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Abstract:We propose the cubic-order numerical method free of second derivatives and derive the asymptotic error
constant in terms of control parameters. Applying this proposed scheme to various test functions, numerical results
show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-
precision computability.
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1 Introduction
The iteration methods to find the roots of nonlinear
equations have various applications in many science
problems. Among them, the Newton’s method is one
of the most well-known iteration schemes and is mod-
ified by many researchers[1,2,3,4].

Assume that a functionf : C → C has a multiple
rootα with integer multiplicitym ≥ 1 and is analytic
in a small neighborhood ofα. We express the given
equationf(x) = 0 in the formx − g(x) = 0 where
g : C → C is analytic in a sufficiently small neigh-
borhood ofα. Then We find an approximatedα by a
scheme

xn+1 = g(xn), n = 0, 1, 2, · · · , (1)

whereg : C → C is an iteration function andx0 ∈ C

is given. Then we find an approximatedα using an
iterative method[5,6,7,8]. The roots of the equation
are obtained using the following scheme:

g(xn) = xn − λ
f(xn − µh(xn))

f ′(xn)
(2)

where

h(x) =

{

f(x)/f ′(x), if x 6= α
limx→α f(x)/f ′(x), if x = α.

(3)
For a givenp ∈ N, we suppose that

{

∣

∣

∣

dp

dxp g(x)
∣

∣

∣

x=α
= |g(p)(α)| < 1, if p = 1.

g(i)(α) = 0 for 1 ≤ i ≤ p − 1 and g(p)(α) 6= 0, if p ≥ 2.

(4)

Let z(x) = x−µh(x) andF (x) = f(x−µh(x))
f ′(x) . Since

g(x) is continuous atx = α, g(x) is represented by

g(x) =

{

x − λF (x), if x 6= α

x − λ limx→α F (x), if x = α.
(5)

By Corollary 1 and Corollary 2, we have[f(z)]
(k)
x=α =

0, 0 ≤ k ≤ m − 1 and f(α) = f ′(α) = · · · =

f (m−1)(α) = 0, f (m) 6= 0. Using L’Hospital’s rule
repeatedly[5,6,9], we have

lim
x→α

F (x) =
[f(z)]

(m−1)
x=α

[f ′(x)](m−1)
= 0 (6)

The next corollary is useful to calculateg′(α), g′′(α)
andg′′′(α).

Corollary 1 Supposef : C → C has a multiple root
α with a given integer multiplicitym ≥ 1 and is ana-
lytic in a small neighborhood ofα. Then the function
h(x) and its derivatives up to order 3 evaluated atα

has the following properties withθj =
f (m+j)(α)

f (m)(α)
, j ∈

N:
(i) h(α) = 0

(ii) h′(α) = 1
m

(iii) h′′(α) = − 2
m2(m+1)θ1

(iv) h(3)(α) = 6
m3(m+1)

{

θ1
2 − 2m

m+2θ2

}

.

Corollary 2 Let f stated in Corollary 1 have a mul-
tiple root α with a given multiplicitym ≥ 1. Let
z(x) = x − µh(x) andh(x) be defined by (3). Then
the following hold:

dk

dxk f(z)

∣

∣

∣

∣

x=α

=











0, if 0 ≤ k ≤ m − 1

f (m)(α)tm, if k = m

f (m)(α) · θ1 · tm−1(1 − t + t2), if k = m + 1

f (m)(α) · tm−2 · {q1θ
2
1 + q2θ2}, if k = m + 2
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whereq1 =
(m+2)λ

2m(m+1)(t − 1)2{2(m + 1)t − m + 1},

q2 = t(t3 − 2t + 2) andt0 ≡ 1 for anyt ∈ C.

In this paper, our aim is to establish some rela-
tionships betweenλ, m, g′(α), g′′(α) andg′′′(α) for
cubic order of convergence[8,9] and derive the corre-
sponding asymptotic error constant. Various numeri-
cal experiments are presented to confirm the validity
of the suggested method.

2 Convergence

We analyze the convergent properties of this proposed
scheme (2) and investigate the order of convergence
and the asymptotic error constant[10] in terms of pa-
rameterλ andµ. From the definition ofg(x) as de-
scribed in (2), we rewrite

(g − x) · f ′(x) = −λf(z). (7)

wheref = f(x), f ′ = f ′(x), z = x − µh(x) are
used for concise and the symbol′ denotes the deriva-
tive with respect tox.
Differentiating both sides of (7) with respect tox, we
obtain

(g′ − 1) · f ′ + (g − x) · f ′′(x) = −λ[f(z)](1) (8)

Sinceg′ is continuous atα, we have

g′(x)− 1 =

{

F1(x), if x 6= α

limx→α F1(x), if x = α,
(9)

whereF1(x) = −(g−x)f ′′(x)−λ[f(z)](1)

f ′ .
Using Corollary 2 andg(α) = α, we have the follow-
ing:

(g − x)f ′′(x)](k)
x=α

=

{

0, if 0 ≤ k ≤ m − 2, m ≥ 2

(m − 1)(g′ − 1)f (m)(α), if k = m − 1,
(10)

[f(z)](1)

](k)

x=α

=

{

0, if 0 ≤ k ≤ m − 2, m ≥ 2

f (m)(α)(1− µ
m

)m, if k = m − 1,

(11)

Substituting (10) and (11) into (9) leads

g′(α)− 1 = −(m − 1)(g′(α)− 1)− λ(1−
µ

m
)m

To obtaing′(α) = 0, we get

m = λtm (12)

wheret = 1 − µ
m

.
Differentiate both sides of Eq(8) with respect tox, we
have

g′′+2(g′−1)·f ′′+(g−x)·f (3) = −λ[f(z)](2) (13)

We rewrite

g′′(x) =

{

F2(x), if x 6= α
limx→α F2(x), if x = α,

(14)

whereF2(x) = −2(g′−1)·f ′′−(g−x)·f (3)−λ[f(z)](2)

f ′ .

Applying L’Hospital’s rule with Corollary 2, the nu-
merator ofF2(x) yields

−2(g′ − 1)f ′′ − (g − x)f (3) − λ[f(z)](2)

=















0, if 0 ≤ k ≤ m − 3

f (m)(α)(m− λtm), if k = m − 2

f (m)(α)[θ1{(m + 1)− λ(tm+1 − tm + tm−1)}

−g′′(α) (m+2)(m−1)
2 ], if k = m − 1,

(15)
From (14) and (15), we obtain

g′′ =
2θ1

m(m + 1)
{(m + 1) − λ(tm+1 − tm + tm−1)}

(16)
From (16), to haveg′′(α) = 0 we get the following
relation,

m + 1 = λ(tm+1 − tm + tm−1) (17)

Differentiate both sides of (13) with respect tox, we
get

g
(3) · f

′
+ 3g

′′ · f
′′

+ 3(g
′ − 1) · f

(3)
+ (g − x) · f

(4)
= −λ[f(z)]

(3)
. (18)

We rewrite

g(3)(x) =

{

F3(x), if x 6= α
limx→α F3(x), if x = α,

(19)
where

F3(x) =
−3g′′f ′′ − 3(g′ − 1)f (3) − (g − x)f (4) − λ[f(z)](3)

f ′ .

(20)

Using Corollary 2 and the fact thatg(α) =
α, gP(α) = 0, g′′(α) = 0 for cubic order of conver-
gence, we have the relation below:

[

−3g′′·f ′′−3(g′−1)·f (3)(g−x)·f (4)−λ[f(z)](3)
](k)

x=α
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=



















0, if 0 ≤ k ≤ m − 4

f(m)(α)(m − λtm), if k = m − 3

θ1f(m)(α){m + 1 − λ(tm+1 − tm + tm−1)}, if k = m − 2

f(m)(α){φ1θ2
1 + φ2θ2 − (m−1)(m2+4m+6)

6
g(3)}, if k = m − 1,

(21)

where

φ1 =

{

tm−2q1(t, if m ≥ 2
3(t − 1)2, if m = 1,

φ2 =

{

m + 2 − λtm−2 · q2(t), if m ≥ 2

−t(t2 − 3), if m = 1,

q1 =
(m+2)λ

2m(m+1)(t−1)2{2(m+1)t−m+1} andq2 =

t(t3 − 2t + 1).

From (19) and (21), we have

g(3)(α) =
6

m(m + 1)(m + 2)
{φ1θ

2
1 + φ2θ2}. (22)

Theorem 3 Let f : C → C have a multiple real zero
α with integer multiplicitym ≥ 1 and be analytic in
a small neighborhood ofα. Let θ1, θ2 be defined as
in Corollary andφ1, φ2 be defined as in (21). Lett
be a root ofR(t). Let x0 be an initial value chosen
in a sufficiently small neighborhood ofα. Then this
proposed method stated in section 1 has order3 and
its asymptotic error constantη as follows:

η =
1

6
|g(3)(α)| =

1

m(m + 1)(m + 2)
|φ1θ

2
1 + φ2θ2|,

(23)
provided thatφ1θ

2
1 + φ2θ2 6= 0.

From (12) and (17), we get

mt2 − (2m + 1)t + m = 0

Typical cases for1 ≤ m ≤ 4 are studied here and
listed in Table 1 to confirm Theorem 2.1.

Table 1:Valuesρ andη for 1 ≤ m ≤ 4

m ρ(t) η

1 t2 − 3t + 1 = 0 1
6
[θ2(4 − 3t) + 2θ2

1(1 − t)]

2 2t2 − 5t + 2 = 0 1
24

[θ2
5t

2+2t+4
t

+ θ2
1

7t
2
−2t+2

3t2
]

3 3t2 − 7t + 3 = 0 1
60 [θ2

−7t2+2t+6
t

+ 5θ2
1

4t3+t2−6t+1

4t2
]

4 4t2 − 9t + 4 = 0 1
20

[θ2
10t−8

t
+ θ2

1
30t3−49t2+28t−9

5t2
]

3 Conclusion
The symbolic and computational ability ofMathemat-
ica[11] leads us to a zero-finding algorithm based on
the convergent behaviour studied in Sections 1 and 2.

Algorithm 3.1 (Zero-Finding Algorithm)

Step 1. For k ∈ N ∪ {0}, construct iteration scheme
(1) with the given functionf at a multiple zeroα as
stated in Section 1.
Step 2. Set the minimum number of precision digits.
With exact zeroα or most accurate zero, supply the
theoretical asymptotic error constantη. Set the error
rangeǫ, the maximum iteration numbernmax and the
initial valuex0. Computef(x0) and|x0 − α |.
Step 3. Computexn+1 in (1) for 0 ≤ n ≤ nmax and
display the computed values ofn, xn, f(xn), |xn −
α|, |en+1/en

p| andη.

In these experiments, we choose300 as the minimum
number of digits of precision by assigning$MinPreci-
sion=300in Mathematica to achieve the specified ac-
curacy. We set the error boundǫ to 0.5 × 10−235 for
| xn −α | < ǫ and evaluate thenth order derivative of
the complicated nonlinear functions using the Mathe-
matica commandD[f, {x, n}].

As an example for the convergence, we first il-
lustrate the order of convergence and the asymptotic
error constant with a function

f(x) = (x2 − x + 3)4/(x4 + sinx)

having a real zeroα = 1−i
√

11
2 of multiplicity 4. We

choosex0 = 0.468 − 1.58i as an initial guess. Table
2 verifies cubic convergence apparently.

Table 2:Convergence forf(x) = (x2 − x + 3)4/(x4 + sinx)

with m = 4, α = 1−i
√

11
2

(t, µ, λ) = ( 9+
√

17
8

,−2.56155, 1)

n xn | xn − α | en+1/en
3 η

0 0.468000000000000 0.0845981 0.2554068175
- 1.58000000000000i

1 0.500178290031692 0.000181560 0.2998740289
- 1.65834669787011i

2 0.500000000001344 1.52868 0.2554204016
- 1.65831239517843i ×10−12

3 0.500000000000000 9.12388 0.2554068175
- 1.65831239517770i ×10−37

4 0.500000000000000 1.93986 0.2554068175
- 1.65831239517770i ×10−109

5 0.500000000000000 0.0

- 1.65831239517770i ×10−299

We choose an analytic functionf(x) = (x −
π) log2(x+1−π) sin5 x·ex near a multiple rootα = π
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of multiplicity 8. The extra informations regarding cu-
bic convergence are used as a initial valuex0 = 3.29,
µ = −3.37228 andλ = 0.479765623518. We select
a complext = 17+

√
33

16 that is approximated as one
of 2 solutions to a polynomial equationρ(t) numeri-
cally. From the lists of Table 3, it can be confirmed
that the computed asymptotic error constant coincides
with the investigated one using Theorem 2 and this
iteration method has cubic convergence.

The current study can be applied to the effiec-
tive variations to develop the higher order numerical
schemes to find the multiple roots of nonlinear equa-
tions[12,13,14].

Table 3: Convergence forf(x) = (x − π) log2(x + 1 −
π) sin5 x · ex with m = 8, α = π

(t, µ, λ) = ( 17+
√

33
16

,−3.37228, 0.479765623518)

n xn | xn − α | en+1/en
3 η

0 3.29000000000000 0.148407 0.1272715659
1 3.14213337664892 0.000540723 0.1654278750
2 3.14159265360994 2.01430 0.1274087393

×10−11

3 3.14159265358979 1.04017 0.1272715660
×10−33

4 3.14159265358979 1.43232 0.1272715659
×10−100

5 3.14159265358979 0.

×10−299
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