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Abstract: The initial boundary value problem for a class of nonlinearly damped Petrovsky equation utt +∆2u +
a(1 + |ut|r)ut = b|u|pu in a bounded domain is studied. The existence of global solutions for this problem is
proved by constructing a stable set in H2

0 (Ω), and obtain the energy decay result through the use of an important
lemma of V.Komornik. Meanwhile, under the conditions of the positive initial energy, it is proved that the solution
blows up in the finite time and the lifespan estimates of solutions are also given.
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1 Introduction
In this paper we are concerned with the global solv-
ability and decay stability of initial boundary value
problem for a Petrovsky equation with nonlinear dis-
sipative and source term

utt +∆2u+ a(1 + |ut|r)ut = b|u|pu, x ∈ Ω, t ≥ 0,
(1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (2)

u(x, t) =
∂

∂n
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (3)

where a, b, r, p > 0 are real numbers, Ω is a bounded
domain of RN with a smooth boundary ∂Ω, ∆ is the
Laplace operator, and ∂u

∂n |∂Ω indicates derivative of u
in outward normal direction of ∂Ω.

A. Guesmia [1] considered the equation

utt +∆2u+ q(x)u+ g(ut) = 0, x ∈ Ω, t ≥ 0, (4)

with initial boundary value conditions (2) and (3),
where g is a continuous and increasing function with
g(0) = 0, and q : Ω −→ [0,+∞) is a bounded func-
tion, then he proved a global existence and a regularity
result of the problem (4) with (2) and (3). Under suit-
able growth conditions on g, he also established decay
results for weak and strong solutions. Precisely, in [1],
A. Guesmia showed that the solution decays exponen-
tially if g behaves like a linear function, whereas the
decay is of a polynomial order otherwise. In addi-
tion, results similar to above system, coupled with a
semilinear wave equation, are also established by A.
Guesmia [2]. As q(x)u + g(ut) in (4) is replaced by

∆2ut +∆g(∆u), M. Aassila and A. Guesmia [3] ob-
tained an exponential decay theorem through the use
of an important lemma of V. Komornik [4]. When
there is no linear dissipative term aut in equation (1),
S. A. Messaoudi [5] set up an existence result of the
problem (1)-(3), and showed that the solution contin-
ues to exist globally if r ≥ p; however, it blows up in
finite time if r < p.

Existence and uniqueness, as well as decay cal-
culation, of global solutions and blow up of solutions
for the initial boundary value problem and Cauchy
problem of the nonlinearly damped wave equation
utt −∆u+ a|ut|rut = bu|u|p have been investigated
by many people through various approaches and as-
sumptive conditions [6, 7, 8, 9, 10, 11].

In this paper, the proof of global existence for the
problem (1)-(3) is based on the use of the potential
well theory introduced by D. H. Sattinger [12] and L.
Payne and D. H. Sattinger [9]. See also G. Todorova
[10, 13], for more recent work. Meanwhile, we ob-
tain the energy decay evaluation of global solutions
by applying the lemma of V. Komornik [4]. Mean-
while, it is proved that the solution blows up in the fi-
nite time and the lifespan assessment of solutions are
also given.

We adopt the usual notation and convention. Let
Hm(Ω) denote the Sobolev space with the norm

∥u∥Hm(Ω) = (
∑

|α|≤m
∥Dαu∥2L2(Ω))

1
2 ,

Hm
0 (Ω) denotes the closure inHm(Ω) ofC∞

0 (Ω). For
simplicity of notation, hereafter we denote by ∥ · ∥p
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the Lebesgue space Lp(Ω) norm, ∥ · ∥ denotes L2(Ω)
norm and we write equivalent norm ∥∆ · ∥ instead of
H2

0 (Ω) norm ∥·∥H2
0 (Ω). Moreover,M denotes various

positive constants depending on the known constants
and it may be difference in each appearance.

This paper is organized as follows: In the next
section, we study the existence of global solutions for
the problem (1)-(3). Section 3 is devoted to the proof
of decay result. Section 4 give the proof of global
nonexistence of solutions.

We conclude the introduction by stating a local
existence result, which is known as a standard one (see
[5]).

Proposition 1 Suppose that r, p > 0 satisfy

0 < p < +∞, N ≤ 4; 0 < p ≤ 4
N−4 , N > 4,

0 < r < +∞, N ≤ 4; 0 < r ≤ 8
N−4 , N > 4,

(5)
if (u0, u1) ∈ H2

0 (Ω)×L2(Ω), then there exists T > 0
such that the problem (1)-(3) has a unique local solu-
tion u(t) in the class

u ∈ C([0, T );H2
0 (Ω)),

ut ∈ C([0, T );L2(Ω)) ∩ Lr+2(Ω× [0, T )).
(6)

Proposition 2 Under the hypotheses of Proposition
1, if

sup
0≤t≤Tmax

(∥ut(t)∥2 + ∥∆u(t)∥2) < +∞,

then Tmax = +∞, where [0, Tmax] is the maximum
time interval on which the solution u(x, t) of problem
(1)-(3) exists.

In fact, in [5], when we prove the existence of
local solution by using the contraction mapping prin-
ciple , we can also construct the following space

XT = {u ∈ C([0, T ];H2
0 (Ω)), ut ∈ C([0, T ];L2(Ω))},

equipped with the norm

∥u(t)∥XT
= sup

0≤t≤T

1

2
(∥ut(t)∥2 + ∥∆u(t)∥2).

Let ε > 0, and

Xε,T = {u ∈ XT : ∥u∥XT
≤ ε},

we define a distance d(u, v) = ∥u − v∥XT
on Xε,T ,

then Xε,T is a complete metric space. This show that,
for small enough ε, there exists a unique fixed point
on Xε,T and T only depends on ε. Therefore, with
the standard extension method of solution, we obtain
Tmax = +∞ for

sup
0≤t≤Tmax

(∥ut(t)∥2 + ∥∆u(t)∥2) < +∞.

Here we omit the detailed proof of extension.

2 The Global Existence
In order to state and prove our main results, we first
define the following functionals

I(u) = I(u(t)) = ∥∆u(t)∥2 − b∥u(t)∥p+2
p+2,

J(u) = J(u(t)) =
1

2
∥∆u(t)∥2 − b

p+ 2
∥u(t)∥p+2

p+2,

and according to paper [9, 10] we put

d = inf{sup
λ>0

J(λu), u ∈ H2
0 (Ω)/{0}},

then, for the problem (1)-(3), we are able to define the
stable set

W = {u ∈ H2
0 (Ω), I(u) > 0} ∪ {0}.

We denote the total energy related to (1) by

E(u(t))

= 1
2∥ut(t)∥

2 + 1
2∥∆u(t)∥

2 − b
p+2∥u(t)∥

p+2
p+2

= 1
2∥ut(t)∥

2 + J(u(t))

for u ∈ H2
0 (Ω), t ≥ 0, and E(u(0)) = 1

2∥u1∥
2 +

J(u0) is the total energy of the initial data.

Lemma 3 Let q be a number with q ∈ [2,∞) asN ≤
4 or q ∈ [2, 2N

N−4 ] as N > 4. Then there is a constant
B1 depending on Ω and q such that

∥u∥q ≤ B1∥∆u∥, ∀u ∈ H2
0 (Ω).

Lemma 4 (Young inequality) Let k, l and ε be pos-
itive constants and µ, ν ≥ 1, 1

µ + 1
ν = 1. Then one

has the inequality

kl ≤ εµkµ

µ
+

lν

νεν
.

Lemma 5 Assume that u ∈ H2
0 (Ω), if (5) holds, then

d =
p

2(p+ 2)

1

(bCp+2
∗ )

2
p

is a positive constant, where C∗ is the most optimal
constant in Lemma 3, namely, C∗ = supu ̸=0

∥u∥p+2

∥∆u∥ .

Proof Since

J(λu) =
λ2

2
∥∆u∥2 − bλp+2

p+ 2
∥u∥p+2

p+2,

so, we get

d

dλ
J(λu) = λ∥∆u∥2 − bλp+1∥u∥p+2

p+2.
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Let d
dλJ(λu) = 0, which implies that

λ1 = b
− 1

p

(∥u∥p+2
p+2

∥∆u∥2
)− 1

p

.

An elementary calculation shows that

d2

dλ2
J(λu)

∣∣∣∣∣
λ=λ1

=

(
∥∆u∥2 − b(p+ 1)∥u∥p+2

p+2

)∣∣∣∣∣
λ=λ1

= ∥∆u∥2 − (p+ 1)∥∆u∥2 = −p∥∆u∥2 < 0.

Hence, we have from Lemma 3 that

sup
λ≥0

J(λu) = J(λ1u)

=
p

2(p+ 2)
b
− 2

p

(∥u∥p+2

∥∆u∥

)− 2(p+2)
p

≥ p

2(p+ 2)

1

b
2
p

C
− 2(p+2)

p > 0.

we get from the definition of d that

d =
p

2(p+ 2)

1

(bCp+2
∗ )

2
p

> 0.

Lemma 6 Let u(t) be a solution of the problem (1)-
(3). Then E(u(t)) is a nonincreasing function for t >
0 and

d

dt
E(u(t)) = −a(∥ut(t)∥r+2

r+2 + ∥ut(t)∥
2). (7)

Proof By multiplying equation (1) by ut, we have

uttut +∆2uut + a(1 + |ut|r)u2t = b|u|puut,

which implies that

1

2

d

dt
u2t +

1

2

d

dt
(∆u)2 + a(1 + |ut|r)u2t

=
b

p+ 2

d

dt
(|u|p+2),

Integrating over Ω, we get

1

2

d

dt
∥ut∥2 +

1

2

d

dt
∥∆u∥2

+a(∥ut(t)∥r+2
r+2 + ∥ut(t)∥2)

=
b

p+ 2

d

dt
∥u∥p+2

p+2),

The above formula implies that

d

dt
E(u(t)) = −a(∥ut(t)∥r+2

r+2 + ∥ut(t)∥
2) ≤ 0.

Therefore, E(u) is a nonincreasing function on t. ⊓⊔

Theorem 7 Suppose that (5) holds. If u0 ∈ W,u1 ∈
L2(Ω) and the initial energy satisfies E(u(0)) < d,
then u ∈W , for each t ∈ [0, T ).

Proof Assume that there exists a number t∗ ∈ [0, T )
such that u(t) ∈ W on [0, t∗) and u(t∗) ̸∈ W . Then
we have

I(u(t∗)) = 0, u(t∗) ̸= 0. (8)

Since u(t) ∈W on [0, t∗), so it holds that

J(u(t)) =
1

2
∥∆u(t)∥2 − b

p+ 2
∥u(t)∥p+2

p+2

≥ 1

2
∥∆u(t)∥2 − 1

p+ 2
∥∆u(t)∥2

=
p

2(p+ 2)
∥∆u(t)∥2.

(9)

It follows from I(u(t∗)) = 0 that

J(u(t∗)) =
1

2
∥∆u(t∗)∥2 − b

p+ 2
∥u(t∗)∥p+2

p+2

=
p

2(p+ 2)
∥∆u(t∗)∥2.

(10)
Therefore, we get from (9) and (10) that

∥∆u(t)∥2 ≤ 2(p+2)
p J(u(t)) ≤ 2(p+2)

p E(u(t))

≤ 2(p+ 2)

p
E(u(0)), ∀t ∈ [0, t∗].

(11)
We obtain from Lemma 4 and E(u(0)) < d that

E(u(0)) <
p

2(p+ 2)

1

(bCp+2
∗ )

2
p

,

which implies that

bCp+2
∗

(
2(p+ 2)

p
E(u(0))

) p
2

< 1. (12)

By exploiting Lemma 3, (11) and (12), we easily ar-
rive at

b∥u∥p+2
p+2 ≤ bC

p+2∥∆u∥p+2 = bCp+2∥∆u∥p∥∆u∥2

≤ bCp+2
∗

(
2(p+ 2)

p
E(u(0))

) p
2

∥∆u∥2 < ∥∆u∥2,
(13)

for all t ∈ [0, t∗]. Thus, we obtain

I(u(t∗)) = ∥∆u(t∗)∥2 − b∥u(t∗)∥p+2
p+2 > 0, (14)

which contradicts (8). Hence, we conclude that u(t) ∈
W on [0, T ). ⊓⊔

The following result is concerned with the exis-
tence of global solution which is not related to the pa-
rameters p and r. The result reads as follows:
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Theorem 8 Assume that (5) holds, u(t) is a local so-
lution of problem (1)-(3). If u0 ∈ W, u1 ∈ L2(Ω)
and E(u(0)) < d, then the solution u(t) is a global
solution of the problem (1)-(3).

Proof We obtain from (11) that

d > E(u(0)) ≥ E(u(t)) =
1

2
∥ut(t)∥2 + J(u(t))

≥ 1

2
∥ut(t)∥2 +

p

2(p+ 2)
∥∆u∥2

≥ p

2(p+ 2)
(∥ut(t)∥2 + ∥∆u∥2),

(15)
Therefore

∥ut(t)∥2 + ∥∆u∥2 ≤
2(p+ 2)

p
d < +∞.

It follows from Proposition 2 that u(t) is the global
solution of problem (1)-(3). ⊓⊔

Moreover, we have the other global existence re-
sult which is related to parameters p and r. The fol-
lowing theorem shows that the solutions obtained in
Proposition 1 is a global solutions if p ≤ r.

Theorem 9 Assume that (5) holds. If p ≤ r, then the
local solution furnished in Proposition 1 is a global
solution of the problem (1)-(3) and T may be taken
arbitrarily large.

Proof Let u be a solution to the problem (1)-(3) de-
fined on [0, T ] which is obtained in Proposition 1. We
define

E1(t) =
1

2
∥ut∥2 +

1

2
∥∆u∥2 + b

p+ 2
∥u∥p+2

p+2, (16)

then
E1(t) = E(t) +

2b

p+ 2
∥u∥p+2

p+2. (17)

Our aim is to prove that the following inequality
holds:

1

2
∥ut∥2 +

1

2
∥∆u∥2 + b

p+ 2
∥u∥p+2

p+2

+a

∫ t

0
(∥ut(s)∥2 + ∥ut(s)∥r+2

r+2)ds

≤ CT ,

(18)

for t ∈ [0, T ], where CT depends on ∥∆u0∥2 and
∥u1∥2.

We get from Lemma 3 and (16) that

b

p+ 2
∥u∥p+2

p+2 ≤
bBp+2

1

p+ 2
∥∆u∥p+2

=
bBp+2

1
p+2 (∥∆u∥2)

p+2
2 ≤ C1E1(t)

p+2
2 ,

(19)

where C1 =
b(
√
2 B1)p+2

p+2 .
It follows from (16) that

b

p+ 2
∥u∥p+2

p+2 ≤ E1(t). (20)

We obtain from (7) and (17) that

E1(t) + a

∫ t

0
(∥ut(s)∥2 + ∥ut(s)∥r+2

r+2)ds

≤ E1(0) + 2b(p+ 2)

∫ t

0

∫
Ω
|u|p+1|ut|dxds.

(21)
In what following, we are going to estimate the last
term in (21). Putting Qt = Ω× [0, t] and

Q1 = {(x, s) ∈ Qt : |u(x, s)| ≤ 1},

Q2 = {(x, s) ∈ Qt : |u(x, s)| ≥ 1}.
Then

I =

∫ t

0

∫
Ω
|u|p+1|ut|dxds

=

∫
Q1

|u|p+1|ut|dxds

+

∫
Q2

|u|p+1|ut|dxds = I1 + I2.

(22)

Next we deal with I1 and I2 in (22). It is easy to see
from Lemma 3 and (16) that

I1 ≤
∫
Q1

|ut|dxds

≤ δ|Qt|+ Cδ

∫
Q1

|ut|2dxds

≤ δ|Qt|+ Cδ

∫ t

0
E1(s)ds,

(23)

for some δ > 0 and in which |Qt| denotes the
Lebesgue measure of Qt.

Let α = r−p
r+2 , then by p ≤ r, we have α ≥ 0 and

(p + α + 1) r+2
r+1 = p + 2. Since |u| ≥ 1 on Q2, then

we get from Lemma 4 and (20) that

I2 ≤
∫
Q2

|u|p+α+1|ut|dxds

≤ ε
∫
Q2

|ut|r+2dxds+ Cε

∫
Q2

|u|p+2dxds

≤ ε
∫ t

0
∥ut∥r+2

r+2ds+
(p+ 2)Cε

b

∫ t

0
E1(s)ds,

(24)
for any ε > 0. We obtain from (22), (23) and (24) that

I ≤ δ|Qt|+ ε

∫ t

0
∥ut∥r+2

r+2ds

+(Cδ +
(p+ 2)Cε

b
)

∫ t

0
E2(s)ds.

(25)
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By choosing ε > 0 small enough such that ε < a
2b ,

then it follows from (21) and (25) that

E1(t) + C2

∫ t

0
(∥u(s)t∥2 + ∥ut(s)∥r+2

r+2)ds

+ ≤ E1(0) + 2b(p+ 2)δ|Qt|+ C3

∫ t

0
E1(s)ds,

(26)
for some positive constants C2 = a − 2bε > 0 and
C3 = 2bCδ + 2(p+ 2)Cε > 0.

It follows from (26) and Gronwall’s inequality
that

E1(t) ≤ (E1(0) + 2bδ|Qt|)eC3t. (27)

Finally, we infer from (26) and (27) that

E1(t) + C2

∫ t

0
(∥u(s)t∥2 + ∥ut(s)∥r+2

r+2)ds

≤ CT (E1(0) + 2b(p+ 2)δ|QT |),
(28)

for all 0 < t ≤ T , where T is arbitrary. Thus (18)
follows from (16) and (28). Therefore, the conclusion
in Theorem 9 is valid according to (18) and the stan-
dard continuation argument [7, 14]. Thus, the proof
of Theorem 9 is now complete. ⊓⊔

3 Decay Estimate
The following two lemmas play an important role in
studying the decay result of global solutions for prob-
lem (1)-(3).

Lemma 10 ([4]) Let F : R+ → R+ be a nonin-
creasing function and assume that there are two con-
stants β ≥ 1 and A > 0 such that∫ +∞

S
F (t)

β+1
2 dt ≤ AF (S), 0 ≤ S < +∞,

then F (t) ≤ CF (0)(1 + t)
− 2

β−1 , ∀t ≥ 0, if β > 1,
and F (t) ≤ CF (0)e−ωt, ∀t ≥ 0, if β = 1, where C
and ω are positive constants independent of F (0).

Lemma 11 If the hypotheses in Theorem 7 hold, then

b∥u(t)∥p+2
p+2 ≤ (1− θ)∥∆u(t)∥2, ∀t ∈ [0,+∞),

(29)
where

θ = 1− bCp+2
∗

(
2(p+ 2)

p
E(u(0))

) p
2

> 0.

Moreover, we have

I(u(t)) ≥ θ∥∆u(t)∥2 ≥ θ

1− θ
b∥u(t)∥p+2

p+2, ∀t ∈ [0,+∞).

Proof We get from Lemma 3 and (15)

b∥u∥p+2
p+2 ≤ bCp+2∥∆u∥p+2

= bCp+2∥∆u∥p∥∆u∥2

≤ bCp+2
∗

(
2(p+ 2)

p
E(u(0))

) p
2

∥∆u∥2.
(30)

Let

θ = 1− bCp+2
∗

(
2(p+ 2)

p
E(u(0))

) p
2

.

Then we have from (12) that 0 < θ < 1. Thus, it
follows from (30) that

b∥u∥p+2
p+2 ≤ (1− θ)∥∆u∥2. (31)

Meanwhile, we conclude from (31) that

I(u) = ∥∆u∥2 − b∥u∥p+2
p+2

≥ ∥∆u∥2 − (1− θ)∥∆u∥2

= θ∥∆u∥2 ≥ θb

1− θ
∥u∥p+2

p+2.

This complete the proof of Lemma 11. ⊓⊔

Theorem 12 If the hypotheses of Theorem 8 hold,
then the global solution of problem (1)-(3) has the fol-
lowing energy decay evaluation

E(t) ≤M(1 + t)−
2
r ,

where E(t) = E(u(t)), M > 0 is a constant depend-
ing on initial energy E(0).

Proof Let E(t) = E(u(t)), then multiplying by
E(t)

r
2u both sides of the equation (1) and integrating

over Ω× [S, T ], we obtain that∫ T

S

∫
Ω
E(t)

r
2u[utt +∆2u+ a(1 + |ut|r)ut]dxdt

−
∫ T

S

∫
Ω
E(t)

r
2u[bu|u|p]dxdt = 0

(32)
where 0 ≤ S < T < +∞.

Since∫ T

S

∫
Ω
E(t)

r
2uuttdxdt =

∫
Ω
E(t)

r
2uutdx

∣∣∣∣T
S

−
∫ T

S

∫
Ω
E(t)

r
2 |ut|2dxdt

−r
2

∫ T

S

∫
Ω
E(t)

r−2
2 E′(t)uutdxdt,

(33)
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So, substituting the formula (33) into the left-hand
side of (32), we get∫ T

S

∫
Ω
E(t)

r
2 (|ut|2 + |∆u|2 − b|u|p+2)dxdt

=

∫ T

S

∫
Ω
E(t)

r
2 [2|ut|2 − a(1 + |ut|r)utu]dxdt

+
r

2

∫ T

S

∫
Ω
E(t)

r−2
2 E′(t)uutdxdt

−
∫
Ω
E(t)

r
2uutdx

∣∣∣∣T
S
.

(34)
It follows from Lemma 11, the definition of E(t) and
0 < θ < 1 that∫ T

S

∫
Ω
E(t)

r
2 (|ut|2 + |∆u|2 − b|u|p+2)dxdt

=

∫ T

S
E(t)

r
2 (∥ut∥2 + I(u(t)))dt

≥
∫ T

S
E(t)

r
2 (∥ut∥2 + θ∥∆u∥2)dt

≥ 2θ

∫ T

S
E(t)

r
2 (
1

2
∥ut∥2 +

1

2
∥∆u∥2)dt

≥ 2θ

∫ T

S
E(t)

r+2
2 dt,

(35)
we have from Lemma 3 and (15) that∣∣∣∣r2

∫ T

S

∫
Ω
E(t)

r−2
2 E′(t)uutdxdt

∣∣∣∣
≤ r

2

∫ T

S
E(t)

r−2
2 |E′(t)|

(
1

2
∥u∥2 + 1

2
∥ut∥2

)
dt

≤ −r
2

∫ T

S
E(t)

r−2
2 E′(t)

(
C2

2
∥∆u∥2 + 1

2
∥ut∥2

)
dt

≤ −r
2

∫ T

S
E(t)

r−2
2 E′(t)×

×
(
(p+ 2)C2

p

p

2(p+ 2)
∥∆u∥2 + 1

2
∥ut∥2

)
dt

= − r

r + 2
max

(
(p+ 2)C2

p
, 1

)
E(t)

r+2
2

∣∣∣∣T
S

≤ME(S)
r+2
2 ,

(36)
Similarly, we have∣∣∣∣∣−

∫
Ω
E(t)

r
2uutdx

∣∣∣∣T
S

∣∣∣∣∣
≤ max

(
(p+ 2)C2

p
, 1

)
E(t)

r+2
2

∣∣∣∣T
S

≤ME(S)
r+2
2 ,

(37)

Substituting the form (35), (36) and (37) into (34), we
conclude

2θ

∫ T

S
E(t)

r+2
2 dt ≤

∫ T

S

∫
Ω
E(t)

r
2 [2|ut|2

−a(1 + |ut|r)utu]dxdt+ME(S)
r+2
2 .

(38)

We get from Young inequality and (7)

2

∫ T

S

∫
Ω
E(t)

r
2 |ut|2dxdt

≤
∫ T

S

∫
Ω
(ε1E(t)

r+2
2 +M(ε1)|ut|r+2)dxdt

≤Mε1

∫ T

S
E(t)

r+2
2 dt

+M(ε1)

∫ T

S
(∥ut∥r+2

r+2 + ∥ut∥
2)dt

=Mε1

∫ T

S
E(t)

r+2
2 dt− M(ε1)

a
(E(T )− E(S))

≤Mε1

∫ T

S
E(t)

r+2
2 dt+ME(S).

(39)
From Young inequality, Lemma 3, (7) and (15), we
receive that

−a
∫ T

S

∫
Ω
E(t)

r
2uut|ut|rdxdt

≤ a
∫ T

S
E(t)

r
2 (ε2∥u∥r+2

r+2 +M(ε2)∥ut∥r+2
r+2)dt

≤ aCr+2ε2E(0)
r
2

∫ T

S
∥∆u∥r+2dt

+aM(ε2)E(S)
r
2

∫ T

S
(∥ut∥r+2

r+2 + ∥ut∥
2)dt

= aCr+2ε2E(0)
r
2

∫ T

S

(
2(p+ 2)

p
E(t)

) r+2
2

dt

+M(ε2)E(S)
r
2 (E(S)− E(T ))

≤ aCr+2ε2E(0)
r
2

(
2(p+ 2)

p

) r+2
2

×

×
∫ T

S
E(t)

r+2
2 dt+M(ε2)E(S)

r+2
2 ,

(40)
and

−a
∫ T

S

∫
Ω
E(t)

r
2uutdxdt

≤ a
∫ T

S
E(t)

r
2

(
1

2
∥u∥2 + 1

2
∥ut∥2

)
dt

≤ a
∫ T

S
E(t)

r
2

(
C2

2
∥∆u∥2 + 1

2
∥ut∥2

)
dt
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= a

∫ T

S
E(t)

r
2

(
(p+ 2)C2

p
· p

2(p+ 2)
∥∆u∥2

)
dt

+

∫ T

S
E(t)

r
2

(
1

2
∥ut∥2

)
dt

≤ amax

(
(p+ 2)C2

p
, 1

)∫ T

S
E(t)

r+2
2 dt

≤ME(S)
r+2
2

(41)
where M(ε1) and M(ε2) are positive constants de-
pending on ε1 and ε2.

Choosing small enough ε1 and ε2, such that

Mε1 + aE(0)
r
2

(
2(p+ 2)

p
C2
) r+2

2

ε2 < 2θ,

then, substituting (39), (40) and (41) into (38), we get∫ T

S
E(t)

r+2
2 dt ≤ME(S) +ME(S)

r+2
2

≤M(1 + E(0))
r
2E(S).

Therefore, we have from Lemma 10 that

E(t) ≤M(E(0))(1 + t)−
r
2 , t ∈ [0,+∞).

where M(E(0)) > 0 is a constant depending on
E(0).

The proof of Theorem 12 is thus finished. ⊓⊔

4 Blow-up of Solution
In this section, under suitable conditions and the posi-
tive initial energy, we shall discuss the blow-up prop-
erty of the problem (1)-(3) and give the lifespan cal-
culations of solutions.

We observe from the definition of E(t) that

E(t) ≥ 1

2
∥∆u(t)∥2 − b

p+ 2
∥u(t)∥p+2

p+2, (42)

for u ∈ H2
0 (Ω), t ≥ 0.

By (5) and Lemma 3, we get that

∥u∥p+2 ≤ B1∥∆u∥, (43)

where B1 is the optimal Sobolev’s constant from
H2

0 (Ω) to Lp+2(Ω).
We have from (42) and (43) that

E(t) ≥ 1

2
∥∆u(t)∥2 − bBp+2

1

p+ 2
(∥∆u(t)∥2)

p+2
2

= Q(∥∆u(t)∥2),
(44)

where

Q(λ) =
1

2
λ2 − bB1

p+2

p+ 2
λp+2.

Therefore, we get

Q′(λ) = λ− bB1
p+2λp+1,

Q′′(λ) = 1− (p+ 1)bB1
p+2λp.

Let Q′(λ) = 0, which implies that λ1 =

(bB1
p+2)

− 1
p . As λ = λ1, an elementary calculation

shows that Q′′(λ) = −p < 0. Thus, Q(λ) has the
maximum at λ1 and the maximum value is

h = Q(λ1) =
p

2(p+ 2)

[
bB1

p+2
]− 2

p

=
p

2(p+ 2)
λ21.

(45)

Applying the idea of E. Vitillaro [11] and S. T.
Wu [15], we have the following lemma.

Lemma 13 Assume that u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω).

Let u be a solution of (1)-(3) with the initial data en-
ergy satisfying 0 < E(0) < h and ∥∆u0∥ > λ1, then
there exists λ2 > λ1 such that

∥∆u(t)∥2 ≥ λ22, (46)

for t > 0.

The blow-up result of solution for the problem (1)
reads as follows:

Theorem 14 Assume that (5) holds, and that u0 ∈
H2

0 (Ω), u1 ∈ L2(Ω). Under the condition p > r,
if 0 < E(0) < h and ∥∆u0∥ > λ1, then the local
solution of the problem (1)-(3), which is obtained in
Proposition 1, blows up at a finite time. We remark
that the lifespan T ∗ is estimated by T∗ = Tmax =

(1−β)G(0)
β

1−β

βC11
, where G(t) will be given in (63), C11

and β are some positive constant given in the follow-
ing proof.

Proof Let

H(t) = d− E(t), t ≥ 0, (47)

where d = E(0)+h
2 . We see from (7) in Lemma 6 that

H ′(t) ≥ 0. Thus we obtain

H(t) ≥ H(0) = d− E(0) > 0, t ≥ 0. (48)

Let
F (t) =

∫
Ω
uutdx. (49)
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By differentiating both sides of (49) on t, we get from
the equation in (1) that

F ′(t) = ∥ut∥2 − ∥∆u∥2 + b∥u∥p+2
p+2

−a
∫
Ω
(ut + |ut|rut)udx.

(50)

We have from the definition of E(t) and (50) that

F ′(t) ≥ p+ 4

2
∥ut∥2 +

p

2
∥∆u(t)∥2

−a
∫
Ω
(ut + |ut|rut)udx

+(p+ 2)H(t)− (p+ 2)d,

(51)

We obtain from Lemma 13 that
p

2
∥∆u(t)∥2 − (p+ 2)d

=
p(λ22 − λ21)

2λ22
∥∆u(t)∥2

+
pλ21
2
· ∥∆u(t)∥

2

λ22
− (p+ 2)d

≥ p(λ22 − λ21)
2λ22

∥∆u(t)∥2 + pλ21
2
− (p+ 2)d.

(52)
By Lemma 13, we have that

λ22 − λ21
λ22

> 0, (53)

and by (45) and (48), we see that

λ21 − (p+ 2)d

= (p+ 2)(h− d)

= (p+ 2)(d− E(0)) > 0.

(54)

Combining (51)-(54), we see that

F ′(t) ≥ p+ 4

2
∥ut∥2 +

p(λ22 − λ21)
2λ22

∥∆u(t)∥2

−a
∫
Ω
(ut + |ut|rut)udx+ (p+ 2)H(t).

(55)
On the other hand, we have from Hölder inequality
that

a

∣∣∣∣ ∫
Ω
|ut|rutudx

∣∣∣∣ ≤ C4∥u∥
1− p+2

r+2

p+2 ∥u∥
p+2
r+2

p+2∥ut∥
r+1
r+2,

(56)
where C4 = a|Ω|

p−r
(r+2)(p+2) in which |Ω| denotes the

Lebesgue measure of Ω.

By d = E(0)+h
2 , we see that d < h. Therefore,

we get from (42), (47) and Lemma 13 that

H(t) ≤ d− 1

2
∥∆u(t)∥2 + b

p+ 2
∥u∥p+2

p+2

≤ h− 1

2
λ21 +

b

p+ 2
∥u∥p+2

p+2.

(57)

By (45), we have

h− 1

2
λ21 = −

2

p
h < 0, (58)

so, we have from (48), (57) and (58) that

0 < H(0) ≤ H(t) ≤ b

p+ 2
∥u∥p+2

p+2, t ≥ 0. (59)

We obtain from (56) and (59) that

a

∣∣∣∣ ∫
Ω
|ut|rutudx

∣∣∣∣
≤ C5H(t)

1
p+2

− 1
r+2 ∥u∥

p+2
r+2

p+2∥ut∥
r+1
r+2,

(60)

where C5 = (p+2
b )

r−p
r+2C4.

We get from (47), Lemma 4, Lemma 6 and (60)
that

a

∣∣∣∣ ∫
Ω
|ut|rutudx

∣∣∣∣
≤ C5[ε

r+2∥u∥p+2
p+2 + ε−

r+2
r+1H ′(t)]H(t)−α,

(61)
where α = 1

r+2 −
1
p+2 , ε > 0.

Let 0 < β < α, then we have from (48) and (61)
that

a

∣∣∣∣ ∫
Ω
|ut|rutudx

∣∣∣∣
≤ C5[ε

r+2H(0)−α∥u∥p+2
p+2

+ε−
r+2
r+1H(0)β−αH(t)−βH ′(t)].

(62)

Now, we define G(t) as follows.

G(t) = H(t)1−β + ρF (t), t ≥ 0. (63)

where ρ is a positive constant to be determined later.
By differentiating (63), then we see from (55) and (62)
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that

G′(t) = (1− β)H(t)−βH ′(t) + ρF ′(t)

≥ [1− β − ρC14ϵ
−m+2

m H(0)β−α]H(t)−βH ′(t)

+a1ρ
λ22 − λ21
λ22

[l∥∆u(t)∥2 + (g ◦∆u)(t)]

+ρ[
p+ 4

2
∥ut∥2 + (p+ 2)H(t)]

≥ −C5ρε
m+2H(0)−α∥u∥p+2

p+2.
(64)

Letting k = min{p+2
2 , a1l

λ22−λ
2
1

λ22
} and decomposing

ρ(p+ 2)H(t) in (64) by

ρ(p+2)H(t) = 2kρH(t)+ρ(p+2−2k)H(t). (65)

Combining (47), (64) and (65), we obtain that

G′(t) ≥ [1− β − ρC14ϵ
− r+2

r+1H(0)β−α]H(t)−βH ′(t)

+ρ

(
p+ 4

2
− k

)
∥ut∥2 + ρ(p+ 2− 2k)H(t)

+

[
2kb

p+ 2
− C14ε

r+2H(0)−α
]
ρ∥u∥p+2

p+2

+

[
λ22 − λ21
λ22

− k
]
ρ∥∆u∥2.

(66)
Choosing ε > 0 small enough such that 2kb

p+2 −
C5ε

r+2H(0)−α ≥ kb
p+2 and 0 < ρ <

1−β
C5

ε
r+2
r+1H(0)α−β , then we have from (66) that

G′(t) ≥ C6ρ

[
∥ut∥2 + ∥∆u∥2 + ∥u∥p+2

p+2

+H(t) + (g ◦∆u)(t)
]
,

(67)

where

C6 = min

{
p+4

2
−k, p+2−2k, kb

p+2
,
λ22 − λ21
λ22

−k
}
.

Therefore,G(t) is a nondecreasing function for t ≥ 0.
Letting ρ in (63) be small enough, then we getG(0) >
0. Consequently, we obtain that G(t) ≥ G(0) > 0 for
t ≥ 0.

Since 0 < β < α < 1, it is evident that 1 <
1

1−β <
1

1−α . We deduce from (49) and (63) that

G(t)
1

1−β ≤ 2
1

1−β
−1
[
H(t) +

(
ρ

∫
Ω
uutdx

) 1
1−β
]
.

(68)

On the other hand, for p > 0, we have from
Hölder inequality and Lemma 4 that

(
ρ

∫
Ω
uutdx

) 1
1−β

≤ C7∥ut∥
1

1−β ∥u∥
1

1−β

p+2

≤ C8

(
∥u∥

µ
1−β

p+2 + ∥ut∥
ν

1−β

)
,

(69)

where C7 = ρ
1

1−β |Ω|
p+1

(1−β)(p+2) , 1
µ+

1
ν = 1, and C8 is

a positive constant depending on the known constants
C7, µ and ν.

Let 0 < β < min{α, 12 −
1
p+2}, ν = 2(1 − β),

then µ
1−β = 2

1−2β < p+ 2. It follows from (59) that

(
b

(p+ 2)H(0)

) 1
p+2

∥u∥p+2 ≥ 1. (70)

Thus, we get from (70) that

∥u∥
µ

1−β

p+2 = ∥u∥
2

1−2β

p+2 = ∥u∥
2

1−2β
−(p+2)

p+2 ∥u∥p+2
p+2

≤
(

b

(p+ 2)H(0)

)1− 2
(p+2)(1−2β)

∥u∥p+2
p+2.

(71)
We obtain from (69) and (71) that

(
ρ

∫
Ω
uutdx

) 1
1−β

≤ C18(∥ut∥2 + ∥u∥p+2
p+2),

(72)
where C9 = C8max{1, ( b

(p+2)H(0))
1− 2

(p+2)(1−2β) }.
Combining (68) and (72), we find that

G(t)
1

1−β ≤ C10

[
∥ut∥2 + ∥u∥p+2

p+2 +H(t)

]
, (73)

where C10 = 2
1

1−β
−1

max{1, C9}.
We obtain from (67) and (73) that

G′(t) ≥ C11G(t)
1

1−β , t ≥ 0, (74)

where C11 = C6ρ
C10

. Integrating both sides of (74) over
[0, t] yields that

G(t) ≥
(
G(0)

β
β−1 − βC11

1− β
t

)− β
1−β

.

Noting that G(0) > 0, then there exists T∗ = Tmax =

(1−β)G(0)
β

1−β

βC11
such that G(t) → +∞ as t → +∞.

Namely, the solutions of the problem (1)-(3) blow up
in finite time. ⊓⊔
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5 Conclusion
In this paper, the initial boundary value problem for
a class of nonlinearly damped Petrovsky equation in
a bounded domain is considered. At first, the exis-
tence of global solutions which is not related to the
parameters p and r is proved by constructing a sta-
ble set in H2

0 (Ω). Moreover, we have the other global
existence result which is related to parameters p and
r, i.e. p ≤ r. Secondly, we obtain the energy de-
cay estimate through the use of an important lemma
of V.Komornik. At last, under the conditions of the
positive initial energy, it is proved that the solution
blows up in the finite time and the lifespan estimates
of solutions are also given.

Acknowledgements: This Research was supported
by National Natural Science Foundation of China
(No. 61273016), The Natural Science Foundation
of Zhejiang Province (No.Y6100016), The Middle-
aged and Young Leader in Zhejiang University of
Science and Technology(2008-2012) and Interdisci-
plinary Pre-research Project of Zhejiang University of
Science and Technology (2010-2012).

References:

[1] A. Guesmia, Existence globale et stabilisation
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