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Abstract: When a class of fuzzy value functions constitute a metric space, the completeness and separability is an
important problem that must be considered to discuss the approximation of fuzzy systems. In this paper, Firstly, a
new tK-integral norm is defined by introducing two induced operators, and prove that the class of tK-integrable
fuzzy value functions is a metric space. And then, the integral transformation theorems and tK-integrable Borel-
Cantelli Lemma are applied to study the completeness of the space, furthermore, its separability is discussed by
means of the approximation of fuzzy valued simple functions and fuzzy valued Bernstein polynomials. The results
show that the space of the tK-integrable fuzzy valued functions constitutes a complete separable metric space in
the sense of the tK-integral norm.
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1 Introduction
It is well known that the separability is a basic concept
to study the topological structures and the topological
properties of a metric space, and the completeness is
an important characterization used to describe a kind
of perfect degree of the metric space. In fact, the com-
pleteness can ensure that the objects being approxi-
mation still belong to the space, and the separability
make sure that the object of researches can be limited
to someone countable dense subset. Thus, when the
approximation of the fuzzy systems and fuzzy neural
networks is studied [1, 2, 4], it is an important theoret-
ical problem to explore the completeness and separa-
bility of the spaces of a kind of fuzzy valued functions.

In 1987, Sugeno [12] introduced the concepts of
the pseudo-addition and pseudo-multiplication for the
first time, and set up the theoretical framework for
the pseudo-additive measures and integrals. In 1993,
Jiang [7] suggested a generalized addition and two
kinds of generalized multiplications, thus obtained
the tK-integral and the Kt-integral, this moment,
the formed as Lebesgues integral transformation the-
orems were being given. Wang [13] had carried on
the limits to the operators t = K to unify the above
two kinds of integrals in 1998, furthermore, Wang
[13] established the K-pseudo-additive fuzzy integral
on fuzzy measure space, and systematically discussed

some properties and the convergence theorems of the
fuzzy integral [14, 15, 16]. In 2000, Liu [8] firstly in-
troduced the concept of the integral norm, and aimed
at the forward regular fuzzy neural networks, studied
the universal approximations for a class of integrable
real functions, in the meantime, the approximations
of a generalized Mamdani and the T -S fuzzy sys-
tems were being systematically discussed in [9, 10].
Since 2004, the universal approximations of the for-
ward regular fuzzy neural networks to a class of fuzzy
valued functions had been studied in the sense of the
L-integral norm as well as the S-integral norm in [19].
As for multi (or single) layer regular fuzzy neural net-
works, In 2009-2011, Huang [5, 6] discussed the ap-
proximation capability and its algorithms of the fuzzy
valued functions.

In 2012, Wang [16] firstly regarded the K-integral
norm as a metric, and relied on the polygonal fuzzy
numbers to explore the completeness and separability
of the space of a class of integrable polygonal fuzzy
valued functions. In 2013, the universal approxima-
tions of forward regular fuzzy neural networks to a
class of integrable bounded fuzzy valued functions
were studied in [17] by using the K-integral norm
metric. These many useful results have important the-
oretical value for further design of fuzzy inference
networks and fuzzy controllers.
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Unfortunately, the completeness and separability
being discussed by [16] is only for the space of the
polygonal fuzzy valued functions, however, the polyg-
onal fuzzy number is a special fuzzy number. In ad-
dition, the completeness and separability of the space
of the integrable functions did not be involved in [17].
Hence, in the sense of more generalized K-integral
norm, the discussion to the completeness and separa-
bility of the space of a class of integrable fuzzy valued
functions is very important and necessary. This paper
is based on the [16, 17], by strengthening the condi-
tions of the t-operator and the K-operator to give the
definition of the tK-integral, we prove that the space
of the tK-integrable fuzzy valued functions consti-
tutes a complete separable metric space in the sense
of the tK-integral norm.

Present paper is organized as follows: After the
introduction, some basic notions of fuzzy numbers
and the induced operators are briefly summarized in
Section 2. In Section 3, a new integral norm is firstly
defined, and it is obtained that the space of the fuzzy
valued integrable functions is a metric space. The
completeness and separability of this space is proved
in detail in section 4. In the final section, we make a
conclusion of the meaning of our all work.

2 Preliminaries
Throughout this paper, let R be the set of all real
numbers, R+ = [0,+∞),N denote a set of natural
numbers, d be an Euclidean distance on Rn. Besides,
the(X,R) represents an arbitrary measurable space,
where R is a σ-algebra on X . For each A,B ∈ Rn,
define

dH(A,B) = max{
x∈A
sup

y∈B
inf d(x, y),

y∈B
sup

x∈A
inf d(x, y)}.

Then dH(A,B) is called an Hausdorff distance be-
tween A and B. In particular, when A and B are
bounded closed intervals, namely, A = [a, b], B =
[c, d], their Hausdorff distance

dH([a, b], [c, d]) = |a− c| ∨ |b− d|.

Definition 1. ([3]) Let a mapping Ã : R → [0, 1], if
the following conditions (1)-(3) are satisfied:

(1) Ker(Ã) = {x ∈ R|Ã(x) = 1} ̸= ∅;

(2) For each α ∈ (0, 1], the cut-set Ãα = {x ∈
R|Ã(x) ≥ α} is a bounded closed interval;

(3) The SuppÃ = {x ∈ R|Ã(x) > 0} is a
bounded closed set.

Then Ã is called a fuzzy number on R.

Let F0(R) denote the family of fuzzy numbers on
R, for each Ã, B̃ ∈ F0(R), define

D(Ã, B̃) =
λ∈(0,1]
∨ dH(Ãλ, B̃λ). (1)

Obviously, D is metric on F0(R). By [3], we know
that (F0(R), D) is a complete metric space.

Remark 2. In order to obtain the better properties of
a fuzzy number space, we should restrict the space for
a smaller class such that it can constitute a complete
separable metric space. Let F ∗

0 (R) ⊂ F0(R) in this
paper, and make F ∗

0 (R) be a complete separable met-
ric space. For example, we may choose F ∗

0 (R) to be a
space formed by all the triangular or trapezoidal fuzzy
numbers.

In the sequel of this paper, the space F ∗
0 (R) will

play an important role. In fact, this is the reason why
we choose the stronger fuzzy numbers than the tradi-
tional fuzzy numbers.

Remark 3. In (1), whenever B̃ = 0̃, we define

||Ã|| = D(Ã, 0̃) =
α∈(0,1]

∨
(|A−

α |
∨
|A+

α |),

then ||Ã|| is called a module of the fuzzy number Ã,
where Ãα = [A−

α , A
+
α ] for any α ∈ (0, 1] , 0̃ is a zero

fuzzy number, namely,

0̃(x) =

{
1, x = 0

0, x ̸= 0

Lemma 4. ([10]) Let Ã, Ã1, Ã2 ∈ F0(R), {W̃k}mk=1,
(Ṽk)

m
k=1 ⊂ F0(R), then the following inequalities (1)

and (2) hold:
(1) D(Ã · Ã1, Ã · Ã2) ≤ ||Ã||D(Ã1, Ã2);

(2) D(
m∑
k=1

W̃k,
m∑
k=1

Ṽk) ≤
m∑
k=1

D(W̃k, Ṽk).

Definition 5. ([7]) Let K : R+ → R+ be a continu-
ous function with strictly increasing, and K(0) = 0,

x→+∞
limK(x) = +∞, then K is called a K-induced op-
erator on R+.

Definition 6. Let t : R+ → R+ be a differentiable
concave function with strictly increasing, and satisfy-
ing t(0) = 0, t(1) = 1, then t is called a t-induced
operator on R+.

Remark 7. It is worth noting that the t-induced op-
erator in definition 6 has a big change with respect
to that in [7]. In this paper, we assume that t is a
differentiable concave function in order to obtain the
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following Theorem 10 (4), which is very important in
the proof of the following Theorem 18. Without con-
fusion, we simply call them induced operators. In ad-
dition, since K is strictly increasing, it is obvious that
K−1 is also an induced operator, but the t−1 is not
necessary the induced operator, this is because the in-
verse operator t−1 need not to be differentiable con-
cave function.

For example, it is easy to get the induced oper-
ators, such as K(x) =

√
x, K−1(x) = x2; t(x) =

log2(1 + x), for any x ∈ R+.

Definition 8. ([7]) Let K and t are the given induced
operators, for arbitrary a, b ∈ R+, if define

a ⊥ b , K−1(K(a) +K(b));

a⊙ b , K−1(t(a)K(b)).

Then operation ⊥ and ⊙ are called separately the K-
sum and tK-product of a and b .

Remark 9. By Definition 8, we can see that K in-
duces the sum operation ⊥, K and t induce another
multiplication operation ⊙. Similarly, if we change
the order of K and t , we may obtain another multi-
plication

a⊗ b = K−1(K(a)t(b)),

and it can induce another K-additive integral like the
integral defined in Definition 13. However, we just
consider the operation ⊙ in this paper, the another
operation ⊗ will not be mentioned.

Theorem 10. ([7, 13, 16]) Suppose K and t are the
induced operators, for arbitrary a, b, c ∈ R+ ,then
the following properties hold:

(1) (a ⊥ b) ⊥ c = a ⊥ (b ⊥ c) ;
(2) a ⊥ b = b ⊥ a, but a⊙ b ̸= b⊙ a;
(3) a ⊥ 0 = a, a⊙ 0 = 0⊙ a = 0, 1⊙ a = a;
(4) t(a+ b) ≤ t(a) + t(b);
(5) If a ≤ b, c ≤ d, then a ⊥ c ≤ b ⊥ d, a⊙ c ≤

b⊙ d;
(6) a⊙ (b ⊥ c) = (a⊙ b) ⊥ (a⊙ c);
(7) K(a⊙b) = t(a) ·K(b),K(a ⊥ b) = K(a)+

K(b);
(8) K−1(a·b) = t−1(a)⊙K−1(b),K−1(a+b) =

K−1(a) ⊥ K−1(b).

Lemma 11. ([7, 13]) Suppose K and t are the given
induced operators, for arbitrary two groups of finite
real numbers {ai}mi=1, {bi}mi=1 ⊂ [0,+∞), then

⊥
m∑
i=1

(ai ⊙ bi) = K−1(

m∑
i=1

t(ai)K(bi)),

where ⊥
m∑
i=1

(ai ⊙ bi) = (a1 ⊙ b1) ⊥ (a2 ⊙ b2) ⊥

· · · ⊥ (am ⊙ bm).

Because the induced operator t is limited to a
few conditions, a new definition of tK-integral and
its integral norm different from the ones given in
[13,14,15,16] will be presented in the next section,
which lay the foundation for the further to study the
completeness and separability of the space of fuzzy
valued integrable functions .

3 tK-additive integral and tK- inte-
gral norm

In this section, we give the concepts of integrable
space L1(T, µ) and integral norm in F ∗

0 (R). Firstly,
the definitions ofK-additive measure and tK-additive
integral are given. After that, on the basis of the two
induced operators, we define a new tK-integral norm,
this integral norm provides us a new tool to handle
with the approximation problems of fuzzy neural net-
work and fuzzy system.

Definition 12. ([7, 12]) Let (X,R) be measurable
space, K a given induced operator, if a set function
µ : R → [0,+∞) satisfies the following conditions
(1)-(4) hold

(1) µ(∅) = 0;
(2) If A,B ∈ R, andA ∩ B = ∅, then µ(A ∪

B) = µ(A) ⊥ µ(B);
(3) If An ⊂ R, An ↑ A, then µ(An) ↑ µ(A) ;
(4) If An ⊂ R, An ↓ A , and there exists n0 ∈ N

such that µ(An0) < +∞ , then µ(An) ↓ µ(A).
Then µ is called a K-additive measure, the cor-

responding triple (X,R, µ) is said to be a K-additive
measure space.

Definition 13. Let (X,R, µ) be a K-additive mea-
sure space, K and t are the induced operators, f :
X → R+ is an nonnegative measurable function,
T ∈ R. Let PT = {T1, T2, · · · , Tm} denote an ar-

bitrary finite measurable partition of T , i.e.,
m
∪
i=1

Ti =

T, Ti
∩
Tj = ∅(i ̸= j), if define

StK(f, PT , T ) ,⊥
m∑
i=1

(
x∈T∩Ti
inf f(x)⊙ µ(T ∩ Ti)),

∫ tK

T
f(x)dµ ,

PT

supStK(f, PT , T ).

Then
∫ tK
T f(x)dµ is called the tK-additive integral

of f on T with respect to µ.
For simplicity, we call it tK-additive integral of

f . In particular, if
∫ tK
T f(x)dµ < +∞ , then we say

that f is tK-integrable.
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Lemma 14. Let (X,R, µ) be a K-additive measure
space, K and t are the given induced operators . f :
X → R+ is a nonnegative measurable function,for
T ∈ R, then∫ tK

T
f(x)dµ = K−1(

∫
T
t(f(x))dµ∗),

where µ∗(·) = K(µ(·)) is a Lebesgue measure.

Definition 15. Let F : T → F ∗
0 (R) be a fuzzy val-

ued function, where subset T ⊂ Rn. For any x =
(x1, x2, · · · , xn) ∈ T , there exists an nonnegative
tK-integrable function ρ(x) satisfies ||F (x)|| ≤ ρ(x).
Then F is called a fuzzy valued tK-integrable func-
tion on T .

Remark 16. Let L1(T, µ) denote the set of all the
tK-integrable fuzzy valued functions on T , we call
it a tK-integrable fuzzy valued function space. No-
tice that, the difference between f and F is that the
former is a real function, the later is a fuzzy valued
function. Besides, if F1, F2 ∈ L1(T, µ), we might as
well agree that F1 = F2 iff F1(x) = F2(x) µ- a.e. on
T .

Definition 17. Let (Rn,R, µ) be a K-additive mea-
sure space, T ∈ R, K and t are the given induced
operators. For any F1, F2 ∈ L1(T, µ), let

H(F1, F2) ,
∫ tK

T
D(F1(x), F2(x))dµ.

Then H is called a tK-integral norm on L1(T, µ), for
short, H a tK-integral norm.

Below, we will prove the tK-integral norm H is
a metric on L1(T, µ), i.e., the pair (L1(T, µ),H) con-
stitute a metric space.

Theorem 18. All the condition with the same in Def-
inition 17, for every F1, F2 ∈ L1(T, µ), then integral
norm H satisfies the triangular inequality under the
operation ⊥.

Proof: For any F1, F2 ∈ L1(T, µ), by Definition 15,
there exist real nonnegative tK-integrable functions
ρi(x)(i = 1, 2) with

||F1(x)|| ≤ ρ1(x), ||F2(x)|| ≤ ρ2(x),

for all x = (x1, x2, · · · , xn) ∈ T ⊂ Rn.
In fact, for any a, b ∈ R+, and 0 < a < b, since

t is differentiable on R+. We consider separately t(x)
on [0, a] and [a, a+b]. By Lagrange Theorem of mean
value, it follows that there exist ξ1 ∈ (0, a) and ξ2 ∈
(a, a+ b) such that

t(a) = t(a)− t(0) = t′(ξ1)a,

t(a+ b)− t(b) = t′(ξ2)a.

Because the function t(x) is a differentiable con-
cave function which is equivalent to t′(x) is decreas-
ing, at this time, by 0 < ξ1 < a < b < ξ2, then
t′(ξ2) ≤ t′(ξ1). Thus, this show

t(a+ b) ≤ t(a) + t(b). (2)

On the other hand, for any

x = (x1, x2, · · · , xn) ∈ T,

it is easy to get that

D(F1(x), F2(x)) ≤ D(F1(x), 0̃) +D(0̃, F2(x))

= ||F1(x)||+ ||F2(x)|| ≤ ρ1(x) + ρ2(x).

This implies D(F1(x), F2(x)) still is a real tK- inte-
grable function.

Applying Lemma 14 and the above (2), for arbi-
trary F1, F2, F3 ∈ L1(T, µ), we have

K(H(F1, F3)) =

∫
T
t(D(F1(x), F3(x))dµ∗

≤
∫
T
(t(D(F1(x), F2(x)))+t(D(F2(x), F3(x))))dµ∗

=

∫
T
t(D(F1, F2))dµ

∗ +

∫
T
t(D(F2, F3))dµ

∗.

By Theorem 10 (8), it is easy to obtain that

H(F1, F3)) ≤ K−1(

∫
T
t(D(F1(x), F2(x)))dµ∗)

⊥ K−1(

∫
T
t(D(F2(x), F3(x)))dµ∗)

= H(F1, F2) ⊥ H(F2, F3).

Theorem 19. The (L1(T, µ), H) is a metric space un-
der the addition operation ⊥.

Proof: According to Theorem 18, the tK-integral
norm H : L1(T, µ) × L1(T, µ) → R+ satisfies tri-
angular inequality. Next, we will show H satisfies the
positive definiteness and symmetry.

In fact, for any F1, F2 ∈ L1(T, µ), for arbitrary
x = (x1, x2, · · · , xn) ∈ T , by Hausdorff distance (1)
and symmetry of D, obviously,

H(F1, F2) = H(F2, F1),

and H(F1, F2) ≥ 0. Besides, if H(F1, F2) = 0, It is
easy to get that

K−1(
∫
T t(D(F1(x), F2(x)))dµ∗) = 0.

Hence∫
T
t(D(F1(x), F2(x)))dµ∗ = K(0) = 0.
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By Lebesgue integral properties, it is clear to see
that t(D(F1(x), F2(x))) = 0 µ∗ a. e. to T . Thus,

D(F1(x), F2(x)) = t−1(0) = 0 µ∗ a. e. to T.

According to the agreement in Remark 16, this im-
plies F1 = F2.

On the other hand, if F1 = F2, it is obvious that
H(F1, F2) = 0 , the positive definiteness is proved.
Synthesizing the above the conclusions, therefore,
(L1(T, µ),H) is a metric space.

4 Completeness and separability
In above section, we have proved that (L1(T, µ), H)
constitute a metric space in the sense of the tK-
integral norm. In this section, firstly, we will use the
Borel-Cantelli Lemma to prove the completeness of
the space (L1(T, µ),H). Second, through construct-
ing fuzzy valued simple functions and Bernstein poly-
nomials with fuzzy value coefficients, we may obtain
the separability of (L1(T, µ),H).

Lemma 20. If one-variable function φ(x) is differen-
tiable at x = 0 and φ′(0) > 0, φ(0) = 0. Then there
existsN ∈ N such that φ( 1

4n )/φ(
1
2n ) ≤

3
2n , whenever

n > N .

Proof: Since φ(x) is differentiable at x = 0 , then

φ′(0) =
x→0
lim

φ(x)− φ(0)
x

=
x→0
lim

φ(x)

x
> 0.

According to Heine’s Theorem, we can separately
choose two sequences of numbers xn = 1/2n and
yn = 1/4n which satisfy

n→∞lim
φ(1/2n)

1/2n
=

n→∞lim
φ(xn)

xn
= φ′(0) >

1

2
φ′(0),

n→∞lim
φ(1/4n)

1/4n
=

n→∞lim
φ(yn)

yn
= φ′(0) <

3

2
φ′(0).

By definition of the limit of sequence of numbers,
there exist N1, N2 ∈ N , respectively, such that
φ(1/2n)
1/2n > 1

2φ
′(0), whenever n > N1;

φ(1/4n)
1/4n < 3

2φ
′(0), whenever n > N2.

Let N = max{N1, N2} , whenever n > N , it is
immediately to obtain that

φ(
1

4n
)/φ(

1

2n
) < (

3

2

1

4n
φ′(0)) · ( 2

n+1

φ′(0)
) =

3

2n
.

Lemma 21. (Borel-Cantelli Lemma) Let (Rn,R, ν)
be a finite Lebesgue measure space, if there exists
a sequence of measurable sets {An} ⊂ R with
∞∑
n=1

ν(An) < +∞, then ν(
∞
∩
i=1

∞
∪
n=i

An) = 0.

Theorem 22. Let (Rd,R, µ) be a finite K-additive
measure space, T ∈ R,K and t are the given induced
operators, t′(0) > 0 and K(x) = O(t(x)) whenever
x→ 0+, then the fuzzy valued tK-integrable function
space L1(T, µ) is complete.

Proof: Suppose {Fn} is an arbitrary Cauchy se-
quence in L1(T, µ). For every ε > 0, there ex-
ists N ∈ N such that H(Fm, Fn) < ε whenever
m,n > N.

For each k ∈ N, let εk = 1/4k > 0 , there exists
Nk ∈ N, in particular, m = n+ 1, we have

H(Fn+1, Fn) < εk = 1/4k. (3)

Let Ek = {x ∈ T |D(Fn+1(x), Fn(x)) > 1
2k
} ⊆ T,

where n > Nk, k = 1, 2, · · · , x = (x1, x2, · · · , xd).
On the one hand, whenever n > Nk, by the Def-

inition 17, Lemma 14 and the strictly increasing of K
and t, it is clear to see that

H(Fn+1, Fn) = K−1(

∫
T
t(D(Fn+1(x), Fn(x)))dµ∗)

≥ K−1(
∫
Ek
t(D(Fn+1(x), Fn(x)))dµ∗)

≥ K−1(
∫
Ek
t( 1

2k
)dµ∗) = K−1(t( 1

2k
)µ∗(Ek)).

By the increasing of K and (3), if make

K−1(t(
1

2k
)µ∗(Ek)) <

1

4k
.

Consequently,

µ∗(Ek) ≤ K(
1

4k
)/t(

1

2k
), (4)

where µ∗ is a Lebesgue measure, and satisfying

µ∗(En) = K(µ(En)) ≤ K(µ(T )) < +∞.

On the other hand, since t(0) = 0 and t′(0) >
0, according to Lemma 20, there exists a sufficiently
large k0 ∈ N, for each k > k0, we have

t(
1

4k
)/t(

1

2k
) ≤ 3

2k
. (5)

Besides, due to the K(x) = O(t(x)) whenever x →
0+, there exists b ∈ R such that

x→0+
limK(x)/t(x) = b ̸= 0.

Utilizing Heines theorem, choose xk = 1/4k → 0
(k →∞), then

k→∞
limK(1/4k)/t(1/4k) = b.
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Let ε0 = 1 > 0, there exists N
′ ∈ N such that when-

ever k > N
′
, we have

|K(1/4k)

t(1/4k)
− b| < 1,

or
0 < K(

1

4k
)/t(

1

4k
) < 1 + |b| (6)

Let N = max{k0, N ′}, whenever k > N , the (5) and
(6) are both satisfied. By (4), therefore,

µ∗(Ek) ≤ K(
1

4k
)/t(

1

2k
)

= (K(
1

4k
)/t(

1

4k
)).(t(

1

4k
)/t(

1

2k
))

≤ 3(1 + |b|)/2k.
Since the positive series

∞∑
k=1

3(1 + |b|)/2k is conver-

gent, based on the comparison test of a series conver-

gence criterion, the positive series
∞∑
k=1

µ∗(Ek) is also

convergent, i. e. ,

∞∑
k=1

µ∗(Ek) < +∞.

According to the Borel-Cantelli Lemma (Lemma 21),
we can immediately acquire that

µ∗(
∞
∩
i=1

∞
∪
k=i

Ek) = 0 or µ∗(
k→∞
limEk) = 0.

Let E0 =
∞
∩
i=1

∞
∪
k=i

Ek, then µ∗(E0) = 0, where

E0 ⊂ T ⊂ Rd. Hence, for any x = (x1, · · · , xd) ∈
Ec0 =

∞
∪
i=1

∞
∩
k=i

Eck, there exists i(x) ∈ N, whenever

k ≥ i(x), we have x ∈ Eck, i.e.,

D(Fn+1(x), Fn(x)) ≤
1

2k
, n > Nk.

Hence, for arbitrary ε > 0, for any l ∈ N, when x ∈
Ec0 = T − E0 and n > Nk, in order to make

D(Fn+l(x), Fn(x)) ≤
n+l−1∑
j=n

D(Fj+1(x), Fj(x))

≤
k+l−1∑
j=k

1

2j
≤

∞∑
j=k

1

2j

=
1

2k
(1 +

1

2
+

1

22
+ · · · ) = 1

2k−1
< ε. (7)

We only need to take k > k
′
, and k

′ ≥ [1 + log2
1
ε ].

Thus, the sequence {Fn(x)} of the fuzzy valued
functions is a Cauchy sequence of F ∗

0 (R), and be-
cause (F ∗

0 (R), D) is a complete metric space. For any
x = (x1, x2, · · · , xd) ∈ T − E0, then {Fn(x)} con-
verge to a fuzzy number in F ∗

0 (R).
Without loss of generality, for every x ∈ T −E0,

let F (x) ∈ F ∗
0 (R), and it satisfies

n→∞limD(Fn(x), F (x)) = 0 (8)

By definition the limit of sequence of numbers,
for arbitrary ε > 0, there exists N3 ∈ N such that

D(Fn(x), F (x)) < ε, x ∈ Ec
0, n > N3.

Specially, whenever x ∈ E0, let F (x) = 0̃ ∈
F ∗
0 (R). By Definition 17 and Lemma 14, whenever
n > N3, we can get that

H(F, Fn) = K−1(

∫
T
t(D(F (x), Fn(x)))dµ∗)

= K−1(

∫
T−E0

t(D(F (x), Fn(x)))dµ∗

+

∫
E0

t(D(F (x), Fn(x)))dµ∗)

< K−1(t(ε)µ∗(T − E0) + 0)

≤ K−1(t(ε)µ∗(T )).

As µ∗(T ) is finite. For any ε > 0, the expres-
sion K−1(t(ε)µ∗(T )) may be still arbitrarily small.
Therefore, in the sense of tK-integral norm, there ex-
ist a fuzzy valued function F : T → F ∗

0 (R) such that
n→∞limH(F, Fn) = 0.

Consequently, every Cauchy sequence {Fn} in
L1(T, µ) is convergent to in L1(T, µ).

Next, we further will show the F ∈ L1(T, µ).
According to (8), given ε = 1, fixed N0 > N3 and
N0 ∈ N, we have D(FN0(x), F (x)) < 1 for every
x = (x1, x2, · · · , xd) ∈ T −E0.

By Definition 15, there exists a real nonnegative
tK-integrable function ρ0(x) such that ||FN0(x)|| ≤
ρ0(x). According to Remark 2 the following conclu-
sions hold

||F (x)|| = D(F (x), 0̃)
≤ D(F (x), FN0(x)) +D(FN0(x), 0̃)
< 1 + ||FN0(x)|| ≤ 1 + ρ0(x).

Let ρ(x) = 1+ρ0(x), it is easy to check that ρ(x)
is a real nonnegative tK-integrable function. Assume
F (x) = 0̃, for every x ∈ E0, then

||F (x)|| = D(0̃, 0̃) = 0 ≤ ρ(x).
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Hence, ||F (x)|| ≤ ρ(x), for all x = (x1, x2, · · · ,
xd) ∈ T ⊂ Rd. By Definition 15, we can obtain that
the F ∈ L1(T, µ) .

Up to now, we have proved every cauchy se-
quence {Fn} inL1(T, µ) is convergent, and converges
to a fuzzy number in L1(T, µ). Synthesizing the
above conclusions, it is straightforward to see that the
fuzzy valued tK-integrable function space L1(T, µ)
is complete. ⊓⊔

Definition 23. Let S : T → F0(R), T ⊂ Rd, if there
exist a group of fuzzy numbers Ã1, Ã2, · · · , Ãm ∈
F0(R) and a measurable partition {T1, T2, · · · , Tm}
of T , such that S(x) =

m∑
k=1

χTk(x) · Ãk, for each

x = (x1, x2, · · · , xd) ∈ T , where χTk(x) is a char-
acteristic function. Then we call that S(x) is a fuzzy
valued simple function on T .

Let S(T ) denote the family of all fuzzy valued
simple functions on T .

Theorem 24. Let (Rd,R, µ) be a finite K-additive
measure space, K and t are the given induced op-
erators, T ⊂ Rd and T ∈ R, then S(T ) is dense in
L1(T, µ), i.e., for each ε > 0, for everyF ∈ L1(T, µ),
there exists S0 ∈ S(T ) such that H(F, S0) < ε.

Proof: Since (F ∗
0 (R), D) is a complete separable

metric space, let {Ãi} be a countable dense set in
F ∗
0 (R). For each ε > 0, putting

T1 = {x ∈ T |D(F (x), Ã1) < ε};

T2 = {x ∈ T |D(F (x), Ã1) ≥ ε,D(F (x), Ã2) < ε};
. . . . . . . . . . . .

Tn = {x ∈ T |D(F (x), Ãi) ≥ ε(i = 1, 2, . . . , n− 1),

D(F (x), Ãn) < ε};

. . . . . . . . . . . .

Obviously, the sequence {Ti} of sets satisfies Ti∩
Tj = ∅(i ̸= j) and ∪∞i=1Ti = T.

In fact, by definition of {Ti}, then ∪∞i=1Ti ⊂ T.
Vise versa, if T ̸⊂ ∪∞i=1Ti, then there exist x0 =

(x
′
1, x

′
2, · · · , x

′
d) ∈ T, but x0 /∈ Ti, i = 1, 2, 3, · · · ,

where F (x0) ∈ F ∗
0 (R).

Hence D(F (x0), Ãi) ≥ ε, this contradicts the
density of {Ãi} in F ∗

0 (R), so T ⊂ ∪∞i=1Ti.
Combining these two results, we can get that

∪∞i=1Ti = T. Because the partition {Ti} is pairwise
disjoint, then

∞∑
i=1

µ∗(Ti) = µ∗(
∞∪
i=1

Ti) = µ∗(T ) < +∞.

In the light of the definition of convergent series, for
arbitrary ε > 0, there exists N ∈ N such that

µ∗(

∞∪
i=N+1

Ti) =

∞∑
i=N+1

µ∗(Ti) < ε,

whenever n ≥ N (take n = N )
Let T0 = ∪∞i=N+1Ti, then µ∗(T0) < ε. Write

T = T0 ∪ (
∪N
i=1 Ti), then {T0, T1, T2, · · · , TN} is

a finite measurable partition of T . If we define

Ã0 = 0̃, let S0(x) =
N∑
i=0

χTi(x) · Ãi, for arbitrarily

x = (x1, x2, · · · , xd) ∈ T. Then S0 is a fuzzy val-
ued simple function on T . By the absolute continu-
ity of Lebesgue integral, for arbitrarily ε > 0, take
δ = ε > 0, whenever µ∗(T0) < δ, we have∫

T0

t(D(F (x), S0(x)))dµ∗ < ε.

By the definition of Ti, for every x = (x1, x2, · · ·
, xd) ∈ Ti, i = 1, 2, · · · , N, D(F (x), S0(x)) < ε.

In accordance with the Lemma 14 and definition
of the tK-integral norm, then∫ tK

T
D(F (x), S0(x))dµ

= K−1(

∫
∪N
i=0Ti

t(D(F (x), S0(x)))dµ∗)

= K−1(

N∑
i=1

∫
Ti

t(D(F (x), S0(x)))dµ∗ +∫
T0

t(D(F (x), S0(x)))dµ∗)

< K−1(

N∑
i=1

∫
Ti

t(ε)dµ∗ + ε)

= K−1(
N∑
i=1

t(ε)µ∗(Ti) + ε)

= K−1(t(ε)µ∗(T ) + ε).

Because of the arbitrariness of ε and finiteness of
µ∗(T ), then K−1(t(ε)µ∗(T ) + ε) can be arbitrarily
small. Thus, S(T ) is dense in L1(T, µ). ⊓⊔

Definition 25. ([10]) Let f : [0, 1]d → F0(R) be a
d-variable fuzzy valued function, given m ∈ N, for
every x = (x1, x2, · · · , xd) ∈ [0, 1]d, define a fuzzy
valued Bernstein polynomial Bm(f) as follows

Bm(f ; x) ,
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m∑
i1,··· ,id=0

Gm;i1,··· ,id(x1, · · · , xd) · f(
i1
m
, · · · , id

m
),

where

Gm;i1,··· ,id(x1, x2, · · · , xd) , Ci1mC
i2
m · · ·Cidmx

i1
1 x

i2
2

· · ·xidd (1− x1)
m−i1(1− x2)m−i2 · · · (1− xd)m−id ,

and satisfies
m∑

i1,i2,··· ,id=0

Gm;i1,i2,··· ,id(x) = 1.

Lemma 26. ([10]) Suppose f : [a1, b1] × · · · ×
[ad, bd] → F0(R) is a continuous fuzzy valued func-
tion, then for arbitrary ε > 0, there exists m ∈ N
and a fuzzy valued Bernstein polynomial Bm(f) such
that D(f(x), Bm(f ; x)) < ε, for any x ∈ [a1, b1] ×
[a2, b2]× · · · × [ad, bd].

Theorem 27. Let (Rd,R, µ) be a finite K-additive
measure space, K and t are the given induced opera-
tors, T is a bounded set in R, the {Ãi} is a countable
dense subset of F ∗

0 (R). Let

P (T ) =
{
F : T → F ∗

0 (R)
∣∣

F (x) =
m∑

i1,i2,··· ,id=0

Ãi1,i2,··· ,idGm;i1,i2,··· ,id(x),

Ãi1,i2,··· ,id ∈ {Ãi}
}
.

Then P (T ) is dense in S(T ).

Proof: Let a set C(T ) = {F : T → F ∗
0 (R)| F is a

continuous fuzzy valued function }.
We divide our proof into two steps: (1) C(T ) is

dense in S(T ); (2) P (T ) is dense in C(T ).
(1) For every S ∈ S(T ), by Definition 23, there

exists a group of fuzzy numbers Ã1, Ã2, · · · , Ãm ∈
F0(R) and a measurable partition {T1, T2, · · · , Tm}
of T such that

S(x) =
m∑
i=1

χTi(x) · Ãi,

for any x = (x1, x2, · · · , xd) ∈ T.
For each measurable subset Ti , for given ε > 0,

let δi = ε/m > 0, there exists a closed subset Ei ⊂
Ti (i = 1, 2, · · · ,m) with

µ∗(Ti − Ei) < ε/m = δi.

Now we construct a sequence {βin(x)} of the measur-
able functions on T as follows:

βin(x) = e−nd(x,Ei),

for each x ∈ T, i = 1, 2, · · · ,m, n = 1, 2, 3, · · · ,
where each βin(x) is continuous on T , and

d(x, Ei) =
y∈Ei
inf d(x, y),

and satisfy 0 ≤ βin(x) ≤ 1, for all x ∈ T.
Let n→∞, i = 1, 2, · · · ,m, it is clearly to get

n→∞limβin(x) = χEi(x) =

{
1, x ∈ Ei
0, x /∈ Ei

(9)

Hence, for arbitrary ε > 0, for any x =
(x1, x2, · · · , xd) ∈ T , there exists N ∈ N, whenever
n > N ,

|βin(x)− χEi(x)| < ε, i = 1, 2, · · · ,m.

According to the strictly increasing of t, the following
conclusion holds

t(
m∑
i=1

||Ãi|||βin(x)−χEi(x)|) ≤ t(
m∑
i=1

||Ãi||ε). (10)

Let Fn(x) =
m∑
i=1

Ãi ·βin(x) for every x = (x1, x2,

· · · , xd) ∈ T , n = 1, 2, · · · . Utilizing Lemma 4 (1)
and (2), we can infer that

D(Fn(x), S(x))

= D(

m∑
i=1

Ãi · βin(x),
m∑
i=1

Ãi · χTi(x))

≤
m∑
i=1

D(Ãi · βin(x), Ãi · χTi(x))

≤
m∑
i=1

||Ãi|| · |βin(x)− χTi(x)|.

As µ∗(Ti − Ei) < ε/m = δi, i = 1, 2, · · · ,m, by
absolute continuity of Lebesgue integral, then∫
Ti−Ei

t(

m∑
i=1

||Ãi|| · |βin(x)− χTi−Ei(x)|)dµ∗ <
ε

m
.

Let
m∑
i=1
||Ãi|| = a > 0. For each ε > 0 and

every Ei ⊂ Ti, i = 1, 2, · · · ,m, whenever n > N , by
inequality (10), we have∫

Ti

t(
m∑
i=1

||Ãi|| · |βin(x)− χTi(x)|)dµ∗

=

∫
Ti−Ei

t(
m∑
i=1

||Ãi|| · |βin(x)− χTi−Ei(x)|)dµ∗
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+

∫
Ei

t(

m∑
i=1

||Ãi|| · |βin(x)−χEi(x)|)dµ∗

<
ε

m
+

∫
Ei

t(

m∑
i=1

||Ãi|| · ε)dµ∗

=
ε

m
+ t(aε)µ∗(Ei). (11)

Since T = ∪mi=1Ti,Ti ∩ Tj = ∅(i ̸= j). By Lemma
14 and inequality (11), whenever n > N , then

K(H(Fn, S)) =

∫
T
t(D(Fn(x), S(x)))dµ∗

≤
∫
∪m
i=1Ti

t(

m∑
i=1

||Ãi|| · |βin(x)− χTi(x)|)dµ∗

=

m∑
i=1

∫
Ti

t(

m∑
i=1

||Ãi|| · |βin(x)− χTi(x)|)dµ∗

<
m∑
i=1

(
ε

m
+ t(aε)µ∗(Ei)) = ε+ t(aε)

m∑
i=1

µ∗(Ei)

< ε+ t(aε)µ∗(T ).

By definition of induced operator K, then
H(Fn, S) < K−1(ε+ t(aε)µ∗(T )).

Analogously, Since ε > 0 is arbitrary, then the
expression K−1(ε + t(aε)µ∗(T )) may be still arbi-
trarily small, of course, H(Fn, S) be arbitrarily small.
Hence, C(T ) is dense in S(T ).

(2) As {Ãi} is a countable set in F ∗
0 (R), then the

set P (T ) of the fuzzy valued Bernstein polynomials
generating with some coefficient in {Ãi} is a count-
able set. In the following, we will show that the set
P (T ) is dense in C(T ).

Since T is a bounded set, then there exists a d-
dimension cubes [a, b]d such that T ⊂ [a, b]d, natu-
rally, the Lebesgue measure value µ∗(T ) = K(µ(T ))
is also bounded.

According to Lemma 26, for arbitrary ε > 0 and
F ∈ C(T ), there exist m ∈ N and a fuzzy valued
Bernstein polynomial Bm(F ; x) ∈ P (T ), where

Bm(F ; x) =
m∑

i1,i2,··· ,id=0

B̃i1,i2,··· ,idGm;i1,i2,··· ,id(x)

such that
D(F (x), Bm(F ; x)) < ε, (12)

for every x = (x1, x2, · · · , xd) ∈ [a, b]d.

Because {Ãi} is dense in F ∗
0 (R), for every ε > 0

and B̃i1,i2,··· ,id ∈ F ∗
0 (R), there exists a fuzzy number

Ã
′
i1,i2,··· ,id ∈ {Ãi} with

D(Ã
′
i1,i2,··· ,id , B̃i1,i2,··· ,id) < ε, (13)

for every i1, i2, · · · , id ∈ {0, 1, 2, · · · ,m}. Let

Q(x) =
m∑

i1,i2,··· ,id=0

Ã
′
i1,i2,··· ,idGm;i1,i2,··· ,id(x),

for all x = (x1, x2, · · · , xd) ∈ [a, b]d.
Clearly, the polynomial function Q(x) is continu-

ous, i. e. , Q ∈ C(T ).
By Lemma 4 (2) and the inequality in (13), we

may immediately obtain that

D(Q(x), Bm(F ; x))

= D(
m∑

i1,i2,··· ,id=0

Ã
′
i1,i2,··· ,idGm;i1,i2,··· ,id(x),

m∑
i1,i2,··· ,id=0

B̃i1,i2,··· ,idGm;i1,i2,··· ,id(x))

≤
m∑

i1,i2,··· ,id=0

Gm;i1,··· ,id(x)D(Ã
′
i1,··· ,id , B̃i1,··· ,id)

≤
m∑

i1,i2,··· ,id=0

Gm;i1,i2,··· ,id(x) · ε = 1 · ε

= ε. (14)

In accordance with the theorem 19, we can know that
H is a metric with respect to the operation⊥. Besides,
by Lemma 14, and combining (9) and (11), it’s easy
to get that

H(F,Q) ≤ H(F,Bm(F )) ⊥ H(Bm(F ), Q)

= K−1(

∫
T
t(D(F (x), Bm(F ; x)))dµ∗) ⊥

K−1(

∫
T
t(D(Q(x), Bm(F ; x)))dµ∗)

< K−1(

∫
T
t(ε)dµ∗) ⊥ K−1(

∫
T
t(ε)dµ∗)

= K−1(t(ε)µ∗(T )) ⊥ K−1(t(ε)µ∗(T ))

= K−1(2t(ε)µ∗(T )).

Since ε is arbitrary, and µ∗(T ) is bounded, then
K−1(2t(ε)µ∗(T )) can be arbitrarily small, this shows
that P (T ) is dense in C(T ). ⊓⊔

Theorem 28. Let (Rd,R, µ) be a finite K-additive
measure space,K and t are the given induced opera-
tors, and K(x) = O(t(x)) whenever x → 0+, More-
over t′(0) > 0. Then (L1(T, µ),H) is a complete
separable metric space.

Proof: Since every fuzzy valued Bernstein polyno-
mial Bm(F ; x) is continuous, of course, its also tK-
integrable, and satisfies

P (T ) ⊂ C(T ) ⊂ L1(T, µ).
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In the light of Theorem 27, P (T ) is dense in C(T ),
and C(T ) is dense in S(T ), then P (T ) is dense in
S(T ). By Theorem 24, P (T ) is dense in L1(T, µ).
Therefore, P (T ) is a countable dense subset of
L1(T, µ). This shows that the fuzzy valued tK-
integrable function space L1(T, µ) is separable.

In addition, Theorem 19 shows (L1(T, µ),H) is a
metric space, in the meantime,Theorem 22 shows that
(L1(T, µ),H) is a complete space. By Theorem 27,
we can immediately get that (L1(T, µ), H) is a com-
plete separable metric space. So far, the main conclu-
sion of this paper is proved in Theorem 28. ⊓⊔

5 Conclusion
In this paper, we give a new tK-integral norm through
combining the induced operators K and t, and show
that the fuzzy valued tK-integrable function space
is a complete separable metric space in the sense of
the tK-integral norm. In fact, tK-additive integral is
a generalization of Lebesgue integral, namely, when
the operators K and t are identity. Hence, its im-
portant to use this norm to express the approximation
capability of a fuzzy neural network to a given inte-
grable function. This conclusion is a generalization of
main results of [16,17], and it is also a development of
[8,9,10] . Since integrable function system is widely
spread in some fuzzy network, such as the multiple (or
single) input and single output regular fuzzy neural
network and polygonal fuzzy neural networks. Un-
doubtedly, research on these methods will have im-
portant theoretical value in further realization of fuzzy
inference network and design of fuzzy controller.
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