [22] L5(49).22
characterizable.

are 9-fold OD-

Proposition 9 [11] The group Syy is 8-fold OD-
characterizable.
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2 Main results

Let p be a prime. By proposition 3, the symmet-
ric groups Ap, Apt1, Api2 and A, 3 except Ajg
are OD-characterizable. But in general, we do
not know if the alternating groups A,,4 are OD-
characterization. So we put forward the following
Conjecture:

Conjuecture 1. Let p be a prime with p 4+ 2 and
p + 4 composite. Then the alternating group A,44 is
O D-characterizable.

Not all alternating groups A,;4 are OD-
characterizable since Ajg is 2-fold OD-
characterizable (see Proposition 4).

From Propositions 3 and 5, we have that S,
Sp+1, Sp42 and Spy3 are OD-characterizable, and
by Proposition 9, Sy are 8-fold O D-characterizable.
Omitting the symmetric groups Sp, Sp+1, Sp+2 and
Sp+3, there remain the following groups: Ss7, Sos,
S35, 936, S51, S52, S57, S58, S65, S66, S77, S78, 587,
So3, So4, Sos5, Sog, - - -. We will prove that Sa7 is 9-
fold O D-characterizable. So we put forward the fol-
lowing conjecture.

Conjecture 2. Let p be a prime with p 4+ 2 and p + 4
composite. Then the symmetric group 5,44 except
So7 is 9-fold O D-characterizable.

In fact, we will prove the following result.

Theorem 10 Letp € {23, 31,47, 53, 61, 73, 83, 89}.
Then

(1) The alternating groups Ap+4, where p =23, 31,
47, 53,61, 73, 83, 89, are O D-characterizable.

(2) The symmetric group Sa7 is 9-fold OD-

characterizable.

=31,
OD-

(3) The symmetric groups Spys, where p
47, 53, 61, 73, 83, 89 are 3-fold
characterizable.

Our results show that the symmetric group Sor
is 9-fold O D-characterizable which gives a negative
answer to an open problem of Yan et al in [16, 15].

Open Problem. [16, 15] Are symmetric groups
Sp(n # p,p + 1), except Sy, 3-fold OD-
characterizable?

3 Preliminary Results

In this section, we will give some results which will
be used.

Lemma 11 [19] Let S = P X Py X --+ X P,, where
P;’s are isomorphic non-abelian simple group. Then

Aut(S) = (Aut(Py) x Aut(Py) x - - - x Aut(P,))-Sh.
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Lemma 12 [20] The group Sy, (or Ay) has an ele-
ment of order m = p{* -p§? - - -p?ﬁ, where p1, pa, - -,
ps are distinct primes and oq, 042, -+, (g are nature
numbers, if and only fpit +p52+ - +p <n
(or pi* + paQ + -+ p¥ < n for m odd, and
Pyt 4+ —l—pas < n — 2 form even).

As a corollary of Lemma 12, we have the follow-
ing result.

Lemma 13 Let A, (or S,,) be an alternating (or sym-
metric group) of degree n. Then the following hold.

(1) Let p,q € w(A,,) be odd primes. Then p ~ q if
and only if p + q < n.

(2) Letp € m(A,,) be odd prime. Then 2 ~ p if and
onlyifp+4 <n.

(3) Let p,q € w(Sy).
p+q<n.

Then p ~ q if and only if

By [13], we know that A4 and Sp44 for p €
{23,31,47,53,61,73,83,89} have connected prime
graphs. By [5], we have that |A,| = n!/2 and |S,| =
nl.

Since the degree patterns of alternating groups
Apyy for p 23,31,47,53,61,73,83,89, are the
same as those of their automorphism groups. So we
only list the order and degree pattern of alternating
groups A, 4 in Table 1.

Lemma 14 Let Aj 4 be an alternating group of de-
gree p + 4, where p is a prime, and assume that
the numbers p + 2 and p + 4 are composite. Set
|7(Apta)| = d. Then the following hold.

(1) deg(2) = deg(3) = d. In particular, 2 ~ 1 for
allr € m(Apta).

(2) deg(5) = d — 1. In particular, 5 ~ r for all
r € m(Apra)\{p}
(3) deg(p) = 2. In particular, p ~ r, where r €

7w(Apya), ifand only if r = 2, 3.

o
(4) Exp(|Aptal,2) = Z[p;4] — 1. In particular,

=1
Exp(|Apial,2) <p+3<p+4

(5) Exp(|Apyal,7) = Z[”T#] for each r €
i=1
mw(Apa)\{2}. Furthermore, Exp(|Apyal,7) <

p21, where 3 < 1 € m(Apta). In particular, if

r > [p+4] then Exp(|Apta|,7) =1

E-ISSN: 2224-2880

588

Shitian Liu

Proof. (1) By Lemma 12, r + 4 < p + 4 for each
r € m(Apya). So we have deg(2) = d. For each
r € m(Apta), 7 + 3 < p+ 4. Hence deg(3) = d.

(2) By Lemma 12, r + 5 < p 4 4 for each r €
m(Apta)\{p}. So we have deg(5) = d — 1.

(3) For r € m(Ap+4), by Lemma 12, it is easy to
getthatp ~ rifand only if p4+7r < p+4. Thusr <4
and so 7 = 2, 3. So we have deg(p) = 2.

(4) By definition of Gaussian integer function, we
have that

Exp(’AP-‘r‘l‘?z) = Z[ 9i ]—1
i=1
p+4

p+4 p+4

= ) =1
1+ 0+ B+ )
p+4 p+4 p+4
< ) =1
< 2 22 23 +)
1 1 1
= D=4+ — 4+ — +...)—1
P+ G+ g+ 55 +)
= p+3.
(5) Similarly as (4), we have that
1 1 1
Exp(|Aptal,m) < (P+4)(; tat st
_ ptd _ptd
r—17—" 2

for an odd prime 7 € w(Ap14).
If r > [p+4] Exp(|Apya|,7) = 1. The proof is
complete. g
Similarly as the proof of Lemma 14, we can prove
the following Lemma 15.

Lemma 15 Let Sy4 be a symmetric group of degree
p+4, where p is a prime, and assume that the numbers
p + 2 and p + 4 are composite. Set |w(Sp14)| = d.
Then the following hold.

(1) deg(2) = deg(3) = d. In particular, 2 ~ 1 for
all v € ©(Spya).

(2) deg(p) = 2. In particular, p ~ r, where r €
7(Sp+4), if and only if r = 2,3.

(3) Exp(|Sptal,2) =

o0

S (B2 — 1. In particular,
i=1
Bap((Spas2) < p 13 < p+A4

21

(4) Exp(|Spya|,7) = Z[p—;ﬂ for each r €
i=1
w(Sp+4)\{2}. Furthermore, Exp(|Spya|,7) <

p21, where 3 < r € 7(Spya). In particular, if

r > [p+4] then Exp(|Spy4],7) =1
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Table 1: Order of some alternating with their degree patterns

G |G|

D(G)

Aoy | 222.313.56.73.112.132.17-19 - 23

31-37-41-43 - 47
-31-37-41-43-47-53

.312.37-41-43-47-53-59-61

Ass | 231.315.58.75.113.132.172.19-23-29- 31
Asp | 246.323 51278 114, 13173 . 192 . 232 . 29

As7 | 252.327.512.79.115. 134 . 173 . 193 . 232 . 29
Ags | 262.330.515.710.115.135.173.193 . 232 . 292

Agp | 272.335 517712117135 . 174 . 194 . 233 . 292
-312.37%.41-43-47-53-59-61-67-71-73

Agy | 281.342.519 . 713 .117.136 . 175 . 194 . 233 . 293
312372412 .43%.47-53-59-61-67-71-73-79-83
Ags | 287.3%5.520 714 7118 . 137 . 175 .19%. 234 . 293

313 .37%.41%.43%.47-53-59-61-67-71-73-79-83 -89

(8,8,7,7,5,5,4,4,2)
(10,10,9,8,8,7,6,5,5,3,2)
(14,14,13,13,11,11,10,
8,8,8,8,6,4,4,2)
(15,15,14,14,13,13,11,
11,10,9,9,8,6,4,2)
17,17,16,15,13,13,11,11,10,9,
9.8,6,4,2)
(20,20,19,19,17,17,16,15,15,14,
13,11,11,11,10,9,7,6,4,3,2)
(22,22,21,21,20,20,18,18,17,15,
15,14,13,13,12,11,9,9,8,6,6,4,2)
(23,23,21,21,20,20,18,18,17,15,
15,14,13,13,12,11,9,9,8,6,6,4,2,2)

Lemma 16 Let G be a finite non-abelian simple
group with p € ©(G) € {2,3,5,7,--- ,p}, where
p = 23,31,47,53,61,73,83,89. Then G is isomor-
phic to one of the groups as listed in Table 1.

Proof. From [21], we have the possible groups and
their orders. By [5], we have the order of the outer
automorphism groups by computations.

In the proof, we also need the following informa-
tion of p-groups of order p* with odd p.

Lemma 17 Let P be a p-group of order p> and x be
the largest order elements of P. Then the following
hold.

o P is abelian. If |xv| = 27, then P = Z 3. If
|z| =9, then P = Z» x Zy. If |z| = 3, then
P=Z,x Z,x Z,

e P is nonabelian. If |x| =9, then P = Z,;» X Z,
If |z| = 3, then P = (Z), X Zp) X Zy,.

From Table 2, we have the following Lemma.

Lemma 18 Let S be a simple group as Lemma 16. If
|Out(S)| # 1, then 7(Out(S)) <€ {2,3,5}. More-
over, when {p} C w(S) C w(p!),

(1) if p =23, then {2,3,11,23} C 7(S);

(2) ifp=3land S 2% L2(32), then {2,3,5,31} C
w(S);

(3) if p=47, 61, or 73, then {2,3,p} C w(S);

(4)if p = 53 and S 2% L2(53), then
{2,3,5,11,23,53} C 7(S).
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4 Proof of the main theorem and its
applications

In this section, we will give the proof of Theorem 10.
We divide the proof of the following sections.

4.1 Proof for the alternating groups

From Proposition 3, we know that the alternating
groups Ay, Api1, Apio and Ay, 3, where pis a prime,
are O D-characterizable, and from Proposition 4, al-
ternating group Ay is 2-fold O D-characterizable. As
a development of this topics, we prove the following
theorem.

Theorem 19 The alternating groups A,.4, where
p € {23,31,47,53,61,73,83,89}, are OD-
characterizable.

Proof. Let M = A,.4. Assume that G is a finite
group such that |G| = |M| and D(G) = D(M).
From Lemma 14, we have that the prime graph I'(G)
is connected, in particular, I'(G) = I'(M).

In the following, we only consider the case “p =
23”.

We know that

|G| =2%.313.56.73.11?.13%.17-19- 23

and
D(G) = (8,8,7,7,5,4,4,4,2).

Lemma 20 Let K be a maximal normal soluble sub-

group of G. Then K is a {2,3,11}-group. In particu-
lar, G is insoluble.
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Table 2: p € w(G) € 1{2,3,5,7,--- ,p},

Table 2: p € w(G) € {2,3,5,7,--- ,p} where p = 23, 31,47,53, 61, 73,83, 89
where p = 23, 31,47,53,61,73,83,89
G |G| 10t (@)
|G| 104t (G)] Us(3) |28-3%.5.72.13.61 4
Ly(23) |2%-3-11-23 2 Ug(11) | 27-3%.52.116-37-61 8
Us(23) | 27-32-11-132.232 4 L3(47) | 26.3.23%2.37-473.61 2
Mo 27.3%.5.7-11-23 1 Ly(11) | 27-32.5%.7.116.19.61 4
Moy 210.33.5.7.11-23 1 Ly(13) | 27-3*.5.72.135.17.61 8
Cos 210.37.5%.7.11-23 1 O7(3) | 2%-3%0.52.7.13-41-41-61 |8
Coy 218.36.53.7.11-23 1 Ls(9) | 2%.3%0.52.7.112.13-41-61 | 4
Coy 221.39.5.72.11-13 - 23 1 Sip(3) | 217.3%.52.7.112.13-41-61 | 2
Fiag 218.313.52.7.11-13-17-23 | 1 O11(3) | 2'7-3%.52.7-112-13-41-61 | 2
Ly(31) |2°-3-5-31 2 N 219.330.52.72.112.132
Ly(5) | 25.3.53-31 2 O:B) | 4161 8
(32) |2°-3-11-31 2 L3(11%) | 27-32.52.7-116.19-37-61 | 12
(5%) | 22.3%.5%.7.31 12 S(11) | 29-3%1.53.7-119-19-37-61 |2
2(5) 2?’0- 332~ 560.7-31 1 O7(11) | 29-3*.5%.7-119-19-37-61 |2
2 210.32.5.7.31 2 12.35.54.7.1112.
A 2 oran | A est T 24
(5) | 27-3%2.50.13.31 8 211.32.5.13-17-23% .37
(25) | 27.32.56.7.13.23 12 La(d7) | gz 61 4
7(5) |29-3*.5%.7.13.23 2 Us(9) | 2°-3%.52.73 4
6(5) [29-31.59.13.31 2 L3(8) |2°-32.72.73 6
S(5) | 212.3°-512.7.13%.31 24 Lo(73) | 23-32.37-73 24
5(2) [ 220.35.52.7.17-31 2 Us(9) | 29-32.5%.41.73 8
(31) |21.3.5.72.19.313 2 3Dy(3) | 26-32.72.132.73 3
Ls(4) | 2%9.3°.5%.7.11-17-31 4 Ly(2%) | 29-3%.7-19.73 9
Sip(2) | 2%.36.52.7.11-17-31 1 Go(8) | 218.35.72.19.73 3
05(2) | 2%0.3%.52.72.11-17-31 2 Lo(3%) [23.36.5.7.13.73 12
ON 29.3%.5.73.11-19-31 2 S4(27) | 26.312.5.72.13%2.73 6
TH 215,310 .53.72.13.19.31 1 E¢(2) 236 .36.52.73.13.17-31-73 |2
O(2) | 2%0.306.5%.7.11-13-17-31 |2 Ug(27) | 27-318.5.73.132.19.37-73 | 6
Lg(4) 230.36.53.72.11.13-17-31 | 12 B 218 . 330 .53 .7.112.13.41
Sia(2) | 2%6.3%.5%.72.11-13-17-31 | 1 O1203) | 41.73 2
Lo(47) | 2%-3-23-47 2 218.330.53.72.112. 132
(47%) | 2°-3-5-13-17-23 - 472 4 Ls(9) 41-61-73 4
(47) | 219.32.5.13-17-23%.474 2 221.336.53.72.112. 132
21818507211 .13.17 | O3) | 416173 2
19-23-31-47 221.336.53.72.112.132
(53) | 2%2-3%.13-53 2 512(3) 41-61-73 2
(23%) | 24-3-5-11-232.53 4 ) 219.33%0.52.73.132.19- 37
(23) |2%.3%2.5.11%2.23%.53 2 Es2) | 416173 2
(23) | 210.3%.5.112.132.236.53 |4 Lo(83) | 22-3-7-41-83 2
(3°) |2%-3°-11%.61 10 L(83%) | 23-3-5-7-13-41 53832 2
(3) |21-31%.5.7.61 2 S4(83) | 26-32.5-72.13-41%2-53-83* |2
(112) | 23.3.5-11%2-61 4 Ly(89) | 23-32.5.11-89 2
(11) |26-32.5%.111.61 2 Ly(97) | 2°-3-7%2.97 2
(61) |22.3.5-31-61 2 L3(61) | 25-32.52.13-.31-61%.97 2
(13) | 2°-3%.7-13%-61 6 Ay n!  with 23 < n < 100 2

E-ISSN: 2224-2880 590 Volume 13, 2014



WSEAS TRANSACTIONS on MATHEMATICS

Proof.  First show that K is a 23/-group. Oth-
erwise, K contains an element x of order 23. Set
C = Cg(x) and N = Ng(x). From D(G), we have
that C' is a {2,23}-group. By N/C theorem, N/C
is isomorphic to a subgroup of automorphism group
Aut(< x >) = Zag, where Zas is a cyclic group of
order 22. Hence, N is a {2,11, 23}-group. By Frat-
tini arguments, G = K Ng(< x >), which means that
{3,5,7,13,17,19} C n(K). Since K is soluble, K
contains a Hall {19, 23 }-subgroup H of order 19 - 23.
Obviously, H is nilpotent, then 19 - 23 € w(G), a
contradiction.

Second prove that K is a p’-group, where p =
5,7,13,17,19. Let p € 7(K) and P be a Syl,-
subgroup of K. Then by Frattini arguments, G =
K N¢g(P). Considering the order of G, 23 | |[Ng(P)|.
Obviously, the Sylow 23-subgroup of G acts fixed
point freely on the set of elements of order p, which
means that 23 - p € w(G), a contradiction.

So we have K is a {2,3, 11}-group. Since K #
G, G is insoluble.

Lemma 21 The quotient group G/K is an almost
simple group. More precisely, there is a normal se-
ries such that S < G/H < Aut(S), where S = Ay
or A27.

Proof. Let H = G/K and S = Soc(H). Then S =
B1 x By x --- By, where B;’s are nonabelian simple
groups and S < H < Aut(S). In what follows, we
will prove that n = 1 and S = Agg or Aoy.

Suppose that n > 2. In this case, it is easy to
have that 23 does not divide the order of S, since,
otherwise, 5 ~ 23, a contradiction. Hence, for ev-
ery i, we have that B; € Fi9. On the other hand,
by Lemma 20, K is a {2,3,11}-group. Therefore,
23 € m(H) C w(Aut(S)) and so 23 divides the order
of Out(S). But by Lemma 11,

Out(S) = Out(P1) x Out(Py) x - -- Out(P,),

where the group P;’s such that S = Py X Py X -+ Py,
Therefore, for some 7, 23 divides the order of an outer
automorphism group of a direct P; of ¢ isomorphic
simple groups B;. Since B; € JF19, we have that
|Out(B;)| is not divisible by 23 (see Table 2). Now
by Lemma 11, |Aut(P;)| = |Aut(P;)|" - t!. There-
fore t > 23, Now 2%6 must divide the order of G, a
contradiction. Thusn =1 and S = Bj.
Now by Lemmas 14 and 20, it is evident that

S| =2%-3°-5%.73.11°-13%.17-19 - 23

where 2 < a < 22,0 < b < 13and 0 < ¢ <
2. By Lemma 16, the only possible group which is
isomorphic to S is Agg or Aa7.
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Lemma 22 G is isomorphic to Aor.

Proof. By Lemma 21, we have that S = Aog or Ao,

o If S A27, then
A27 < G/K < Aut(A27) =~ SoHr.

Therefore, G/K = Ay or G/K = Soy;. If the
latter, then K = 1 and G = Sy7, which con-
tradicts the hypotheses. So G/K = A7 and
K = 1 by considering the order of G. There-
fore G = Aoy.

e If S = Ay, then
A26 S G/K S Aut(A26>.

Therefore, G/ K = Agg or Sog.

If G/K = S, order consideration can rule out
this case.

If G/K = Agg, then |K| = 33. In this case,
2 ~ 23, a contradiction.

This completes the proof of Theorem 19.

Let K be a maximal normal soluble subgroup of
G. Similarly as the proof of the case “p = 237,
we have that, for p = 31,47,53,61,73,83,89, K
is a {27 3, 5}’ {27 3}’ {2¢ 3,9,11, 23}’ {2? 3}’ {27 3}’
{2,3,7}, {2,3}-group, respectively. We also have
that G/K is an almost simple group. In particular,
S < G/K < AUt(S), where S = A35, A51, A65,
A7z, Agr or Ags respectively. Order consideration,
G/K = Apiy4. Itis easy to see that K = 1 and so
G = Appqforp=31,47,53,61, 73,83, 89.

The proof of theorem is completed. O

4.2 Proof for symmetric groups

From Proposition 5, we have that the symmetric
groups Sy, Sp+1 and Sy 2 are OD-characterizable.
Also by Proposition 9, Sy are 8-fold OD-
characterizable. Some authors proved that the sym-
metric groups S,13 except Sig are 3-fold OD-
characterizable. We prove the following theorem.

Theorem 23 (1) If D(G) = D(Sa7), then G is
isomorphic to (Zs X Zs x Z3) x Sag, ((Z3 X
Zg) X Z3) X ‘926: (Z3 X Z3 X Z3).526, ((Zg X
Zg) X Zg).SQ@ (ZQ((Zg X Zg) X Zg)) X A26,
(ZQ.(Z3 X Zg X Zg)) X AQG, 527, ZQ.A27 and

Zoy X Aor. In particular, So7 is 9-fold OD-
characterizable.
(2) The  symmetric ~ groups  Spia, where

p € {31,47,53,61,73,83,89}, are 3-fold
OD-characterizable.
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Proof. Let M = S, 4. Assume that G is a finite
group such that |G| = |M| and D(G) = D(M).
From Lemma 15, we have that the prime graph I'(G)
is connected, in particular, I'(G) = I'(M).

In the following, we only consider the case “p =
23”.

Let GG be a group with

|G| =223.313.56.73.112.132.17-19 - 23

and

D(G)=(8,8,7,7,5,4,4,4,2).
Since {23 19,23 - 11,19 - 11} Nw(G) = ¢, then by
Lemma 8 of [7], G is insoluble. Let K be a maximal
normal soluble subgroup of G and H = G/ K.

Similarly as the proof of Theorem 19, by Table 2,
S'is Agg or Aoy and S < G/K < Aut(S).

o If S = Ay, then
A27 S G/K § Aut(A27) = 527.

Therefore, G/K = Ay; or G/K = So7. If the
latter, then K = 1 and G = S97. So G/K =
Ay7 and | K| = 2 by considering the order of G.
If G is a central extension of Zy by As7, then
G =2 Zs x Ag7. If G is a non-split of Zs by Aoz,
then G = Z5.Ao7.

o If S = Ay, then
Agg < G/K < Aut(A26).

Therefore, G/ K = Agg or Sog.
If G/K = Sy, then | K|=27. Let K be abelian.

- If K < Z(G), then since K is a maxi-
mal normal soluble subgroup of G, K =
Z(G) = Zyr, and so G is a central exten-
sion of Zy7 by Sog. It follows that there is
an element of order 33 - 23, a contradiction.

- If [ KNZ(G)| = 9, then there is an element
of order 33 - 23, a contradiction.

- if [KNZ(G)| = 3,then K = Z3x Z3X Zs3.
If G splits over K, then clearly, G = K X
S26-

If G is non-split extension of K by Sag, we
have that G = K.So.

Let K is nonabelian. Obviously, the order of the
center of K is order 3 and the highest order ele-

ment x of K is 9 or 3.

— Let |z| = 9. Then there exists an element
of order 32 - 23, a contradiction.
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— Let |x| = 3. Then K = (Z3 x Z3) X Z3. If
G splits over K, then clearly, G = K X Sog.

If G is non-split extension of K by Sag, we
have that G = K.S9.

If G/K = Agg, then |K| = 2 - 33, We know that
K =75 x Por K = Z,.P, where P is a p-
group of order 27. In the following, we consider
two cases: P is abelian and nonabelian.

Let P be abelian.

-If KNP < Z(G)N P = Zyy;, then since
K is a maximal normal soluble subgroup
of G, GG is a central extension of K by Aqg.
It follows that there is an element of order
33 .23, a contradiction.

- If Z(G) N P = Zy, then there is an element
of order 32 - 23, a contradiction.

- ifZ(G)ﬂP & 73, then P = Z3 X Z3 X Z3.

If G splits over K, then clearly, G = K x
Aogg.
If G is non-split extension of K by Agg,
we have that G = K.Ass. On the other
hand, the order of K divides by the Schur
multiplier of Asg, a contradiction.

Let P be nonabelian. Obviously, the order of the
center of K is order 3 and the highest order ele-
ment z of K is 9 or 3.

— Let |z| = 9. Then there exists an element
of order 32 - 23, a contradiction.

— Let|z| = 3. Then K = (Z3 x Z3) x Z3. If
G splits over K, then clearly, G = K X Agg.
If G is non-split extension of K by Asg, we
have that G = K.Ass. On the other hand,
the order of K divides the Schur multiplier
of Asg, a contradiction.

Therefore S57 is 9-fold O D-characterizable.

We avoid the details for S, 4, where p €
{31,47,53,61, 73,83, 89}, because the arguments are
quite similar to those for Sy7;. We only mention
that the non-isomorphic groups Z3.A,,4 and Zy X
Apta, where p € {31,47,53,61,73,83,89}, have
the same order and degree patterns as S,14, Where
p € {31,47,53,61,73,83,89}, respectively. Hence
Sp+4, for where p € {31,47,53,61,73, 83,89}, is 3-
fold O D-characterizable, and the proof of the theorem
is complete. a

5 Conclusion

The alternating groups A4, where p € {23, 31, 47,
53, 61, 73, 83, 89}, are OD-characterizable.
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The symmetric groups Sy,14, Where p € {31, 47,
53,61, 73, 83, 89}, are 3-fold OD-characterizable.

The symmetric group Sy is 9-fold OD-
characterizable.

Corollary 24 The alternating groups Ap4, where p
is a odd prime and p < 100, are OD-characterizable.
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