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Abstract: In this paper, by use of the properties of fractional derivative and certain inequality technique,
some new oscillatory criteria are established for a certain functional fractional differential equation with
damping. The fractional differential equation is defined in the sense of the modified Riemann-Liouville
fractional derivative. Using a similar analytical method, we also research oscillation of a higher order
fractional differential equation, and obtain some oscillatory criteria for it. These oscillatory criteria are
new results so far in the literature. As for applications of the oscillatory criteria established, some exam-
ples are presented.
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1 Introduction

Fractional differential equations are generaliza-
tions of classical differential equations of integer
order, and can find their applications in many
fields of science and engineering. In the last few
decades, research for various aspects of fractional
differential equations, for example, the existence,
uniqueness and stability of solutions of fractional
differential equations, the numerical methods for
fractional differential equations and so on has
been paid much attention by many authors (for
example, we refer the reader to see [1-12], and the
references therein). In these investigations, we no-
tice that very little attention is paid to oscillation
of fractional differential equations. To our knowl-
edge, recent results in this direction include the
works in [13-17].

In [13,14], Chen researched oscillation of the
following two fractional differential equations:

(a) : [r(t)(Dαy(t))η]′

−q(t)f(
∫ ∞

t
(v − t)−αy(v)dv) = 0,

(b) : D1+αy(t)− p(t)Dαy(t)

+q(t)f(

∫ ∞

t
(v − t)−αy(v)dv) = 0,

where Dαy(t) denotes the Liouville right-sided
fractional derivative of order α of x. In [15],

Zheng researched oscillation of the following non-
linear fractional differential equation with damp-
ing term, which is a generalization of (a):

(c) : [a(t)(Dαx(t))γ ]′ + p(t)(Dαx(t))γ

−q(t)f(
∫ ∞

t
(ξ − t)−αx(ξ)dξ) = 0, t ∈ [t0,∞).

In [16], Grace et al. researched oscillation of the
following nonlinear fractional differential equation
under the definition of Riemann-Liouville differ-
ential operator:

(d) : Dq
ax+ f1(t, x) = v(t) + f1(t, x)

−q(t)f(
∫ ∞

t
(ξ − t)−αx(ξ)dξ) = 0, t ∈ [t0,∞).

In [17], Feng researched oscillation of the following
nonlinear fractional differential equation in the
sense of the modified Riemann-Liouville differen-
tial operator:

(e) : Dα
t (r(t)k1(x(t), D

α
t x(t)))

+p(t)k2(x(t), D
α
t x(t)) +Dα

t x(t)

+q(t)f(x(t)) = 0, t ≥ t0 ≥ 0, 0 < α < 1,

where Dα
t (.) denotes the modified Riemann-

Liouville derivative with respect to the variable
t.
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Motivated by the above works, in this paper,
we are concerned with oscillation of the follow-
ing functional fractional differential equation with
damping

Dα
t [r(t)(D

α
t x(t))

γ ]
+p(t)(Dα

t x(t))
γ + q(t)f(x(t)) = 0,

(1)

and the following higher order fractional differen-
tial equation

Dα
t [D

α
t (r(t)D

α
t x(t))] + q(t)x(t) = 0, (2)

where t ≥ t0 > 0, 0 < α < 1, Dα
t (.) de-

notes the modified Riemann-Liouville derivative
[18] with respect to the variable t, the function
r ∈ Cα([t0,∞),R+), p, q ∈ C([t0,∞),R+), and
Cα denotes the continuous derivative of order α,
γ is the ratio of two positive integers, the function
f is continuous satisfying f(x)/xγ ≥ K for some
positive constant K and ∀x ̸= 0.

In general, a solution x(t) of Eq. (1) or Eq.
(2) is called oscillatory if it has arbitrarily large
zeros, otherwise it is called non-oscillatory. Eqs.
(1) and (2) are called oscillatory if all their solu-
tions are oscillatory.

We organize the rest as follows. In Section 2,
we give the definition and some important prop-
erties for the modified Riemann-Liouville deriva-
tive. Then in Section 3, we establish some new
oscillatory criteria for Eq. (1) by use of the prop-
erties of fractional derivative and certain inequal-
ity technique. In Section 4, we use the analytical
method in Section 3 to research oscillation of Eq.
(2), and obtain some oscillatory criteria for it. In
Section 5, we present some applications for the re-
sults established. Some conclusions are presented
at the end of this paper.

Throughout this paper, we denote

ξ =
tα

Γ(1 + α)
, ξi =

tαi
Γ(1 + α)

, i = 0, 1, 2, 3, 4, 5

R+ = (0,∞), r(t) = r̃(ξ), p(t) = p̃(ξ), q(t) =

q̃(ξ), and A(ξ) = exp(
∫ ξ
ξ0

p̃(τ)
r̃(τ)dτ).

2 The Jumarie’s modified
Riemann-Liouville derivative

The definition and some important properties for
the Jumarie’s modified Riemann-Liouville deriva-
tive of order α are listed as follows (see also in
[19-21]):

Dα
t f(t) =


1

Γ(1−α)
d
dt

∫ t
0 (t− ξ)

−α(f(ξ)− f(0))dξ,
0 < α < 1,

(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1.

The derivative has the following properties:

Dα
t t

r =
Γ(1 + r)

Γ(1 + r − α)
tr−α, (3)

and

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (4)

and derivative of composed function

Dα
t f [g(t)] = f ′g[g(t)]D

α
t g(t)

= Dα
g f [g(t)](g

′(t))α.
(5)

The modified Riemann-Liouville derivative
has a lot of excellent characters in handling with
various fractional calculus problems. Many au-
thors have investigated various applications of the
modified Riemann-Liouville fractional derivative
(see [22-26] for example).

3 Oscillatory criteria for Eq.(1)

In this section, we will establish some new os-
cillatory criteria for Eq.(1) by use of the Riccati
transformation technique. First we give two lem-
mas for further use.

Lemma 1 Assume x(t) is an eventually positive
solution of Eq.(1), and∫ ∞

ξ0

1

[A(s)r̃(s)]
1
γ

ds =∞. (6)

Then there exists a sufficiently large T such that
Dα

t x(t) > 0 for t ∈ [T,∞).

Proof. Let x(t) = x̃(ξ). Then by use of Eq.(3)
we obtain Dα

t ξ(t) = 1, and furthermore by use of
the first equality in Eq. (5), we have

Dα
t r(t) = Dα

t r̃(ξ) = r̃′(ξ)Dα
t ξ(t) = r̃′(ξ).

Similarly we have Dα
t x(t) = x̃′(ξ). So Eq.(1) can

be transformed to the following form:

[r̃(ξ)(x̃′(ξ))γ ]′ + p̃(ξ)(x̃′(ξ))γ + q̃(ξ)f(x̃(ξ)) = 0,
(7)

where ξ ≥ ξ0 > 0. Since x(t) is an eventually
positive solution of (1), then x̃(ξ) is an eventually
positive solution of Eq. (7), and there exists ξ1 >
ξ0 such that x̃(ξ) > 0 on [ξ1,∞). Furthermore,
for ξ ≥ ξ1 we have

[A(ξ)r̃(ξ)(x̃′(ξ))γ ]′

= A(ξ)[r̃(ξ)(x̃′(ξ))γ ]′ +A(ξ)p̃(ξ)(x̃′(ξ))γ
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= −q̃(ξ)A(ξ)f(x̃(ξ))
≤ −KA(ξ)q̃(ξ)(x̃(ξ))γ < 0. (8)

Then A(ξ)r̃(ξ)(x̃′(ξ))γ is strictly decreasing on
[ξ1,∞), and thus x̃′(ξ) is eventually of one sign.
We claim x̃′(ξ) > 0 on [ξ2,∞), where ξ2 > ξ1 is
sufficiently large. Otherwise, assume there exists
a sufficiently large ξ3 > ξ2 such that x̃′(ξ) < 0 on
[ξ3,∞). Then for ξ ∈ [ξ3,∞) we have

x̃(ξ)− x̃(ξ3) =
∫ ξ

ξ3

x̃′(s)ds

=

∫ ξ

ξ3

[A(s)r̃(s)]
1
γ x̃′(s)

[A(s)r̃(s)]
1
γ

ds

≤ [A(ξ3)r̃(ξ3)]
1
γ x̃′(ξ3)

∫ ξ

ξ3

1

[A(s)r̃(s)]
1
γ

ds.

By (6) we deduce that lim
ξ→∞

x̃(ξ) = −∞, which

contradicts to the fact that x̃(ξ) is an eventually
positive solution of Eq. (7). So x̃′(ξ) > 0 on
[ξ2,∞), and furthermore Dα

t x(t) > 0 on [t2,∞).
The proof is complete by setting T = t2. ⊓⊔

Lemma 2 [27, Theorem 41]. Assume that A and
B are nonnegative real numbers. Then for all λ >
1,

λXY λ−1 −Xλ ≤ (λ− 1)Y λ.

Now we state the main theorems and establish
oscillatory criteria for Eq. (1).

Theorem 3 Assume (6) holds, and there ex-
ist two functions ζ ∈ C1([t0,∞),R+) and ρ ∈
C1([t0,∞), [0,∞)) such that∫ ∞

ξ0

{
KA(s)ζ̃(s)q̃(s)−ζ̃(s)ρ̃′(s)+ ρ̃

1+1
γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}
ds

=∞, (9)

where ζ̃(ξ) = ζ(t), ρ̃(ξ) = ρ(t). Then every solu-
tion of Eq. (1) is oscillatory.

Proof. Assume (1) has a non-oscillatory solution
x on [t0,∞). Without loss of generality, we may
assume x(t) > 0 on [t1,∞), where t1 is sufficiently
large. By Lemma 1 we haveDα

t x(t) > 0 on [t2,∞)
for some sufficiently large t2 > t1. Define the
generalized Riccati transformation function:

ω(t) = ζ(t)

{
A(ξ)r(t)(Dα

t x(t))
γ

xγ(t)
+ ρ(t)

}
.

Then for t ∈ [t2,∞), we have

Dα
t ω(t) = Dα

t ζ(t)
A(ξ)r(t)(Dα

t x(t))
γ

xγ(t)

−ζ(t)γA(ξ)x
γ−1(t)r(t)(Dα

t x(t))
γ+1

x2γ(t)

+ζ(t)
Dα

t [A(ξ)r(t)(D
α
t x(t))

γ ]

xγ(t)

+Dα
t ζ(t)ρ(t) + ζ(t)Dα

t ρ(t)

=
Dα

t ζ(t)

ζ(t)
ω(t)− γ (ω(t)− ζ(t)ρ(t))

γ+1
γ

[A(ξ)ζ(t)r(t)]
1
γ

+ζ(t)Dα
t ρ(t) + ζ(t)

[A(ξ)Dα
t [r(t)(D

α
t x(t))

γ ]

xγ(t)

+ζ(t)
[r(t)(Dα

t x(t))
γDα

t (A(ξ))]

xγ(t)

=
Dα

t ζ(t)

ζ(t)
ω(t)− γ (ω(t)− ζ(t)ρ(t))

γ+1
γ

[A(ξ)ζ(t)r(t)]
1
γ

+ζ(t)Dα
t ρ(t) + ζ(t)

[A(ξ)Dα
t [r(t)(D

α
t x(t))

γ ]

xγ(t)

+ζ(t)
[r(t)(Dα

t x(t))
γA(ξ) p̃(ξ)r̃(ξ) ]

xγ(t)

=
Dα

t ζ(t)

ζ(t)
ω(t)− γ (ω(t)− ζ(t)ρ(t))

γ+1
γ

[A(ξ)ζ(t)r(t)]
1
γ

+ζ(t)Dα
t ρ(t) + ζ(t)

[A(ξ)Dα
t [r(t)(D

α
t x(t))

γ ]

xγ(t)

+ζ(t)
p(t)(Dα

t x(t))
γA(ξ)]

xγ(t)

=
Dα

t ζ(t)

ζ(t)
ω(t)− γ (ω(t)− ζ(t)ρ(t))

γ+1
γ

[A(ξ)ζ(t)r(t)]
1
γ

−ζ(t)A(ξ)q(t)f(x(t))
xγ(t)

+ ζ(t)Dα
t ρ(t)

≤ Dα
t ζ(t)

ζ(t)
ω(t)− γ (ω(t)− ζ(t)ρ(t))

γ+1
γ

[A(ξ)ζ(t)r(t)]
1
γ

−Kq(t)ζ(t)A(ξ) + ζ(t)Dα
t ρ(t). (10)

Using the following inequality (see [28, Eq.
(2.17)]):

(u− v)1+
1
γ ≥ u

1+ 1
γ +

1

γ
v
1+ 1

γ

−(1 + 1

γ
)v

1
γ u, ∀u, v ≥ 0,

we obtain

[ω(t)− ζ(t)ρ(t)]1+
1
γ
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≥ ω1+ 1
γ (t) +

1

γ
[ζ(t)ρ(t)]

1+ 1
γ

−(1 + 1

γ
)[ζ(t)ρ(t)]

1
γ ω(t). (11)

A combination of (10) and (11) yields that

Dα
t ω(t) ≤ −Kq(t)ζ(t)A(ξ)

− γ

[ζ(t)r(t)A(ξ)]
1
γ

{
ω
1+ 1

γ (t) +
1

γ
[ζ(t)ρ(t)]

1+ 1
γ

−(1 + 1

γ
)[ζ(t)ρ(t)]

1
γ ω(t)

}
+
Dαζ(t)

ζ(t)
ω(t) + ζ(t)Dαρ(t)

= −Kq(t)ζ(t)A(ξ) + ζ(t)Dαρ(t)

−ρ
1+ 1

γ (t)ζ(t)

[r(t)A(ξ)]
1
γ

− γ

[ζ(t)r(t)A(ξ)]
1
γ

ω
1+ 1

γ (t)

+{(γ + 1)ρ
1
γ (t)

[r(t)A(ξ)]
1
γ

+
Dαζ(t)

ζ(t)
}ω(t)

= −Kq(t)ζ(t)A(ξ) + ζ(t)Dαρ(t)

−ρ
1+ 1

γ (t)ζ(t)

[r(t)A(ξ)]
1
γ

− γ

[ζ(t)r(t)A(ξ)]
1
γ

ω
1+ 1

γ (t)

+{(γ + 1)ζ(t)ρ
1
γ (t) +Dαζ(t)[r(t)A(ξ)]

1
γ

ζ(t)[r(t)A(ξ)]
1
γ

}ω(t).

Setting λ = 1 + 1
γ ,

Xλ =
γ

[ζ(t)r(t)A(ξ)]
1
γ

ω
1+ 1

γ (t),

Y λ−1 = γ
1

γ+1
(γ + 1)ζ(t)ρ

1
γ (t) +Dαζ(t)[r(t)A(ξ)]

1
γ

(γ + 1)ζ
γ

γ+1 (t)[r(t)A(ξ)]
1

γ(γ+1)

,

by Lemma 2 we get

ω′(t) ≤ −Kq(t)ζ(t)A(ξ)

+ζ(t)Dαρ(t)− ρ
1+ 1

γ (t)ζ(t)

[r(t)A(ξ)]
1
γ

+
{(γ + 1)ζ(t)ρ

1
γ (t) +Dαζ(t)[r(t)A(ξ)]

1
γ }γ+1

(γ + 1)γ+1ζγ(t)[r(t)A(ξ)]
1
γ

.

(12)

Let ω(t) = ω̃(ξ). Then Dα
t w(t) = w̃′(ξ), and

Dα
t ζ(t) = ζ̃ ′(ξ), Dα

t ρ(t) = ρ̃′(ξ). So (12) can be
transformed to the following form

ω̃′(ξ) ≤ −KA(ξ)ζ̃(ξ)q̃(ξ)

+ζ̃(ξ)ρ̃′(ξ)− ρ̃
1+ 1

γ (ξ)ζ̃(ξ)

[r̃(ξ)A(ξ)]
1
γ

+
{(γ + 1)ζ̃(ξ)ρ̃

1
γ (ξ) + ζ̃ ′(ξ)[r̃(ξ)A(ξ)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(ξ)[r̃(ξ)A(ξ)]
1
γ

,

ξ ≥ ξ2. (13)

Substituting ξ with s in (13), an integration for
(13) with respect to s from ξ2 to ξ yields that

∫ ξ

ξ2

{KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s) + ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ+1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds

≤ ω̃(ξ2)− ω(ξ) ≤ ω(ξ2) <∞,

which contradicts to (9). The proof is then com-
plete. ⊓⊔

Theorem 4 Assume (6) holds, and there exists
a function H ∈ C([ξ0,∞),R) such that H(ξ, ξ) =
0, for ξ ≥ ξ0, H(ξ, s) > 0, for ξ > s ≥ ξ0, and
H has a nonpositive continuous partial derivative
H ′

s(ξ, s). If

lim sup
ξ→∞

1

H(ξ, ξ0)

{∫ ξ

ξ0

H(ξ, s){KA(s)ζ̃(s)q̃(s)

−ζ̃(s)ρ̃′(s) + ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s) + ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ+1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds
}

=∞, (14)

where ζ̃, ρ̃ are defined as in Theorem 3. Then
every solution of Eq. (1) is oscillatory.

Proof. Assume (1) has a non-oscillatory solution
x on [t0,∞). Without loss of generality, we may
assume x(t) > 0 on [t1,∞), where t1 is sufficiently
large. By Lemma 1 we haveDα

t x(t) > 0 on [t2,∞)
for some sufficiently large t2 > t1. Let ω(t) and
ω̃(ξ) be defined as in Theorem 3. By (11), for
ξ ≥ ξ2 we have

KA(ξ)ζ̃(ξ)q̃(ξ)− ζ̃(ξ)ρ̃′(ξ) + ρ̃
1+ 1

γ (ξ)ζ̃(ξ)

[r̃(ξ)A(ξ)]
1
γ

−{(γ + 1)ζ̃(ξ)ρ̃
1
γ (ξ) + ζ̃ ′(ξ)[r̃(ξ)A(ξ)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(ξ)[r̃(ξ)A(ξ)]
1
γ

≤ −ω̃(ξ). (15)
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Substituting ξ with s in (16), multiplying both
sides by H(ξ, s) and then integrating it with re-
spect to s from ξ2 to ξ yields

∫ ξ

ξ2

H(ξ, s){KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s)

+
ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds

≤ −
∫ ξ

ξ2

H(ξ, s)ω̃′(s)ds

= H(ξ, ξ2)ω(ξ2) +

∫ ξ

ξ2

H ′
s(ξ, s)ω(s)∆s

≤ H(ξ, ξ2)ω(ξ2) ≤ H(ξ, ξ0)ω(ξ2).

Then∫ ξ

ξ0

H(ξ, s){KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s)

+
ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds

=

∫ ξ2

ξ0

H(ξ, s){KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s)

+
ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds

+

∫ ξ

ξ2

H(ξ, s){KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s)

+
ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds

≤ H(ξ, ξ0)ω̃(ξ2)

+H(ξ, ξ0)

∫ ξ2

ξ0

|KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s)

+
ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

|ds.

So

lim sup
ξ→∞

1

H(ξ, ξ0)
{
∫ ξ

ξ0

H(ξ, s){KA(s)ζ̃(s)q̃(s)

−ζ̃(s)ρ̃′(s) + ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds}

≤ ω̃(ξ2) +
∫ ξ2

ξ0

|KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s)

+
ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

|ds

<∞,

which contradicts to (14). So the proof is com-
plete. ⊓⊔

Based on Theorem 4, we have the following
two corollaries.

Corollary 5 Under the conditions of Theorem 4,
if

lim sup
ξ→∞

1

(ξ − ξ0)λ
{
∫ ξ

ξ0

(ξ − s)λ{KA(s)ζ̃(s)q̃(s)

−ζ̃(s)ρ̃′(s) + ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds}

=∞,

then every solution of Eq. (1) is oscillatory.

Corollary 6 Under the conditions of Theorem 4,
if

lim sup
ξ→∞

1

(ln ξ − ln ξ0)
{
∫ ξ

ξ0

(ln ξ − ln s)

{KA(s)ζ̃(s)q̃(s)− ζ̃(s)ρ̃′(s) + ρ̃
1+ 1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds}

=∞,

then every solution of Eq. (1) is oscillatory.
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The proof of Corollaries 5-6 can be completed by
choosing H(ξ, s) = (ξ − s)λ, λ > 1 or H(ξ, s) =

ln ξ
s in Theorem 4 respectively.

Theorem 7 Assume (6) does not hold. If (9)
holds, and∫ ∞

T
[

1

A(τ)r̃(τ)

∫ τ

T
A(s)q̃(s)ds]

1
γ dτ =∞. (16)

Then every solution x of Eq.(1) is oscillatory or
satisfies lim

t→∞
x(t) = 0.

Proof. Assume (1) has a non-oscillatory solution
x on [t0,∞), and let x(t) = x̃(ξ). Without loss of
generality, we may assume x(t) > 0 on [t1,∞),
where t1 is sufficiently large. By (8) one can
see that A(ξ)r̃(ξ)(x̃′(ξ))γ = A(ξ)r(t)[Dα

t x(t)]
γ

is strictly decreasing on [t1,∞), which implies
Dα

t x(t) is eventually of one sign. If Dα
t x(t) >

0, t ∈ [t2,∞) for some sufficiently t2, then after
carrying out the proof process similar to that of
Theorem 3, we obtain that the solution x is oscil-
latory. Now we assume Dα

t x(t) < 0, t ∈ [t2,∞)
for some sufficiently t2. ThenD

α
t x(t) = Dα

t x̃(ξ) =
x̃′(ξ)Dα

t ξ = x̃′(ξ) < 0, ξ ∈ [ξ2,∞). Since
x̃(ξ) > 0, furthermore we have lim

ξ→∞
x̃(ξ) = β ≥ 0.

We claim β = 0. Otherwise, assume β > 0. Then
x(t) ≥ β on [t2,∞), and by (8) we have

(A(ξ)r̃(ξ)(x̃′(ξ))γ)′ ≤ −KA(ξ)q̃(ξ)(x̃(ξ))γ
≤ −KβγA(ξ)q̃(ξ), ξ ≥ ξ2. (17)

Substituting t with s in (17), and integrating it
with respect to s from ξ2 to ξ yields that

A(ξ)r̃(ξ)(x̃′(ξ))γ

≤ A(ξ2)r̃(ξ2)(x̃′(ξ2))γ −Kβγ
∫ ξ

ξ2

A(s)q̃(s)ds

≤ −Kβγ

∫ ξ

ξ2

A(s)q̃(s)ds,

which means

x̃′(ξ) < −βK
1
γ [

1

A(ξ)r̃(ξ)

∫ ξ

ξ2

A(s)q̃(s)ds]
1
γ . (18)

Substituting ξ with τ in (18), and integrating it
with respect to τ from ξ2 to ξ yields that

x̃(ξ)− x̃(ξ2)

< −βK
1
γ

∫ ξ

ξ2

[
1

A(τ)r̃(τ)

∫ τ

ξ2

A(s)q̃(s)ds]
1
γ dτ.

By (16), one can see lim
ξ→∞

x̃(ξ) = −∞, which is a

contradiction. So the proof is complete. ⊓⊔
Finally, based on the theorems above, we have

the following theorem.

Theorem 8 Assume (6) does not hold. If (14)
and (16) hold, then every solution x of Eq. (1) is
oscillatory or satisfies lim

t→∞
x(t) = 0.

Remark 9 From the above process of establish-
ing oscillatory criteria for the functional frac-
tional differential equation (1), one can see that
the most important points lie in two aspects. The
first point is that Eq.(1) is transformed to a new
equivalent differential equation of integer order
with respect to the variable ξ by use of the proper-
ties of the modified Riemann-Liouville fractional
derivative, which is Eq.(7). Since ξ = ξ(t) is in-
creasing with respect to t, then the discussion of
the oscillation of the solution x(t) of Eq.(1) can
be transformed to the discussion of the oscillation
of the solution x̃(ξ) of Eq.(7). The other point is
that the construction of a suitable Riccati trans-
formation function, which is denoted by ω(t), and
plays an important role in the proof of oscilla-
tory results. We note that following this analy-
sis model as shown above, oscillatory criteria for
other kinds of fractional differential equations in
the sense of the modified Riemann-Liouville frac-
tional derivative can also be easily obtained. So in
this sense, the analytical method presented above
is of general meaning, and can find its broad ap-
plications in the research of oscillation of other
fractional differential equations.

4 Oscillatory criteria for Eq. (2)

In this section, we use the analytical method sum-
marized in Remark 1 to establish oscillatory crite-
ria for Eq.(2). First we prove the following lemma.

Lemma 10 Assume x(t) is a eventually positive
solution of Eq. (2), and∫ ∞

ξ0

1

r̃(s)
ds =∞, (19)

∫ ∞

ξ0

1

r̃(ζ)

∫ ∞

ζ

∫ ∞

τ
q̃(s)dsdτdζ =∞. (20)

Then there exists a sufficiently large T such
that Dα

t (r(t)D
α
t x(t)) > 0 on [T,∞), and either

Dα
t x(t) > 0 on [T,∞) or lim

t→∞
x(t) = 0.
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Proof. Let x(t) = x̃(ξ), where ξ = tα

Γ(1+α) . Then

similar to the process of Lemma 1, Eq.(2) can be
transformed into the following form:

(r̃(ξ)x̃′(ξ))′′ + q̃(ξ)x̃(ξ) = 0, ξ ≥ ξ0 > 0. (21)

Since x(t) is a eventually positive solution of (2),
then x̃(ξ) is a eventually positive solution of Eq.
(21), and there exists ξ1 > ξ0 such that x̃(ξ) > 0
on [ξ1,∞). Furthermore, we have

(r̃(ξ)x̃′(ξ))′′ = −q̃(ξ)x̃(ξ) < 0, ξ ≥ ξ1. (22)

Then (r̃(ξ)x̃′(ξ))′ is strictly decreasing on [ξ1,∞),
and thus (r̃(ξ)x̃′(ξ))′ is eventually of one sign. We
claim (r̃(ξ)x̃′(ξ))′ > 0 on [ξ2,∞), where ξ2 > ξ1 is
sufficiently large. Otherwise, assume there exists
a sufficiently large ξ3 > ξ2 such that (r̃(ξ)x̃′(ξ))′ <
0 on [ξ3,∞). Then there exists a sufficiently large
ξ4 with ξ4 > ξ3 such that x̃′(ξ) < 0, ξ ∈ [ξ4,∞).
Furthermore,

x̃(ξ)− x̃(ξ4) =
∫ ξ

ξ4

x̃′(s)ds =

∫ ξ

ξ4

r̃(s)x̃′(s)

r̃(s)
ds

≤ r̃(ξ4)x̃′(ξ4)
∫ ξ

ξ4

1

r̃(s)
ds.

By (19) we deduce that lim
ξ→∞

x̃(ξ) = −∞, which

contradicts to the fact that x̃(ξ) is a eventually
positive solution of Eq. (21). So (r̃(ξ)x̃′(ξ))′ > 0
on [ξ2,∞), and Dα

t (r(t)D
α
t x(t)) > 0 on [t2,∞).

Thus Dα
t x(t) = x̃′(ξ) is eventually of one sign.

Now we assume x̃′(ξ) < 0, ξ ∈ [ξ5,∞) for some
sufficiently large ξ5 > ξ4. Since x̃(ξ) > 0, fur-
thermore we have lim

ξ→∞
x̃(ξ) = β ≥ 0. We claim

β = 0. Otherwise, assume β > 0. Then x̃(ξ) ≥ β
on [ξ5,∞), and for ξ ∈ [ξ5,∞), by (21) we have

(r̃(ξ)x̃′(ξ))′′ ≤ −q̃(ξ)x̃(ξ) ≤ −q̃(ξ)β.

Substituting ξ with s in the inequality above, an
integration with respect to s from ξ to ∞ yields

−(r̃(ξ)x̃′(ξ))′ ≤ − lim
ξ→∞

(r̃(ξ)x̃(ξ))′ − β
∫ ∞

ξ
q̃(s)ds

< −β
∫ ∞

ξ
q̃(s)ds,

which means

(r̃(ξ)x̃′(ξ))′ > β

∫ ∞

ξ
q̃(s)ds. (23)

Substituting ξ with τ in (23), an integration for
(23) with respect to τ from ξ to ∞ yields

−r̃(ξ)x̃′(ξ)

> − lim
ξ→∞

r̃(ξ)x̃′(ξ) + β

∫ ∞

ξ

∫ ∞

τ
q̃(s)dsdτ

> β

∫ ∞

ξ

∫ ∞

τ
q̃(s)dsdτ,

that is,

x̃′(ξ) < −β 1

r̃(ξ)

∫ ∞

ξ

∫ ∞

τ
q̃(s)dsdτ. (24)

Substituting ξ with ζ in (2.7), an integration for
(24) with respect to ζ from ξ5 to ξ yields

x̃(ξ)− x̃(ξ5) < −β
∫ ξ

ξ5

1

r̃(ζ)

∫ ∞

ζ

∫ ∞

τ
q̃(s)dsdτdζ.

By (20), one can see limt→∞ x̃(ξ) = −∞, which
causes a contradiction. The proof is complete. ⊓⊔

Theorem 11 If (19)-(20) hold, and there exist
ϕ ∈ C1([t0,∞),R+) and φ ∈ C1([t0,∞), [0,∞))
such that∫ ∞

ξ0

{ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)∆̃(s, ξ2)φ̃

2(s)

r̃(s)

− [2φ̃(s)ϕ̃(s)∆̃(s, ξ2) + r̃(s)ϕ̃′(s)]2

4ϕ̃(s)∆̃(s, ξ2)r̃(s)
}ds

=∞, (25)

where ϕ̃(ξ) = ϕ(t), φ̃(ξ) = φ(t), and ∆̃ is de-
fined as below. Then every solution of Eq. (2) is
oscillatory or satisfies lim

t→∞
x(t) = 0.

Proof. Assume (2) has a nonoscillatory solution
x on [t0,∞). Without loss of generality, we may
assume x(t) > 0 on [t1,∞), where t1 is sufficiently
large. By Lemma 10 we have Dα

t (r(t)D
α
t x(t)) >

0, t ∈ [t2,∞), where t2 > t1 is sufficiently large,
and either Dα

t x(t) > 0 on [t2,∞) or lim
t→∞

x(t) = 0.

Now we assume Dα
t x(t) > 0 on [t2,∞). Define

the generalized Riccati function:

ω(t) = ϕ(t){D
α
t (r(t)D

α
t x(t))

x(t)
+ φ(t)}. (26)

Then for t ∈ [t2,∞), we have

Dα
t ω(t) = Dα

t ϕ(t)
Dα

t (r(t)D
α
t x(t))

x(t)
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+ϕ(t)Dα
t {
Dα

t (r(t)D
α
t x(t))

x(t)
}

+Dα
t ϕ(t)φ(t) + ϕ(t)Dα

t φ(t)

= −ϕ(t)q(t)− ϕ(t)Dα
t x(t)D

α
t (r(t)D

α
t x(t))

x2(t)

+
Dα

t ϕ(t)

ϕ(t)
ω(t) + ϕ(t)Dα

t φ(t). (27)

On the other hands, By (22), we obtain that
(r̃(ξ)x̃′(ξ))′ is strictly decreasing on [ξ2,∞). So

r̃(ξ)x̃′(ξ) ≥ r̃(ξ)x̃′(ξ)− r̃(ξ2)x̃′(ξ2)

=

∫ ξ

ξ2

(r̃(s)x̃′(s))′ds ≥ (r̃(ξ)x̃′(ξ))′(ξ − ξ2),

that is

Dα
t x(t)

≥ Dα
t (r(t)D

α
t x(t))

r(t)
(

tα

Γ(1 + α)
− tα2

Γ(1 + α)
).

Denote ∆(t, t2) =
tα

Γ(1+α) −
tα2

Γ(1+α) . Then fur-

thermore we have

Dα
t ω(t) ≤ −ϕ(t)q(t)

−ϕ(t)∆(t, t2)

r(t)
[
ω(t)

ϕ(t)
− φ(t)]2

+
Dα

t ϕ(t)

ϕ(t)
ω(t) + ϕ(t)Dα

t φ(t)

= −ϕ(t)q(t) + ϕ(t)Dα
t φ(t)

−ϕ(t)∆(t, t2)φ
2(t)

r(t)
− ∆(t, t2)

r(t)ϕ(t)
ω2(t)

+
2φ(t)ϕ(t)∆(t, t2) + r(t)Dα

t ϕ(t)

r(t)ϕ(t)
ω(t)

≤ −ϕ(t)q(t) + ϕ(t)Dα
t φ(t)

−ϕ(t)∆(t, t2)φ
2(t)

r(t)

+
[2φ(t)ϕ(t)∆(t, t2) + r(t)Dα

t ϕ(t)]
2

4ϕ(t)∆(t, t2)r(t)
,

t ≥ t2. (28)

Let ∆̃(ξ, ξ2) = ∆(t, t2), ω̃(ξ) = ω(t), ϕ̃(ξ) =
ϕ(t), φ̃(ξ) = φ(t). Then (28) can be transformed
to the following form:

ω̃′(ξ) ≤ −ϕ̃(ξ)q̃(ξ) + ϕ̃(ξ)φ̃′(ξ)

− ϕ̃(ξ)∆̃(ξ, ξ2)φ̃
2(ξ)

r̃(ξ)

+
[2φ̃(ξ)ϕ̃(ξ)∆̃(ξ, ξ2) + r̃(ξ)ϕ̃′(ξ)]2

4ϕ̃(ξ)∆̃(ξ, ξ2)r̃(ξ)
ξ ≥ ξ2. (29)

Substituting ξ with s in (29), an integration
for (29) with respect to s from ξ2 to ξ yields∫ ξ

ξ2

{ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)∆̃(s, ξ2)φ̃

2(s)

r̃(s)

− [2φ̃(s)ϕ̃(s)∆̃(s, ξ2) + r̃(s)ϕ̃′(s)]2

4ϕ̃(s)∆̃(s, ξ2)r̃(s)
}ds

≤ ω(ξ2)− ω(ξ) ≤ ω(ξ2) <∞,

which contradicts to (25). So the proof is com-
plete.

Remark 12 From the results established above
one can see that using the method summarized in
Remark 9, oscillatory criteria for fractional dif-
ferential equations of higher order can also be es-
tablished.

5 Applications

Example 1. Consider the following functional
fractional differential equation:

Dα
t (

√
tα

Γ(1 + α)
(Dα

t x(t))
5
3 ) +

Γ(1 + α)

tα
Dα

t x(t)

+(
tα

Γ(1 + α)
)−

13
6 x

5
3 (t)ex

2(t) = 0,

t ≥ 2, 0 < α < 1. (30)

In Eq. (1), if we set t0 = 2, γ = 5
3 ,

r(t) =

√
tα

Γ(1 + α)
, p(t) =

Γ(1 + α)

tα
,

q(t) = (
tα

Γ(1 + α)
)−

13
6 , f(x) = x

5
3 ex

2
,

then we obtain (2). So ξ0 =
2α

Γ(1+α) ,

r̃(ξ) = r(t) =

√
tα

Γ(1 + α)
=
√
ξ,

p̃(ξ) = p(t) =
Γ(1 + α)

tα
= ξ−1,

q̃(ξ) = q(t) = (
tα

Γ(1 + α)
)−

13
6 = ξ−

13
6

and f(x)/x
5
3 ≥ 1, which implies K = 1. Further-

more, since

A(ξ) = exp(

∫ ξ

ξ0

τ−
3
2dτ) = exp(2ξ

− 1
2

0 − 2ξ−
1
2 )
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so 1 ≤ A(ξ) ≤ exp(2ξ
− 1

2
0 ), and in (6),∫ ∞

ξ0

1

[A(s)r̃(s)]
1
γ

ds

≥ exp(−6

5
ξ
− 1

2
0 )

∫ ∞

ξ0

s−
3
10ds =∞.

On the other hands, in (9), letting ζ̃(ξ) =

ξ
7
6 , ρ̃(ξ) = 0, we obtain∫ ∞

ξ0

{KA(s)ζ̃(s)q̃(s)−ζ̃(s)ρ̃′(s)+ ρ̃
1+1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds

=

∫ ∞

ξ0

A(s)[1− (
8

3
)−

8
3 ]
1

s
ds

≥
∫ ∞

ξ0

[1− (
8

3
)−

8
3 ]
1

s
ds =∞.

Therefore, Eq.(30) is oscillatory by Theorem 3. ⊓⊔
Example 2. Consider the following functional
fractional differential equation:

Dα
t (

tα

Γ(1+α)
(Dα

t x(t))
1
3 )+

[Γ(1 + α)]2

t2α
Dα

t x(t)

+
tα

Γ(1 + α)
x

1
3 (t)[1 + x2(t)] = 0,

t ≥ 5, 0 < α < 1. (31)

In fact, if we set in Eq. (1) t0 = 5, γ = 1
3 ,

r(t) =
tα

Γ(1 + α)
, p(t) =

[Γ(1 + α)]2

t2α
,

q(t) =
tα

Γ(1 + α)
, f(x) = x

1
3 (1 + x2)

then we obtain (19). So ξ0 =
5α

Γ(1+α) ,

r̃(ξ) = r(t) =
tα

Γ(1 + α)
= ξ

p̃(ξ) = p(t) =
[Γ(1 + α)]2

t2α
= ξ−2

q̃(ξ) = q(t) =
tα

Γ(1 + α)
= ξ

and f(x)/x
1
3 ≥ 1, which implies K = 1. Further-

more, since

A(ξ) = exp(

∫ ξ

ξ0

τ−3dτ) = exp(
1

2
ξ
− 1

2
0 − 1

2
ξ−

1
2 )

so 1 ≤ A(ξ) ≤ exp(12ξ
− 1

2
0 ), and in (6),∫ ∞

ξ0

1

[A(s)r̃(s)]
1
γ

ds ≤
∫ ∞

ξ0

s−3ds =
1

2
ξ−2
0

=
1

2
[

5α

Γ(1 + α)
]−2 <∞.

So (6) does not hold. On the other hand, in (9)

and (16), letting ζ̃(ξ) = ξ, ρ̃(ξ) = 0, we obtain∫ ∞

ξ0

{KA(s)ζ̃(s)q̃(s)−ζ̃(s)ρ̃′(s)+ ρ̃
1+1

γ (s)ζ̃(s)

[r̃(s)A(s)]
1
γ

−{(γ+1)ζ̃(s)ρ̃
1
γ (s)+ζ̃ ′(s)[r̃(s)A(s)]

1
γ }γ+1

(γ + 1)γ+1ζ̃γ(s)[r̃(s)A(s)]
1
γ

}ds

=

∫ ∞

ξ0

A(s)[s2 − (
4

3
)−

4
3 s

2
3 ]ds

≥
∫ ∞

ξ0

[s2 − (
4

3
)−

4
3 s

2
3 ]ds =∞,

and ∫ ∞

T
[

1

A(τ)r̃(τ)

∫ τ

T
A(s)q̃(s)ds]

1
γ dτ

≥ exp(
3

2
ξ
− 1

2
0 )

∫ ∞

T
[

1

r̃(τ)

∫ τ

T
q̃(s)ds]

1
γ dτ

= exp(
3

2
ξ
− 1

2
0 )

∫ ∞

T
[
1

τ

∫ τ

T
sds]

1
γ dτ

= exp(
3

2
ξ
− 1

2
0 )

∫ ∞

T
[
τ2 − T 2

2τ
]3dτ =∞.

Therefore, (9) and (16) hold, and then Eq. (31)
is oscillatory according to Theorem 7.

Remark 13 The oscillatory results for the two
examples above can not be obtained by the oscil-
latory criteria established in [13-17].

Remark 14 It is worthy to note that the method
used in Section 3 to establish oscillatory criteria
for the functional fractional differential equation
(1) can be used not only in the analysis of oscilla-
tion, but also in the analysis of asymptotic prop-
erties of solutions of functional fractional differ-
ential equations.

6 Conclusions

In this paper, by use of certain generalized Riccati
transformation functions, inequality and integra-
tion average technique, some new oscillatory cri-
teria for a functional fractional differential equa-
tion with damping have been established. Using a
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similar analytical method, some oscillatory crite-
ria for a higher order fractional differential equa-
tion have also been established. These results are
of new forms so far in the literature. We note
that the approach in establishing the main theo-
rems above can be generalized to research oscilla-
tion of fractional differential equations with more
complicated forms, which are expected to further
research.
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