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Abstract: The paper studies the existence of the solution to the equation ∂ηηw+w∂ξw− ∂tw = f(η, ξ, t, w). The
equation comes from mathematics finance. With the help of Fichera-Oleinik theory, we find the suitable boundary
value conditions to assure the posedness of the equation. By modifying Oleinik’s line method, we translate the
mathematics finance equation to a system of ordinary differential equations, then by the uniformly estimates of the
solution of the system, using Arzela Theorem, we can extract a convergent subsequence, which is convergent to
the solution of the mathematics finance equation itself. Some constraint conditions of known functions f , w0, w1

and w2, that appearing in the initial boundary value conditions, are imposed.

Key–Words: Mathematics finance, Oleinik’s line method, Fichera-Oleinik theory, boundary condition, t-global
solution.

1 An introduction of Oleinik’s line
method

Oleinik’s line method is used in the study of the well-
known Prandtl boundary layer system, which was pro-
posed by Prandtl in 1904 (see [8]) and now becomes
one of the fundamental parts of fluid dynamics. Many
scholars have been carrying out research in this field,
achievements are abundant in literature on theoretical,
numerical experimental aspects of the theory, see [9-
12] etc. Let us give some details. Assuming that the
motion of a fluid occupying a two-dimensional region
is characterized by the velocity vector V = (u, v),
where u, v are the projections of V onto the coor-
dinate axes x, y, respectively, the Prandtl system for
a non-stationary boundary layer arising in an axially
symmetric incompressible flow past a solid body has
the form as

∂tu+ u∂xu+ v∂yu = ∂tU + U∂xU + ν∂2yu, (1)

∂x(ru) + ∂y(rv) = 0, (2)

in a domain D = {0 < t < T, 0 < x < X, 0 < y <
∞}, where ν=const> 0 is the coefficient of kinematic
viscosity; U(t, x) is called the velocity at the outer
edge of the boundary layer, U(t, 0) = 0, U(t, x) > 0
for x > 0; r(x) is the distance from that point to the
axis of a rotating body, r(0) = 0, r(x) > 0 for x > 0.
If we introduce Crocco variables,

τ = t, ξ = x, η =
u(t, x)

U(t, x)
,

then Prandtl system is succeeded to be changed to a
degenerate parabolic equation for w(τ, ξ, η) = ∂yu

U :

νw2wηη − wτ − ηUwξ +Awη +Bw = 0, (3)

where A,B are two known functions derived from
Prandtl system, one can refer to [7] for details. The
main technique of Oleinik’s line method lies in three
aspects. Firstly, for any functions f(τ, ξ, η), Oleinik
used the notation

fm,k(η) ≡ f(mh, kh, η), h = const > 0.

Instead of equation (3), she considered the following
system of ordinary differential equations

ν(wm−1,k + h)2wm,k
ηη −

wm,k − wm−1,k

h

−ηUm,kw
m,k − wm,k−1

h
+Am,kwm,k

η

+Bm,kwm,k = 0, (4)

and proved that

wm,k
η ,

wm,k − wm,k−1

h
,

wm,k − wm−1,k

h
, (1− η + h)wm,k

ηη

are bounded in Ω formh ≤ T1 and h ≤ h0, uniformly
with respect to h. Secondly, by linear extension of
the solution of the ordinary differential equations, she
got the strong solution of the differential equation (3).
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Thirdly, by Crocco inverse transformation, the solu-
tion of Prandtl system (1)-(2) was obtained.

In our paper, we will study an degenerate
parabolic equation from mathematics finance by mod-
ifying Oleinik’s line method.

2 Fichera-Oleinik theory
Let us remind of Fichera-Oleinik theory. Let x ∈ Ω ⊂
RN , and Ω is a bounded domain. If we want to con-
sider the boundary value problem of the following lin-
ear degenerate elliptic equation,

∂

∂xi
(aij(x)

∂u

∂xj
) +

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = 0, (5)

Fichera-Oleinik theory tells us that only a part of
boundary ∂Ω should be assigned the boundary value.
In details, let {ni} be the unit interior normal vector
of ∂Ω and denote that

Σ2 =

{
x ∈ ∂Ω :

aijninj = 0,

(bi − aijxj )ni < 0

}
, (6)

Σ3 = {x ∈ ∂Ω : aijninj > 0}. (7)

Then, to ensure the well-posedness of equation (5),
Fichera-Oleinik theory tells us that the suitable bound-
ary value condition is

u|∑
2

∪∑
3
= g(x). (8)

In particular, if the matrix (aij) is positive definite, (8)
is just the usual Dirichlet boundary value condition.

Now, the reaction-diffusion equation

ut = △A(u), (9)

if A−1 exists, in other words, equation (9) is weakly
degenerate, let v = A(u), u = A−1(v). Then

△v − (A−1(v))t = 0. (10)

According to Fichera-Oleinik theory, we know that we
can impose the Dirichlet boundary condition. For the
boundary layer equation (3), if the domain Ω = {0 <
τ < T, 0 < ξ < X, 0 < η < 1}, then comparing
(3) with (5), according to Fichera-Oleinik theory, the
initial-boundary value conditions for w have the form{

w|τ=0 = w0(ξ, η), w|η=1 = 0,
(νwwη − v0w + c(τ, ξ))|η=0 = 0,

(11)

where ν is the viscous coefficient, v0 and c(τ, ξ) are
known functions, one can refer to [7] for the details.

But, if equation (9) is strongly degenerate, then A−1

is not existential, we can not deal with it as (10). We
can consider a more general equation

∂u

∂t
= ∆A(u) + div(b(u)), in QT = Ω× (0, T ). (12)

Rewrite equation (12) as

∂u

∂t
= a(u)∆u+ a′(u)|∇u|2 + div(b(u)), (13)

the domain is a cylinder Ω × (0, T ). If we let t =
xN+1 and see the strongly degenerate parabolic equa-
tion (12) as the form of a ”linear” degenerate ellip-
tic equation as follows: when i, j = 1, 2, · · · , N ,
aii(x, t) = a(u(x, t)), aij(x, t) = 0, i ̸= j, then

(ãrs)(N+1)×(N+1) =

(
aij 0
0 0

)
.

If a(0) = 0, which means that equation (13) is not
only strongly degenerate in the interior of Ω, but also
degenerate on the boundary ∂Ω. Then

∑
3 is an empty

set. While

b̃s(x, t) =

{
b′i(u) + a′(u) ∂u

∂xi
, 1 ≤ s ≤ N,

−1, s = N + 1.

Under this observation, according to Fichera-
Oleinik theory, the initial value condition

u(0, x) = u0(x), (14)

is always needed, but on the lateral boundary ∂Ω ×
(0, T ), by a(0) = 0, the partly boundary on which we
should pose the boundary value is

Σp =

{
x ∈ ∂Ω :

(b′i(0) + a′(0) ∂u
∂xi
|x∈∂Ω

−a′(0) ∂u
∂xi
|x∈∂Ω)ni < 0

}
= {x ∈ ∂Ω : b′i(0)ni < 0}.

(15)
where {ni} be the unit inner normal vector of ∂Ω.

Though (15) seems reasonable and beautiful,
whether the term ∂u

∂xi
|x∈∂Ω has a explicit definition is

unclearly, unless that the equation (13) has a classi-
cal solution. In fact, due to the strongly degenerate
property of a, (13) generally only has weak solution.
In our paper, we consider the solution of (13) in BV
sense, and we can not define the trace of ∂u

∂xi
on ∂Ω,

which means that we can not define

Σp =

{
x ∈ ∂Ω :

(b′i(0) + a′(0) ∂u
∂xi
|x∈∂Ω

−a′(0) ∂u
∂xi
|x∈∂Ω)ni < 0

}
.

Fortunately, only if bi(s) is derivable, then

Σp = {x ∈ ∂Ω : b′i(0)ni < 0}. (16)
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has a definite sense. Recently, in [14], the author have
shown that that Σp defined in (16) can be imposed the
boundary value condition in some way.

In the paper, we consider the initial-boundary
value problem of the following equation: for
(η, ξ, t) ∈ Ω× (0, T ),

∂ηηw + w∂ξw − ∂tw = f(η, ξ, t, w), (17)

where Ω = (0, R) × (0, N) ⊂ R2 is a rectangle,
T is a positive constant. Since equation (17) lacks
the second order partial derivative term ∂ξξw, it is
a strongly degenerate parabolic equation. Now, we
can use Fichera-Oleinik theory to determine the partly
boundary condition to assure the posedness of the so-
lutions of equation (17). If equation (17) is considered
as a degenerate elliptic equation as (5), noticing that
the domain is just a cube, [0, R] × [0, N ] × [0, T ] =
Ω × [0, T ], and (aij) in equation (17) has the special
form

(aij) =

 1 0 0
0 0 0
0 0 0

 ,

according to Fichera-Oleinik theory, we can quote the
following initial-boundary value conditions

w |t=0= w0(η, ξ, 0), (18)

w |ξ=N= w2(η,N, t), (19)

w |{η=0}×[0,T )= w1(0, ξ, t),
w |{η=R}×[0,T )= 0. (20)

We assume the functions w0, w1, w2 are smooth ad-
equately on Ω× (0, T ). We will use some ideas
of Oleinik’s line method [7] to discuss the initial-
boundary value problem (17)-(20).

3 The main result
Equation (17) arises in mathematics finance, arises
when studying nonlinear physical phenomena such as
the combined effects of diffusion and convection of
matter (cf.[1]). From references [2-5], we know that
there is a unique local classical solution to Cauchy
problem of equation (17). As usual, the local classical
solution w of equation (17) means that, for t ≤ T0,
T0 is small enough, all the partial derivatives of w
appearing in equation (17) are continuous functions.
The author also had also studied the boundary layer
theory and the mathematics finance equation (17) for
a long time, see [14]-[19] please.

Comparing equation (17) with equation (3), two
equations are similar to each other. It is natural to con-
jecture that we are able to use Oleinik’s line method

to study equation (17). The essential difference lies
in the term +w∂ξw of equation(17) and the term
−ηUwξ of equation (3). This difference gives rise to
many difficulties when we use Oleinik’s line method.
How to overcome these difficulties is the main inspir-
ing technique in our paper. For example, instead of
the linearized function

wm,k(η) = w(η, kh,mh), h = const > 0,

used in [7], we use the following linearized function

wm,k(η) = w(η,N − kh,mh), h = const > 0,
(21)

in our paper. For another example, when we use the
maximum principle, not only the auxiliary function
(45) in our paper is complete different from that used
in [7], but also the undetermined constants α, β de-
pends on step length h, whereas in [7], they are inde-
pendent of step length h.

The main result of our paper is the following the-
orem.

Theorem 1 Assume that there exist two constants
K0,K1 such that,

K0(R− η) ≤ w2(η,N, t) |ξ=N≤ K1(R− η),

K1 ≤ 1
2R ,

(22)

0 ≤ w1(0, ξ, t) ≤
1

2
, 0 ≤ w0(η, ξ, 0) ≤

1

2
, (23)

and the functions w0, w1, w2 are smooth adequately
on Ω× (0, T ). Supposed that f is a C1 function and
there are positive constants c1, c2, such that when u−
v ≥ 0, f satisfies

c2(u− v) ≥ f(η, ξ, t, u)− f(η, ξ, t, v) ≥ c1(u− v).
(24)

Then the initial-boundary value problem (17)-(20) ad-
mits a solution with the following properties: w,wη

are continuous, wξ, wt, wηη are bounded; equation
(17) holds almost everywhere in Ω× (0, T ), provided
that ξ ≤ N , N is suitably small. Moreover,

c3(R− η) ≤ w ≤ c4(R− η) ≤
1

2
, (25)

|wt| ≤ c(R− η), |wξ| ≤ c(R− η), (26)

where c and ci are the constants independent of T ,
and the constant c may be different from one to the
another. If we assume that

K0(R− η) ≤ w2η(η,N, t) |ξ=N≤ K1(R− η),
K0(R− η) ≤ w2ξ(η,N, t) |ξ=N≤ K1(R− η),
K0(R− η) ≤ w2t(η,N, t) |ξ=N≤ K1(R− η).

(27)
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0 ≤ w1η(0, ξ, t) ≤ 1

2 , 0 ≤ w0η(η, ξ, 0) ≤ 1
2 ,

0 ≤ w1ξ(0, ξ, t) ≤ 1
2 , 0 ≤ w0ξ(η, ξ, 0) ≤ 1

2 ,
0 ≤ w1t(0, ξ, t) ≤ 1

2 , 0 ≤ w0t(η, ξ, 0) ≤ 1
2 .

(28)
and moreover,

|wξ| ≤ c5, (29)

where c1 − c5 > 0 and K1 ≤ 1
2R , then the solution w

is in the classical sense.

If we notice that the solution w in Theorem 1 is
locally in ξ, but globally in t, we can call this solution
as t-global solution.

At the end of the paper, base on Theorem 1, the
stability of the solution of (17)-(20) is discussed.

Remark 2 According the definition of the utility func-
tion, one knows that it always has 0 ≤ w ≤ 1. Ac-
tually, the conditions (21),(22) can be generalized to
that

0 ≤ w0 < 1, 0 ≤ w1 < 1, 0 ≤ w2 < 1,

and a part of the conclusion (24) can be made
stronger as

0 ≤ c3(R− η) ≤ w ≤ c4(R− η) < 1.

However, the optimal conclusion should be 0 ≤ w ≤
1 itself, and we are not able to get this conclusion for
the time being.

Remark 3 The uniqueness of the global weak solu-
tions to the problem (17)-(20) is able to be proved as
that in [13]. Thus the t-global classical solution of
(17)-(20) is unique.

Remark 4 In Theorem 1, it is provided that ξ ≤ N ,
N is suitably small. Recently, if N is not small
enough, the author had shown that in [14], the classi-
cal solution blows up in finite time.

4 The modifying line method
Consider the initial-boundary value problem (17)-
(20). Suppose the functions w0, w1, w2 are smooth
adequately on Ω× (0, T ), and f is a C1 function sat-
isfying (24).

For any functions, we use the following notation

wm,k(η) = w(η,N − kh,mh),
h = const > 0.

(30)

Instead of the system (17)-(20), let us consider the fol-
lowing system of ordinary differential equations.

wm,k
ηη −

wm,k − wm−1,k

h

−wm,k−1w
m,k − wm,k−1

h
−f(η,N − kh,mh,wm,k) = 0, (31)

wm,k |η=R= 0,
wm,k |η=0= w1(0, N − kh,mh),

(32)

where
w0,k(η) = w0(η,N − kh),
wm,0(η) = w2(η,mh,N),

(33)

m = 1, · · · , [T�h]; k = 1, · · · , [N�h]. (34)

The solution of (31)-(32) are defined in classical
sense, its existence is clearly. We will prove that

wm,k
ηη , wm,k

η ,
wm,k − wm−1,k

h
,
wm,k − wm,k−1

h

are uniformly bounded for any m, k.

Lemma 5 Under the conditions of (22)-(24), for
small enough h, there is a suitably small positive
number N0 such that the problem (31)-(32) admits a
unique solution for kh ≤ N0. The solution satisfies
the following estimate

V0(η,N0 − kh) ≤ wm,k ≤ V1(η,N0 − kh), (35)

where V0, V1 are continuous functions, positive in
(0, R), V1 ≤ 1

2 and satisfy

V0 ≡ K0(R− η), V1 ≡ K1(R− η), (36)

in a neighborhood of η = R, where the constantK0 ≤
K1 ≤ 1

2R .

Proof: Let Qm,k be the difference of two solutions
wm,k
1 , wm,k

2 . Then Qm,k can attain neither a positive
maximum nor a negative minimum at η = 0, orR. By
0 ≤ wm,k−1 ≤ 1

2 , and

0 = Qm,k
ηη −

1

h
Qm,k − wm,k−1 1

h
Qm,k

+f(η,N − kh,mh,wm,k
1 )

−f(η,N − kh,mh,wm,k
2 ), (37)

Qm,k can attain neither a positive maximum nor a neg-
ative minimum in interior of (0, R) by (24), provided
that h ≤ h0, h0 small enough. Consequently, under
our assumption, equation (31) cannot have more than
one solution. Therefore, we shall prove (35) form and
k, under the assumption of that the solutionwm,k−1 of
equation (31) admits the following priori estimate

V1(η,N − (k − 1)h) ≥ wm,k−1
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≥ V0(η,N − (k − 1)h), (38)

where m = 0, 1, · · · ,.
For a series of functions {um,k}, we introduce the

operator

Lm,k(u) = um,k
ηη −

1

h
(um,k − um−1,k)

−wm,k−1 1

h
(um,k − um,k−1)

−f(η,N − kh,mh, um,k).

In order to prove the priori estimate (35), we shall
show that there exists the function V1 with the proper-
ties specified in Lemma 5 and satisfies

0 ≥ Lm,k(V1) = V m,k
1ηη −

1

h
(V m,k

1 − V m−1,k
1 )

−wm,k−1 1

h
(V m,k

1 − V m,k−1
1 )

−f(η,N − kh,mh, V m,k
1 ), (39)

V1(0,mh) ≥ w1(0, N − kh,mh), (40)

V1(R,mh) = K1(R−η) in a neighborhood of η = R,
where K1 ≤ 1

2R .
Now, (35) can be proved by induction with re-

spect to k. Indeed, let qm,k = V m,k
1 − wm,k. Then

qm,k(0) ≥ 0 and we shall show that qm,k can not
attain its negative minimum in the interior of (0, R).
Otherwise, at this negative minimum point, we have

0 ≥ Lm,k(V1)− Lm,k(w)

= qm,k
ηη −

1

h
(qm,k − qm−1,k)

−wm,k−1 1

h
(qm,k − qm,k−1)

+f(η,N − kh,mh, V m,k
1 )

−f(η,N − kh,mh,wm,k)

≥ qm,k
ηη −

1

h
(qm,k − qm−1,k)

−wm,k−1 1

h
(qm,k−qm,k−1) + c2q

m,k, (41)

if we choose h is small enough, then the right hand
side of (41) is positive. This is a contradiction. Thus
the inequality on the right hand side of (35) is proved.

So, it remains to show that, by (38), there is a
positive N0 such that for kh ≤ N0, we can construct
the function V1 to satisfy (35) and (36). Let φ1(s) be
a smooth function such that when η > R

2 ,

φ1(s) = R− η,

when 1
4R ≤ s ≤

1
2R,

R

2
≤ φ1 ≤ R,

when η < 1
4R,

φ1(s) = R.

Set

V1(η,N − kh) =Mφ1(η)φ2(β1η)e
β2kh, (42)

where φ2 is a smooth function such that when 0 ≤
s ≤ R,

φ2(s) = 4− e
1
R
s,

when s ≥ 2R,
φ2(s) = 1,

when R ≤ s ≤ 2R

1 ≤ φ2(s) ≤ 4− e.

The constant M is chosen from the condition V1 ≤ 1
2 .

The positive constants β1, β2 will be specified shortly.
Clearly,

L(V1)

=Meβ2kh(φ1(η)φ2(β1η))ηη

−w
m,k−1

h
Mφ1(η)φ2(β1η)(e

β2kh − eβ2(k−1)h)

−f(η,N − kh,mh, V m,k
1 ). (43)

For a given small positive number δ, if R − η ≤ δ,
we can choose β1 such that β1η ≥ 2R, then ac-
cording to the definitions of φ1 and φ2, we have
φ1(η)φ2(β1η) = R − η. Now, if we choose β2 large
enough, kh ≤ N0 small enough, then

L(V1)

≤ −w
m,k−1

h
M(R−η)(eβ2kh−eβ2(k−1)h) + cV m,k

1

≤ −w
m,k−1

h
M(R− η)(eβ2kh − eβ2(k−1)h)

+c(M(R− η)eβ2kh)

≤ M(R− η)[−β2eβ2h′
+ c] ≤ 0,

where 0 < h′ < h.
If R− η > δ, noticing that

| (φ1(η)φ2(β1η))ηη |≤ c,

then

L(V1)

≤ −w
m,k−1

h
Mφ1(η)φ2(β1η)(e

β2kh−eβ2(k−1)h)

+cMeβ2kh + cV m,k
1

≤ −w
m,k−1

h
Mφ1φ2(e

β2kh − eβ2(k−1)h)

+cMeβ2kh + c(Mφ1φ2e
β2kh)

≤ M(φ1φ2)[−β2eβ2h′
+ c] + cMeβ2kh ≤ 0.
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At the same time, setting

V0(η,N − kh) = µφ(α1η)φ1(η)e
α2kh, (44)

where µ is small enough such that V0(0,mh) ≤
w1(0, kh,mh), φ(s) is a smooth function such that
when 0 ≤ s ≤ R,

φ(s) = e
1
R
s,

when R ≤ s ≤ 3
2R,

1 ≤ k ≤ e,

when s > 3
2R,

φ(s) = 1.

also by choosing α1, α2 large enough, kh ≤ N0 small
enough, we have L(V0) ≥ 0. Thus we can prove the
inequality on the left hand side of (35) similarly. ⊓⊔

Lemma 6 Assume that the conditions of Lemma 5 are
fulfilled, then

wm,k
η ,

1

h
(wm,k −wm−1,k),

1

h
(wm,k −wm,k−1), wm,k

ηη

are bounded for kh ≤ N0 and h ≤ h0, uniformly
with respect to h.

Proof: Let Φm,k(η) be the functions defined as fol-
lows: for k ≥ 1,m ≥ 1,

Φm,k(η)=(
wm,k−wm−1,k

h
)2+(

wm,k−wm,k−1

h
)2.

(45)
Also, for m ≥ 1, we define

Φm,0(η) = (
wm,0 − wm,−1

h
)2.

To the end, let wm,−1 = wm,−1(η, kh) be a bounded
function such that

wm,0 − wm,−1

h

= wm,0
ηη − wm,−1w

m,0 − wm−1,0

h
−f(·, wm,0). (46)

Clearly, by that w2 has the bounded first order
derivatives and w2ηη is bounded, wm,0−wm,−1

h is uni-
formly bounded with respect to h, then

| Φm,0 |≤ c. (47)

Denote

rm,k =
wm,k − wm,k−1

h
, ρm,k =

wm,k − wm−1,k

h
.

Let us write out the differential equations which hold
for Φm,k(η) on the interval 0 ≤ η < R. We find the
equations for Φm,k with k = 0,m ≥ 1 by taking only
the first equation. In order to derive the equation for
Φm,k(η) with k = 1, we utilize the relation (46) which
defines the values of wm,−1.

If m ≥ 1, k ≥ 1 from equation (31) for wm,k, we
subtract equation (31) for wm−1,k and multiply the re-
sult by 2ρm,k

h to get the first equation; from equation
(31) for wm,k we subtract equation (31) for wm,k−1

and multiply the result by 2rm,k

h to get the second
equation. Taking the sum of the two equations for
Φm,k,m = 1, 2, · · · ; k = 1, 2, · · · , [N/h]. In details,

((31)m,k − (31)m−1,k)
2ρm,k

h

= 2ρm,kρm,k
ηη −

2ρm,k

h
(ρm,k − ρm−1,k)

−2ρm,k

h
(wm,k−1rm,k − wm−1,k−1rm−1,k)

−2ρm,k

h
[f(η,N − kh,mh,wm,k)

−f(η,N − kh, (m− 1)h,wm−1,k)]

= 2ρm,kρm,k
ηη −

2ρm,k

h
(ρm,k − ρm−1,k)

−2ρm,k

h
[f(η,N − kh,mh,wm,k)

−f(η,N − kh, (m− 1)h,wm−1,k)]

−2ρm,k

h
[wm,k−1(ρm,k + rm−1,k − ρm,k−1)

−wm−1,k−1(ρm,k−1 − ρm−1,k−1 + rm−2,k)] = 0.

((31)m,k − (31)m,k−1)
2rm,k

h

= 2rm,krm,k
ηη −

2rm,k

h
(ρm,k − ρm,k−1)

−2rm,k

h
(wm,k−1rm,k − wm,k−2rm,k−1)

−2rm,k

h
[f(η,N − kh,mh,wm,k)

−f(η,N − (k − 1)h,mh,wm,k−1)]

= 2rm,krm,k
ηη −

2rm,k

h
[f(η,N − kh,mh,wm,k)

−f(η,N − (k − 1)h,mh,wm,k−1)]

−2rm,k

h
(wm,k−1rm,k − wm,k−2rm,k−1)

−2rm,k

h
(rm,k+ρm,k−1 − rm−1,k−rm,k−1) = 0.
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Φm,k
η = 2ρm,kρm,k

η + 2rm,krm,k
η ;

Φm,k
ηη = 2ρm,kρm,k

ηη + 2rm,krm,k
ηη

+2(ρm,k
η )2 + 2(rm,k

η )2;

−1

h
(Φm,k − Φm−1,k)

= −1

h
[(ρm,k)2 − (ρm−1,k)2

+(rm,k)2 − (rm−1,k)2];

−w
m,k−1

h
(Φm,k − Φm,k−1)

= −w
m,k−1

h
[(ρm,k)2 − (ρm,k−1)2

+(rm,k)2 − (rm,k−1)2];

Φm,k
ηη −

1

h
(Φm,k − Φm−1,k)

−w
m,k−1

h
(Φm,k − Φm,k−1)

= 2(ρm,k
η )2 + 2(rm,k

η )2

−1

h
[(ρm,k)2 + (rm,k)2]

+
1

h
[(ρm−1,k)2 + (rm−1,k)2]

−w
m,k−1

h
[(ρm,k)2 − (ρm,k−1)2

+(rm,k)2 − (rm,k−1)2]

+
2ρm,k

h
(ρm,k − ρm−1,k)

+
2ρm,k

h
[wm,k−1(ρm,k + rm−1,k − ρm,k−1)

−wm−1,k−1(ρm,k−1 − ρm−1,k−1 + rm−2,k)]

+
2ρm,k

h
[f(η,N − kh,mh,wm,k)

−f(η,N − kh, (m− 1)h,wm−1,k)]

+
2rm,k

h
(rm,k + ρm,k−1 − rm−1,k − rm,k−1)

+
2rm,k

h
(wm,k−1rm,k − wm,k−2rm,k−1)

+
2rm,k

h
[f(η,N − kh,mh,wm,k)

−f(η,N − (k − 1)h,mh,wm,k−1)].

In what follows, let us suppose that ρm,k ≥ 0 and
rm,k ≥ 0. In the other cases, for example, ρm,k ≥ 0

and rm,k ≤ 0, we can discuss the problem in a similar
way, the only difference is the choice of the constant
d1 in the process of the proof.

Now, by (24), we have

Φm,k
ηη −

1

h
(Φm,k − Φm−1,k)

−w
m,k−1

h
(Φm,k − Φm,k−1)

≥ 2(ρm,k
η )2 + 2(rm,k

η )2 − 1

h
[(ρm,k)2 + (rm,k)2]

+
1

h
[(ρm−1,k)2 + (rm−1,k)2]

−w
m,k−1

h
[(ρm,k)2 − (ρm,k−1)2

+(rm,k)2 − (rm,k−1)2]

+
2ρm,k

h
(ρm,k − ρm−1,k)

+
2ρm,k

h
[wm,k−1(ρm,k + rm−1,k − ρm,k−1)

−wm−1,k−1(ρm,k−1 − ρm−1,k−1 + rm−2,k)]

+
2rm,k

h
(rm,k + ρm,k−1 − rm−1,k − rm,k−1)

+
2rm,k

h
(wm,k−1rm,k − wm,k−2rm,k−1)

−2d1(ρm,k)2 − 2c2ρ
m,k − 2d1(r

m,k)2 − 2c2r
m,k,

where d1 = c1 if wm,k ≤ wm−1,k, d1 = c2 if wm,k ≥
wm−1,k. Then

Φm,k
ηη −

1

h
(Φm,k − Φm−1,k)

−w
m,k−1

h
(Φm,k − Φm,k−1)

−αΦm,k + βΦm,k−1

≥ 2(ρm,k
η )2 + 2(rm,k

η )2

+(
1− wm,k−1

h
− 2d1 − α)(ρm,k)2

+(
1− wm,k−1

h
− 2d1 − α)(rm,k)2

+(β +
wm,k−1

h
)[(ρm,k−1)2 + (rm,k−1)2]

+
1

h
[(ρm−1,k)2 + (rm−1,k)2]

−2c2(ρm,k + rm,k)− 2ρm,k

h
ρm−1,k

+
2ρm,k

h
[wm,k−1(rm−1,k − ρm,k−1)

−wm−1,k−1(ρm,k−1 − ρm−1,k−1 + rm−2,k)]
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+
2rm,k

h
(ρm,k−1 − rm−1,k − rm,k−1)

−2rm,k

h
wm,k−2rm,k−1.

If we choose α = α(h) large enough, h small enough,
such that 1−wm,k−1

h −2d1−α > 0, this is possible be-
cause of (38) and 0 ≤ wm,k−1 ≤ 1

2 . Then by Cauchy
inequality, i.e.

ab ≤ εa2 + c(ε)b2,

we have

Φm,k
ηη −

1

h
(Φm,k − Φm−1,k)

−w
m,k−1

h
(Φm,k − Φm,k−1)− αΦm,k + βΦm,k−1

≥ 2(ρm,k
η )2 + 2(rm,k

η )2

+(
1− wm,k−1 − ε

h
− 2d1 − α− ε)(ρm,k)2

+(
1− wm,k−1 − ε

h
− 2d1 − α− ε)(rm,k)2

+(β +
wm,k−1 − ε

h
− ε)[(ρm,k−1)2 + (rm,k−1)2]

+
1− ε
h

[(ρm−1,k)2 + (rm−1,k)2]− c(ε)(1 + 1

h
).

Let Φ1 = Φ+ 1. Then

Φm,k
1ηη −

1

h
(Φm,k

1 − Φm−1,k)

−w
m,k− 1

h
(Φm,k

1 − Φm,k−1
1 )− αΦm,k

1 + βΦm,k−1
1

≥ 2(ρm,k
η )2 + 2(rm,k

η )2

+(
1− wm,k−1 − 2d1 − ε

h
− α− ε)(ρm,k)2

+(
1− wm,k−1 − ε

h
− 2d1 − α− ε)(rm,k)2

+(β +
wm,k−1−ε

h
−ε)[(ρm,k−1)2 + (rm,k−1)2]

+
1− ε
h

[(ρm−1,k)2 + (rm−1,k)2]

+(β − α− c(ε)(1 + 1

h
)).

If we choose β large enough such that

β − α− c(ε)(1 + 1

h
) > 0,

then

Φm,k
1ηη −

1

h
(Φm,k

1 − Φm−1,k)

−w
m,k−1

h
(Φm,k

1 − Φm,k−1
1 )− αΦm,k

1 + βΦm,k−1
1

= Φm,k
1ηη −

1

h
(Φm,k

1 − Φm−1,k)

+(β +
wm,k−1

h
)(Φm,k

1 − Φm,k−1
1 )

−(α− β)Φm,k
1 > 0. (48)

Clearly, Φ1 has the same maximum or minimum point
as Φ.

(i). If at the maximum point of Φm,k, suppose
Φm,k − Φm,k−1 ≥ 0. Now, we have two cases. The
first case is, at the maximum point of Φm,k

1 , Φm,k
1 −

Φm−1,k
1 ≥ 0, then by maximum principle, Φm,k

1 (also
Φm,k) can not attain its maximum in the interior of
(0, R). The second case is, at the maximum point of
Φm,k
1 , Φm,k

1 − Φm−1,k
1 ≤ 0, let Φ̃1 = e−γkhΦ1. Then

by (48)

Φ̃1
m,k
ηη −

1

h
(Φ̃1

m,k − Φ̃1
m−1,k

)

−γeγh1(βh− wm,k−1)Φ̃1
m−1,k

−(β +
wm,k−1

h
)(Φ̃1

m,k − Φ̃1
m,k−1

)

−(α− β)Φ̃1
m,k

> 0,

Φ̃m,k
1ηη −

1

h
Φ̃1

m,k

+(
1

h
− γeγh1(βh+ wm,k−1))Φ̃1

m−1,k

−(β +
wm,k−1

h
)(Φ̃1

m,k − Φ̃1
m,k−1

)

−(α− β)Φ̃1
m,k

> 0,

where h1 < h. If we choose γ = γ(h) > 1
h large

enough, then Φ̃1
m,k

can not attain its maximum in the
interior of (0, R). Thus Φ1(η) = eγmhΦ̃1(η) (also
Φ(η)) can not attain its maximum in the interior of
(0, R).

(ii). If at the maximum point of Φm,k, Φm,k −
Φm,k−1 ≤ 0, also let Φ1 = Φ+ 1. We rewrite (48) as

Φm,k
1ηη −

1

h
Φm,k
1 − wm−1,k

h
(Φm,k

1 − Φm,k−1
1 )

−αΦm,k
1 + βΦm,k−1

1

= Φm,k
1ηη −

1

h
Φm,k
1 − wm−1,k

h
(Φm,k

1 − Φm,k−1
1 )

−(α− β)(Φm,k
1 − Φm,k−1

1 )− βΦm,k
1 > 0.

By the maximum principle, Φm,k
1 can not attain its

maximum in the interior of (0, R). Thus Φm,k can
not attain its maximum in the interior of (0, R) too.
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When η = R,Φm,k = 0. When η = 0,
since w1(η, ξ, τ) is a smooth function on Ω× (0, T ),
clearly we have Φm,k(0) ≤ c, so

Φm,k(η) ≤ c,∀η ∈ [0, R]. (49)

Now by (31), | wm,k
ηη |≤ c. This implies that |

wm,k
η |≤ c . So Lemma 6 is proved.

Theorem 7 Under the assumptions of Lemma 5,
problem (17)-(20) admits the solution w with the fol-
lowing properties: w is continuous,

0 ≤ w ≤ K1(R− η) ≤
1

2
, (50)

in the domain Ω×(0, T ), w has bounded weak deriva-
tives wη, wξ, wt, and

| wξ |≤ c(R− η), | wt |≤ c(R− η). (51)

Moreover, the weak derivative wηη exist and is
bounded, equation (17) holds almost everywhere.

Proof: The solutions wm,k of problem (31)-(32)
should be linearly extended to the domain Ω× (0, T ).
Firstly, when N − (k − 1)h ≥ ξ > N − kh, k =
1, 2, · · · , k(h), k(h) = [N�H], let

wm
h (η, ξ) = wm

h (η,N − (k − 1)hλ− (1− λ)kh)
= (1− λ)wm,k(η) + λwm,k−1(η). (52)

Secondly, when (m − 1)h < t < mh, m =
1, 2, · · · ,m(h), m(h) = [T�h], let

wh(η, ξ, t) = wh(η, ξ,mh(1− σ) + (m− 1)hσ)
= (1− σ)wm

h (η, ξ) + σwm−1
h (η, ξ). (53)

According to Lemma 5, Lemma 6, the functions
wh(η, ξ, t) from this family satisfy the Lipschitz con-
dition with respect to ξ, t, and have uniformly (in h)
bounded first derivative in η for 0 ≤ ξ ≤ N, 0 ≤ η ≤
R. By Arzela Theorem, there is a sequence hi → 0
such that wh uniformly converge to some w(η, ξ, t).
It follows from Lemma 5, Lemma 6 that w(η, ξ, t)
has bounded weak derivatives wt, wξ, wη, wηη in Ω×
(0, T ). Moreover,

| wξ |≤ c(R− η), | wt |≤ c(R− η). (54)

The sequence whi
may be assumed such that the

derivatives wt, wξ, wη, wηη in the domain Ω × (0, T )
coincide with weak limits in L2(Ω × (0, T )) of the
respective functions

whi
(η, ξ, t+ hi)− whi

(η, ξ, t)

hi
,

whi
(η, ξ + hi, t)− whi

(η, ξ, t)

hi
, whiη, whiηη.

Let us show that the equation (17) holds for
w(η, ξ, t) almost everywhere. Denoting wm,k

h =
wh(η, ξ, t) = w(η, kh,mh), by (31),

wm,k
hηη −

wm,k
h −wm−1,k

h

h

−wm−1,k
h

wm,k
h −wm,k−1

h

h
−f(η,N − kh,mh,wm,k

h ) = 0. (55)

Now, suppose that φ(η, ξ, t) is a smooth function,
its support set is compact in Ω× (0, T ). Let

φm,k(η) = φ(η,N − kh,mh).

Multiplying with hφm,k(η) at the two sides of (55),
integrating the resulting equation in η from 0 to R,
and taking the sum over k,m from 1 to k(h),m(h)
respectively, we obtain∑

m,k

h

∫ R

−R
φm,k[wm,k

hηη −
wm,k
h − wm−1,k

h

h

−wm−1,k
h

wm,k
h − wm,k−1

h

h
−f(η,N − kh,mh,wm,k

h )]dη = 0. (56)

Denoting the function f̄(η, ξ, t, wm,k) on Ω × [0, T ]
as: for (m − 1)h < τ < mh,N − (k − 1)h ≥ ξ >
N − kh,

f(η, ξ, t, wm,k) = f(η,N − kh,mh,wm,k
h ), (57)

and denoting

(
∆wh

h
)m1 =

wm,k
h − wm−1,k

h
,

(
∆wh

h
)k2 =

wm,k
h − wm,k−1

h
,

then we can rewrite (56) to∫ T

0

∫
Ω
[w̄hηηφ̄− (

∆wh

h
)m1 φ̄− (

∆wh

h
)k2φ̄w̄h

−f(η, ξ, t, wm,k)φ̄]dtdξdη = 0. (58)

Since

| w̄h−w |≤| w̄h−wh | + | wh−w |≤ ch+ | wh−w |,

when h → 0, w̄h ⇒ w, i.e. w̄h convergent to w

uniformly. Just likely, φ̄ ⇒ φ, f(η, ξ, t, wm,k)φ ⇒
f(η, ξ, t, w)φ. At the same time,

(
∆wh

h
)1 ⇀ wτ , −(

∆wh

h
)2 ⇀ wξ, w̄hηη ⇀ wηη,
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in L2((0, R) × (0, N) × (0, T )), so, if let h → 0 in
(58), then∫ T

0

∫ R

0

∫ N

0
[wηη − wτ + wwξ

−f(η, ξ, t, w)]φdtdξdη = 0. (59)

By the arbitrary of φ, we get ours result. ⊓⊔
The proof of Theorem 1: Let w be the solution
of (17)-(20). From Theorem 7, we know that w is a
strong solution. To prove Theorem 1, it only remains
to prove that the solution is in the classical sense pro-
vided that (27)-(29) are true.

Due to the solution w in Theorem 7 is a strongly
global solution, as well as it is a locally classical solu-
tion, we can make any partial derivatives on (17).

(i) By making derivation on (17) with respect to
η, and denoting u = ∂ηw, then we get

∂ηηu+ u∂ξw + w∂ξu− ∂tu

=
∂f

∂η
+

∂

∂w
f(η, ξ, t, w)u.

Let

g(η, ξ, t, u) =
∂f(η, ξ, t, w)

∂η
+u(

∂f(η, ξ, t, w)

∂w
−∂ξw).

If the assumptions (27)-(29) are true, in particular,

|wξ| ≤ c5, c1 − c5 > 0.

where the constant c1 appears in the condition (24),

c2(u− v) ≥ f(η, ξ, t, u)− f(η, ξ, t, v) ≥ c1(u− v),

it implies that

c2 ≥
∂

∂w
f(η, ξ, t, w) ≥ c1.

Then, if u− v ≥ 0,

(c2 + c5)(u− v) ≥ g(η, ξ, t, u)− g(η, ξ, t, v)
= ( ∂

∂wf(η, ξ, t, w)− ∂ξw)(u− v)
≥ (c1 − c5)(u− v).

(60)
Consider the following problem: when (η, ξ, t) ∈ Ω×
(0, T ),

∂ηηu+ w∂ξu− ∂tu = g(η, ξ, t, u), (61)
u|t=0 = w0η(η, ξ, 0),
u|ξ=N = w2η(η,N, t), (62)
u |{η=0}×[0,T )= w1η(0, ξ, t),
u |{η=R}×[0,T )= 0. (63)

g(·, u) satisfies (60). Similarly, by Oleinik’s line
method, as we have discussed equation (17) to get
Theorem 7, we are able to get the boundedness of the
first weak order derivatives of u and get the bounded-
ness of uηη. Then ∂ηηw = ∂ηu, ∂ηtw = ∂tu, ∂ηηu =
∂ηηηw are bounded.

(ii) By making derivation on (17) with respect to
ξ, and denoting p = ∂ξw, then we get

∂ηηp+ p∂ξw + w∂ξp− ∂tp

=
∂f

∂ξ
+

∂

∂w
f(η, ξ, t, w)p.

Let

h(η, ξ, t, p)

=
∂f(η, ξ, t, w)

∂ξ
+ p(

∂

∂w
f(η, ξ, t, w)− ∂ξw).

If the assumptions (27)-(29) are true, in particular,

|wξ| ≤ c5, c1 − c5 > 0.

Then, if u− v ≥ 0,

(c2 + c5)(u− v)
≥ h(η, ξ, t, u)− h(η, ξ, t, v)

= (
∂

∂w
f(η, ξ, t, w)− ∂ξw)(u− v)

≥ (c1 − c5)(u− v).

Consider the following problem

∂ηηp+ w∂ξp− ∂tp = h(η, ξ, t, p),

p|t=0 = w0ξ(η, ξ, 0),

p|ξ=N = w2ξ(η,N, t),

p |{η=0}×[0,T )= w1ξ(0, ξ, t),

p |{η=R}×[0,T )= 0.

Similarly, by Oleinik’s line method, as we have dis-
cussed equation (17) to get Theorem 7, we are able to
get the boundedness of the first weak order derivatives
of p and get the boundedness of pηη. Then ∂ηξw =
∂ηp, ∂ξtw = ∂tp, ∂ηξp = ∂ηηξw are bounded.

(iii) By making derivation on (17) with respect to
t, and denoting q = ∂tw, then we get

∂ηηq + q∂ξw + w∂ξq − ∂tq

=
∂f

∂t
+

∂

∂w
f(η, ξ, t, w)q.

Let

l(η, ξ, t, q)

=
∂f(η, ξ, t, w)

∂t
+ q(

∂

∂w
f(η, ξ, t, w)− ∂ξw).
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If the assumptions (27)-(29) are true, in particular,

|wξ| ≤ c5, c1 − c5 > 0.

Then, if u− v ≥ 0,

(c2 + c5)(u− v) ≥ l(η, ξ, t, u)− l(η, ξ, t, v)

= (
∂

∂w
f(η, ξ, t, w)− ∂ξw)(u− v)

≥ (c1 − c5)(u− v).

Consider the following problem

∂ηηq + w∂ξq − ∂tq = l(η, ξ, t, q),

q|t=0 = w0t(η, ξ, 0),

p|ξ=N = w2t(η,N, t),

q |{η=0}×[0,T )= w1t(0, ξ, t),

q |{η=R}×[0,T )= 0.

Similarly, by Oleinik’s line method, as we have dis-
cussed equation (17) to get Theorem 7, we are able
to get the boundedness of the first weak order deriva-
tives of q and get the boundedness of qηη. Then
∂ηtw = ∂ηq, ∂ttw = ∂tq, ∂ηtp = ∂ηηtw are bounded.

The above discussion (i) - (iii) means that ∂ηw,
∂ηηw, ∂ξw, ∂tw are actually continuous functions. So
(17)-(20) has the solution in classical sense. ⊓⊔

5 The stability of the solution
If one notices that all the constants of the estimations
in Lemma 5-6 and in Theorem 7 are independent of
the time T , one knows that Theorem 1 is true for t ∈
(0,∞) actually. At the end of the paper, we give a
theorem to show the stability of the solution for (17).

Theorem 8 Let w, w̃ be solutions of (17)-(20) with
given w0, w1, w1 and w̃0, w̃1, w̃2 respectively, and

w |{η=R}×[0,∞)= w̃ |{η=R}×[0,∞)= 0. (64)

Then, there exist suitably large positive constants
K,α0 such that

| w − w̃ |≤ Ke−α0t, (65)

where K,α0 may be depend on the constants appear-
ing in Theorem 1.

Proof: Let w, w̃ be solutions of (17)-(20). Then

|w|+ |wη|+ |wηη|+ |wt|+ |wξ| ≤ c,

|w̃|+ |w̃η|+ |w̃ηη|+ |w̃t|+ |w̃ξ| ≤ c,

where c is independent of the time T .

By the uniqueness of the solution of (17)-(20), it
is only need to probe the stability of the solutions of
(31)-(32). Let wm,k, w̃m,k be the corresponding so-
lutions of (31)-(32) to the solution w, w̃ respectively.
Let Sm,k = wm,k − w̃m,k. Then

Sm,k
ηη −

Sm,k − Sm−1,k

h

−w
m−1,k(Sm,k − Sm−1,k)

h

−S
m,k−1(w̃m,k − w̃m,k−1)

h
−f(·, wm,k) + f(·, w̃m,k) = 0, (66)

Sm,k |η=R= 0,

wm,k |η=0= 0,

S0,k = w0,k − w̃0,k. (67)

Set

Em,k =
Sm,k−1(w̃m,k − w̃m,k−1)

h

+f(·, wm,k)− f(·, w̃m,k),

and

Jm,k(Φ) = ϕm,k
ηη −

ϕm,k − ϕm−1,k

h

−wm−1,kϕ
m,k − ϕm,k−1

h
.

Then Jm,k(S) = −Em,k.
Let H = Ke−α0mh. Then

Jm,k(H) = −α0Ke
−α0mheα0h′

, (68)

where 0 < h′ < h. From (68), if we choose α0 large
enough, h is small enough, then

Jm,k(H)+ | Em,k |< 0.

Since | S0,k |≤ K,Sm,k(R) = 0,

Jm,k(H ± S) < 0, 0 ≤ η ≤ R.

Thus
| Sm,k |≤ Ke−α0mh.

Let h→ 0, we have

| w − w̃ |≤ Ke−α0t.
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