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Abstract: In this paper, we consider an almost periodic Schoener’s competition model with time-varying delays.
By means of Mawhin’s continuation theorem of coincidence degree theory, some new sufficient conditions are
obtained for the existence of at least one positive almost periodic solution for a kind of Schoeners competition
model with time-varying delays. The result of this paper complements previous results. Finally, two examples and
numerical simulations are given to illustrate the feasibility and effectiveness of our main results.
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1 Introduction
In recent years, the Schoener’s competition system
has been studied by many scholars. Topics such as
existence, uniqueness and global attractivity of posi-
tive periodic solutions of the system were extensively
investigated and many excellent results have been de-
rived (see [1-9] and the references cited therein). In
[6], Liu, Xu and Wang proposed and studied the
global stability of the following Schoener’s competi-
tion model with pure-delays:

ẋ1(t) = x1(t)

[
a10(t)

x1(t−τ10)+m1(t)

−a11(t)x1(t− τ11)

−a12(t)x2(t− τ12)− c1(t)
]
,

ẋ2(t) = x2(t)

[
a20(t)

x2(t−τ20)+m2(t)

−a21(t)x1(t− τ21)

−a22(t)x2(t− τ22)− c2(t)
]
.

(1)

In [9], we studied the existence and stability of a
unique positive almost periodic solution of system (1)

with impulsive effects by means of Lyapunov func-
tional.

Time delays represent an additional level of com-
plexity that can be incorporated in a more detailed
analysis of a particular system. Specially, in the real
world, the delays in differential equations of biolog-
ical phenomena are usually time-varying. Thus, it
is worthwhile continuing to consider the following
Schoener’s competition model with time-varying de-
lays:

ẋ1(t) = x1(t)

[
a10(t)

x1(t−τ10(t))+m1(t)

−a11(t)x1(t− τ11(t))

−a12(t)x2(t− τ12(t))− c1(t)
]
,

ẋ2(t) = x2(t)

[
a20(t)

x2(t−τ20(t))+m2(t)

−a21(t)x1(t− τ21(t))

−a22(t)x2(t− τ22(t))− c2(t)
]
,

(2)

where x1(t), x2(t) are population densities of species
x1, x2 at time t, respectively.
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In real world phenomenon, the environment
varies due to the factors such as seasonal effects of
weather, food supplies, mating habits and harvesting,
etc. So it is usual to assume the periodicity of pa-
rameters in the systems. However, in applications,
if the various constituent components of the tempo-
rally nonuniform environment is with incommensu-
rable (nonintegral multiples, see Example 1) periods,
then one has to consider the environment to be almost
periodic since there is no a priori reason to expect the
existence of periodic solutions. Hence, if we consider
the effects of the environmental factors, almost peri-
odicity is sometimes more realistic and more general
than periodicity.

Example 1. Let us consider the following simple pop-
ulation model:

Ṅ(t) = N(t)

[
| sin(

√
2t)|

N(t) + 1

−| sin(
√
3t)|N(t− 1)

]
. (3)

In Eq. (3), | sin(
√
2t)| is

√
2π
2 -periodic function and

| sin(
√
3t)| is

√
3π
3 -periodic function, which imply that

Eq.(3) is with incommensurable periods. Then there is
no a priori reason to expect the existence of periodic
solutions of Eq.(3). Thus, it is significant to study the
existence of almost periodic solutions of Eq. (3) .

It is well known that Mawhin’s continuation the-
orem of coincidence degree theory is an important
method to investigate the existence of positive peri-
odic solutions of non-linear ecosystems (see [10-18]).
However, it is difficult to be used to investigate the
almost periodic solutions of non-linear ecosystems.
Therefore, to the best of the author’s knowledge, so
far, there are scarcely any papers concerning with
the existence of positive almost periodic solutions of
system (2) by using Mawhin’s continuation theorem.
Motivated by the above reason, the main purpose of
this paper is to establish some new sufficient condi-
tions on the existence of positive almost periodic so-
lutions of system (2) by using Mawhin’s continuous
theorem of coincidence degree theory.

Let R, Z and N+ denote the sets of real numbers,
integers and positive integers, respectively, C(X,Y)
and C1(X,Y) be the space of continuous functions
and continuously differential functions which map X
into Y, respectively. Especially, C(X) := C(X,X),
C1(X) := C1(X,X). Related to a continuous
bounded function f , we use the following notations:

f− = inf
s∈R

f(s), f+ = sup
s∈R

f(s), |f |∞ = sup
s∈R
|f(s)|.

Throughout this paper, we always make the fol-
lowing assumption for system (2):

(H1) aij , τij , mi and ci are nonnegative almost pe-
riodic functions with m−

i > 0, i = 1, 2, j =
0, 1, 2.

The organization of this Letter is as follows. In
Section 2, we make some preparations. In Section
3, by using Mawhin’s continuation theorem of coinci-
dence degree theory, we establish sufficient conditions
for the existence of at least one positive almost peri-
odic solution to system (2). Two illustrative examples
are given in Section 4.

2 Preliminaries

Definition 2. ([19]) x ∈ C(R,Rn) is called almost
periodic, if for any ϵ > 0, it is possible to find a real
number l = l(ϵ) > 0, for any interval with length
l(ϵ), there exists a number τ = τ(ϵ) in this interval
such that ∥x(t+ τ)− x(t)∥ < ϵ, ∀t ∈ R, where ∥ · ∥
is arbitrary norm of Rn. τ is called to the ϵ-almost
period of x, T (x, ϵ) denotes the set of ϵ-almost periods
for x and l(ϵ) is called to the length of the inclusion
interval for T (x, ϵ). The collection of those functions
is denoted by AP (R,Rn). Let AP (R) := AP (R,R).
Lemma 3. ([20]) Assume that x ∈ AP (R) ∩ C1(R)
with ẋ ∈ C(R). For arbitrary interval I = [a, b] with
b− a = ω > 0, let ξ ∈ [a, b] and

I1 =
{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
,

then ones have

x(t) ≤ x(ξ) +
∫
I1

ẋ(s) ds, ∀t ∈ [ξ, b].

Lemma 4. ([20]) If x ∈ AP (R), then for arbitrary
interval I = [a, b] with b − a = ω > 0, there exist
ξ ∈ [a, b], ξ ∈ (−∞, a] and ξ̄ ∈ [b,+∞) such that

x(ξ) = x(ξ̄) and x(ξ) ≤ x(s), ∀s ∈ [ξ, ξ̄].

Lemma 5. ([20]) If x ∈ AP (R), then for arbitrary
interval [a, b] with I = b − a = ω > 0, there exist
η ∈ [a, b], η ∈ (−∞, a] and η̄ ∈ [b,+∞) such that

x(η) = x(η̄) and x(η) ≥ x(s), ∀s ∈ [η, η̄].

Lemma 6. ([20]) If x ∈ AP (R), then for ∀n ∈ N+,
there exists αn ∈ R such that x(αn) ∈ [x∗ − 1

n , x
∗],

where x∗ = sups∈R x(s).

Lemma 7. ([20]) Assume that x ∈ AP (R) and x̄ >
0, then for ∀t0 ∈ R and ϵ0 ∈ (0, x̄), there exists a
positive constant T0 = T0(ϵ0) independent of t0 such
that

1

T

∫ t0+T

t0

x(s) ds ∈ [x̄− ϵ0, x̄+ ϵ0] , ∀T ≥ T0.
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Let ϵ0 = x̄
2 in the above lemma, we obtain

Lemma 8. Assume that x ∈ AP (R) and x̄ > 0, then
for ∀t0 ∈ R, there exists a positive constant T0 inde-
pendent of t0 such that

1

T

∫ t0+T

t0

x(s) ds ∈
[
x̄

2
,
3x̄

2

]
, ∀T ≥ T0.

3 Main results

The method to be used in this paper involves the ap-
plications of the continuation theorem of coincidence
degree. This requires us to introduce a few concepts
and results from Gaines and Mawhin [21].

Let X and Y be real Banach spaces, L : DomL ⊆
X → Y be a linear mapping and N : X → Y be a
continuous mapping. The mapping L is called a Fred-
holm mapping of index zero if ImL is closed in Y
and dimKerL = codimImL < +∞. If L is a Fred-
holm mapping of index zero and there exist continu-
ous projectors P : X → X and Q : Y → Y such
that ImP = KerL, KerQ = ImL = Im(I − Q).
It follows that L|DomL∩KerP : (I − P )X → ImL is
invertible and its inverse is denoted by KP . If Ω is
an open bounded subset of X, the mapping N will
be called L-compact on Ω̄ if QN(Ω̄) is bounded and
KP (I − Q)N : Ω̄ → X is compact. Since ImQ
is isomorphic to KerL, there exists an isomorphism
J : ImQ→ KerL.

Lemma 9. ([21]) Let Ω ⊆ X be an open bounded
set, L be a Fredholm mapping of index zero and N be
L-compact on Ω̄. If all the following conditions hold:

(a) Lx ̸= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);

(b) QNx ̸= 0, ∀x ∈ ∂Ω ∩KerL;

(c) deg{JQN,Ω ∩ KerL, 0} ̸= 0, where J :
ImQ→ KerL is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

Under the invariant transformation (N1, N2)
T =

(eu, ev)T , system (2) reduces to
u̇(t) = b1(t)− a1(t)eu(t−µ1(t))

− α1(t)eu(t)

1+me2u(t)
ev(t−ν(t)),

v̇(t) = −b2(t)− a2(t)ev(t)

+α2(t)e2u(t−µ2(t))

1+me2u(t−µ2(t))
.

(4)

For f ∈ AP (R), we denote by

f̄ = m(f) = lim
T→∞

1

T

∫ T

0
f(s) ds,

Λ(f) =

{
ϖ ∈ R : lim

T→∞

1

T

∫ T

0
f(s)e−iϖsds ̸= 0

}
,

mod(f) =

{ m∑
j=1

njϖj : nj ∈ Z,m ∈ N,

ϖj ∈ Λ(f), j = 1, 2 . . . ,m

}
the mean value, the set of Fourier exponents and the
module of f , respectively.

Set X = Y = V1
⊕

V2, where

V1 =

{
z = (u, v)T ∈ AP (R,R2) :

mod(u) ⊆ mod(Lu),

mod(v) ⊆ mod(Lv),

∀ϖ ∈ Λ(u) ∪ Λ(v), |ϖ| ≥ θ0
}
,

V2 =
{
z = (u, v)T ≡ (k1, k2)

T , k1, k2 ∈ R
}
,

where

Lu = Lu(t, φ) =
a10(t)

eφ1(−τ10(0)) +m1(t)

−a11(t)eφ2(−τ11(0))

−a12(t)eφ2(−τ12(0)) − c1(t),

Lv = Lv(t, φ) =
a20(t)

eφ2(−τ20(0)) +m2(t)

−a21(t)eφ1(−τ21(0))

−a22(t)eφ2(−τ22(0)) − c2(t),

φ = (φ1, φ2)
T ∈ C([−τ, 0],R2), τ =

maxi=1,2{µMi , νM}, θ0 is a given positive constant.
Define the norm

∥z∥X = max

{
sup
s∈R
|u(s)|, sup

s∈R
|v(s)|

}
,

where z = (u, v)T ∈ X = Y.
Similar to the proof as that in articles [20], it fol-

lows that

Lemma 10. X and Y are Banach spaces endowed
with ∥ · ∥X.

Lemma 11. Let L : X → Y, Lz = L(u, v)T =
(u̇, v̇)T , then L is a Fredholm mapping of index zero.
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Lemma 12. Define N : X → Y, P : X → X and
Q : Y→ Y by

Nz =



a10(t)

eu(t−τ10(t))+m1(t)

−a11(t)eu(t−τ11(t))

−a12(t)ev(t−τ12(t)) − c1(t),
a20(t)

ev(t−τ20(t))+m2(t)

−a21(t)eu(t−τ21(t))

−a22(t)ev(t−τ22(t)) − c2(t)


,

P z = P

(
u
v

)
=

(
m(u)
m(v)

)
= Qz.

ThenN is L-compact on Ω̄(Ω is an open and bounded
subset of X).

Now we are in the position to present and prove
our result on the existence of at least two positive al-
most periodic solutions of system (2).

Let

τ := max
1≤i≤2,0≤j≤2

{τ+ij }, µi(s) =
ai0(s)

mi(s)
,

ν1(s) =
a10(s)

eρ1 +m+
1

− a12(s)eϱ1 − c1(s),

ν2(s) =
a20(s)

eϱ1 +m+
2

− a21(s)eρ1 − c2(s),

ρ1 = ln
6µ̄1
ā11

+
a+10ω

m−
1

,

ϱ1 = ln
6µ̄2
ā22

+
a+20ω

m−
2

, ∀s ∈ R, i = 1, 2,

where ω is defined as that in (7).

Theorem 13. Assume that (H1) holds. Suppose fur-
ther that

(H2) āi0 > 0 and āii > 0, i = 1, 2.

(H3) ν̄1 > 0.

(H4) ν̄2 > 0.

Then system (2) admits at least one positive almost
periodic solution.

Proof. It is easy to see that if system (4) has one
almost periodic solution (u, v)T , then (x1, x2)

T =
(eu, ev)T is a positive almost periodic solution of sys-
tem (2). Therefore, to completes the proof it suffices
to show that system (4) has one almost periodic solu-
tion.

In order to use Lemma 9, we set the Banach
spaces X and Y as those in Lemma 10 and L,N, P,Q

the same as those defined in Lemmas 11 and 12, re-
spectively. It remains to search for an appropriate
open and bounded subset Ω ⊆ X.

Corresponding to the operator equation Lz = λz,
λ ∈ (0, 1), we have

u̇(t) = λ

[
a10(t)

eu(t−τ10(t))+m1(t)

−a11(t)eu(t−τ11(t))

−a12(t)ev(t−τ12(t)) − c1(t)
]
,

v̇(t) = λ

[
a20(t)

ev(t−τ20(t))+m2(t)

−a21(t)eu(t−τ21(t))

−a22(t)ev(t−τ22(t)) − c2(t)
]
.

(5)

Suppose that z = (u, v)T ∈ DomL ⊆ X is a solution
of system (3.1) for some λ ∈ (0, 1), where DomL =
{z = (u, v)T ∈ X : u, v ∈ C1(R), u̇, v̇ ∈ C(R)}. By
Lemma 6, there exist two sequences {αn : n ∈ N+}
and {βn : n ∈ N+} such that

u(αn) ∈ [u∗− 1

n
, u∗], v(βn) ∈ [v∗− 1

n
, v∗], (6)

where u∗ = sups∈R u(s), v
∗ = sups∈R v(s).

From (H1)-(H2) and Lemma 8, for ∀t0 ∈ R,
there exists a constant ω ∈ (2τ,+∞) independent of
t0 such that

1

T

∫ t0+T

t0

ai0(s) ds ∈
[
āi0
2
,
3āi0
2

]
,

1
T

∫ t0+T
t0

aii(s) ds ∈
[
āii
2 ,

3āii
2

]
,

1

T

∫ t0+T

t0

µi(s) ds ∈
[
µ̄i
2
,
3µ̄i
2

]
,

∀T ≥ ω
2 , i = 1, 2.

(7)

For ∀n0 ∈ N+, we consider [αn0 − ω, αn0 ]
and [βn0 − ω, βn0 ], where ω is defined as that in
(7). By Lemma 4, there exist ξ ∈ [αn0 − ω, αn0 ],
ξ ∈ (−∞, αn0 − ω] and ξ̄ ∈ [αn0 ,+∞) such that

u(ξ) = u(ξ̄) and u(ξ) ≤ u(s), ∀s ∈ [ξ, ξ̄].
(8)

Integrating the first equation of system (5) from ξ to ξ̄
leads to∫ ξ̄

ξ

[
a10(s)

eu(s−τ10(s)) +m1(s)
− a11(s)eu(s−τ11(s))

−a12(s)ev(s−τ12(s)) − c1(s)
]
ds = 0,
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which yields that∫ ξ̄

ξ+τ+11

a11(s)e
u(s−τ11(s)) ds

≤
∫ ξ̄

ξ
a11(s)e

u(s−τ11(s)) ds

≤
∫ ξ̄

ξ

a10(s)

eu(s−τ10(s)) +m1(s)
ds. (9)

By the integral mean value theorem and (7), there ex-
ists s0 ∈ [ξ + τ+11, ξ̄] (s0 − τ11(s0) ∈ [ξ, ξ̄]) such that

1

ξ̄ − ξ

∫ ξ̄

ξ+τ+11

a11(s)e
u(s−τ11(s)) ds

=
ξ̄ − ξ − τ+11
ξ̄ − ξ

1

ξ̄ − ξ − τ+11∫ ξ̄

ξ+τ+11

a11(s) dse
u(s0−τ11(s0))

≥
ξ̄ − ξ − τ+11
ξ̄ − ξ

ā11
2
eu(s0−τ11(s0))

≥
[
1− τ+11

ω

]
ā11
2
eu(s0−τ11(s0))

≥ ā11
4
eu(s0−τ11(s0)). (10)

By (8)-(10), we have
ā11
4
eu(ξ) ≤ ā11

4
eu(s0−τ11(s0)) ≤ 1

ξ̄ − ξ∫ ξ̄

ξ

a10(s)

eu(s−τ10(s)) +m1(s)
ds ≤ 3

2
µ̄1,

which implies that

u(ξ) ≤ ln
6µ̄1
ā11

. (11)

Let I = [ξ, αn0 ] and I1 = {s ∈ I : u̇(s) ≥ 0}. It
follows from system (5) that∫

I1

u̇(s) ds =

∫
I1

λ

[
a10(s)

eu(s−τ10(s)) +m1(s)

−a11(s)eu(s−τ11(s))

−a12(s)ev(s−τ12(s)) − c1(s)
]
ds

≤
∫
I1

a10(s)

eu(s−τ10(s)) +m1(s)
ds

≤
∫ αn0

αn0−ω

a10(s)

eu(s−τ10(s)) +m1(s)
ds

≤ a+10ω

m−
1

. (12)

By Lemma 3, it follows from (11)-(12) that

u(t) ≤ u(ξ) +

∫
I1

u̇(s) ds

≤ ln
6µ̄1
ā11

+
a+10ω

m−
1

:= ρ1, ∀t ∈ [ξ, αn0 ],

which implies that

u(αn0) ≤ ρ1.
In view of (6), letting n0 → +∞ in the above inequal-
ity leads to

u∗ = lim
n0→+∞

u(αn0) ≤ ρ1. (13)

Similar to the argument as that in (13), we can obtain
that

v∗ ≤ ln
6µ̄2
ā22

+
a+20ω

m−
2

:= ϱ1. (14)

From (H3)-(H4) and Lemma 8, for ∀t0 ∈ R,
there exists a constant ω0 ∈ [ω,+∞) independent of
t0 such that

1

T

∫ t0+T

t0

νi(s) ds ∈
[
ν̄i
2
,
3ν̄i
2

]
, ∀T ≥ ω0, i = 1, 2.

Let

l = max

{
ω0,

4a+11e
ρ1τ+11
ν̄1

,
4a+22e

ϱ1τ+22
ν̄2

}
.

On the other hand, for ∀n0 ∈ Z, by Lemma 5, we
can conclude that there exist η ∈ [n0l, n0l + l], η ∈
(−∞, n0l] and η̄ ∈ [n0l + l,+∞) such that

u(η) = u(η̄), u(η) ≥ u(s), ∀s ∈ [η, η̄]. (15)

Integrating the first equation of system ((5)) from η to
η̄ leads to∫ η̄

η

[
a10(s)

eu(s−τ10(s)) +m1(s)
− a11(s)eu(s−τ11(s))

−a12(s)ev(s−τ12(s)) − c1(s)
]
ds = 0,

which yields that

1

η̄ − η

∫ η̄

η
a11(s)e

u(s−τ11(s)) ds

=
1

η̄ − η

∫ η̄

η

[
a10(s)

eu(s−τ10(s)) +m1(s)

−a12(s)ev(s−τ12(s)) − c1(s)
]
ds

≥ 1

η̄ − η

∫ η̄

η

[
a10(s)

eρ1 +m+
1

− a12(s)eϱ1 − c1(s)
]
ds

=
1

η̄ − η

∫ η̄

η
ν1(s) ds ≥

ν̄1
2
. (16)
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By (??), we have that

1

η̄ − η

∫ η̄

η
a11(s)e

u(s−τ11(s)) ds

≤ a+11
η̄ − η

∫ η̄

η
eu(s−τ11(s)) ds

=
a+11
η̄ − η

[ ∫ η̄

η+τ+11

eu(s−τ11(s)) ds

+

∫ η+τ+11

η
eu(s−τ11(s)) ds

]
≤ a+11

η̄ − η

[
eu(η)(η̄ − η − τ+11) + eρ1τ+11

]
≤ a+11e

u(η) +
a+11e

ρ1τ+11
l

≤ a+11e
u(η) +

ν̄1
4
. (17)

From (16)-(17), it follows that

u(η) ≥ ln
ν̄1

4a+11
. (18)

Further, we obtain from system (5) that∫ n0l+l

n0l
|u̇(s)| ds

=

∫ n0l+l

n0l
λ

∣∣∣∣ a10(s)

eu(s−τ10(s)) +m1(s)

−a11(s)eu(s−τ11(s))

−a12(s)ev(s−τ12(s)) − c1(s)
∣∣∣∣ds

≤
[
3µ̄1
2

+ (a+11e
ρ1 + a+12e

ϱ1 + c+1 )

]
l. (19)

It follows from (18)-(19) that

u(t) ≥ u(η)−
∫ n0l+l

n0l
|u̇(s)|ds

≥ ln
ν̄1

4a+11
−
[
3µ̄1
2

+ (a+11e
ρ1

+a+12e
ϱ1 + c+1 )

]
l

:= ρ2, ∀t ∈ [n0l, n0l + l]. (20)

Obviously, ρ2 is a constant independent of n0. So it
follows from (20) that

u∗ = inf
s∈R

u(s) = inf
n0∈Z

{
min

s∈[n0l,n0l+l]
u(s)

}
≥ inf

n0∈Z
{ρ2} = ρ2. (21)

Similar to the argument as that in (21), we can obtain
that

v∗ ≥ ln
ν̄2

4a+22
−
[
3µ̄2
2

+ (a+22e
ϱ1 + a+21e

ρ1 + c+2 )

]
l

:= ϱ2. (22)

Set C = |ρ1|+ |ρ2|+ |ϱ1|+ |ϱ2|+1. Clearly, C is
independent of λ ∈ (0, 1). Let Ω = {z ∈ X : ∥z∥X <
C}. Therefore, Ω satisfies condition (a) of Lemma 9.

Now we show that condition (b) of Lemma 9
holds, i.e., we prove that QNz ̸= 0 for all z =
(u, v)T ∈ ∂Ω ∩ KerL = ∂Ω ∩ R2. If it is not
true, then there exists at least one constant vector
z0 = (u0, v0)

T ∈ ∂Ω such that{
0 = m

[
a10

eu0+m1

]
− ā11eu0 − ā12ev0 − c̄1,

0 = m
[

a20
ev0+m2

]
− ā21eu0 − ā22ev0 − c̄2.

Similar to the argument as that in (13), (14), (21) and
(22), it follows that

ρ2 < u0 < ρ1, ϱ2 < v0 < ϱ1.

Then z0 ∈ Ω ∩ R2. This contradicts the fact that z0 ∈
∂Ω. This proves that condition (b) of Lemma 9 holds.

Finally, we will show that condition (c) of
Lemma 9 is satisfied. Let us consider the homotopy

H(ι, z) = ιQNz + (1− ι)Φz, (ι, z) ∈ [0, 1]× R2,

where

Φz = Φ

(
u
v

)
=

( ā10
eu+m+

1

− ā11eu
ā20

ev+m+
2

− ā22ev

)
.

From the above discussion it is easy to verify that
H(ι, z) ̸= 0 on ∂Ω ∩ KerL, ∀ι ∈ [0, 1]. Further,
Φz = 0 has a solution:

(u∗, v∗)T = (ln k, ln l)T ,

where

k =

√
(m+

1 ā11)
2 + 4ā10ā11 −m+

1 ā11

2ā11
,

l =

√
(m+

2 ā22)
2 + 4ā20ā22 −m+

2 ā22

2ā22
.

It is easy to verify that

ρ2 < ln k < ρ1, ϱ2 < ln l < ϱ1.
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Therefore (u∗, v∗)T ∈ Ω. A direct computation
yields

deg
(
Φ,Ω ∩KerL, 0

)
= sign

∣∣∣∣∣∣
− ā10eu

∗

eu∗+m+
1

− ā11eu
∗

0

0 − ā20ev
∗

ev
∗
+m+

2

− ā22ev
∗

∣∣∣∣∣∣
= sign

[(
ā10e

u∗

eu∗ +m+
1

+ ā11e
u∗
)

(
ā20e

v∗

ev∗ +m+
2

+ ā22e
v∗
)]

> 0.

By the invariance property of homotopy, we have

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
QN,Ω ∩KerL, 0

)
= deg

(
Φ,Ω ∩KerL, 0

)
̸= 0,

where deg(·, ·, ·) is the Brouwer degree and J is the
identity mapping since ImQ = KerL. Obviously, all
the conditions of Lemma 9 are satisfied. Therefore,
system (4) has at least one almost periodic solution,
that is, system (2) has at least one positive almost pe-
riodic solution. This completes the proof.

Corollary 14. Assume that (H1)-(H4) hold. Suppose
further that aij , τij ,mi and ci in system (1.2) are con-
tinuous nonnegative periodic functions with periods
αij , βi, σi and δi, respectively, i = 1, 2, j = 0, 1, 2,
then system (1.2) has at least one positive almost pe-
riodic solution.

Remark 15. By Corollary 14, it is easy to obtain the
existence of at least one positive almost periodic so-
lution of Eq. (3) in Example 1, although there is no a
priori reason to expect the existence of positive peri-
odic solutions of Eq.(3).

In Corollary 14, let αij = βi = σi = δi = ω,
i = 1, 2, j = 0, 1, 2, then we obtain that

Corollary 16. Assume that (H1)-(H4) hold. Suppose
further that aij , τij , mi and ci in system (2) are con-
tinuous nonnegative ω-periodic functions, i = 1, 2,
j = 0, 1, 2, then system (2) has at least one positive
ω-periodic solution.

Let

ϕ1(s) := a11(s)e
ρ1 + a12(s)e

ϱ1 + c1(s),

ϕ2(s) := a21(s)e
ρ1 + a22(s)e

ϱ1 + c2(s), ∀s ∈ R,

where ρ1 and ϱ1 are defined as that in Theorem 13.

Theorem 17. Assume that (H1)-(H2) hold. Suppose
further that

(H5) ā10 > ϕ̄1m
+
1 > 0,

(H6) ā20 > ϕ̄2m
+
2 > 0,

then system (2) admits at least one positive almost pe-
riodic solution.

Proof. Proceeding as in the proof of Theorem 13,
it remains to search for an appropriate open and
bounded subset Ω ⊆ X.

Consider the operator equations (5). From the
proof of Theorem 13, (13)-(14) are valid. In view of
(H5)-(H6), there must exist small enough ϵ0 > 0 such
that

(1− ϵ0)(āi0 − ϵ0)
ϕ̄i + ϵ0

> m+
i , i = 1, 2.

By Lemma 7, for ∀t0 ∈ R, there must exist large

enough T0 = T0(ϵ0) such that
τ+i0
T0
≤ ϵ0 and

1

T

∫ t0+T

t0

ai0(s) ds ∈ [āi0 − ϵ0, āi0 + ϵ0] ,

1

T

∫ t0+T

t0

ϕi(s) ds ∈
[
ϕ̄i − ϵ0, ϕ̄i + ϵ0

]
, ∀T ≥ T0,

where i = 1, 2. From Lemma 7, there also exist η ∈
[n0T0, n0T0 + T0], η ∈ (−∞, n0T0] and η̄ ∈ [n0T0 +
T0,+∞)(n0 ∈ Z) such that

u(η) = u(η̄), u(η) ≥ u(s), ∀s ∈ [η, η̄]. (23)

Integrating the first equation of system(5) from η to η̄
leads to

∫ η̄

η

[
a10(s)

eu(s−τ10(s)) +m1(s)
− a11(s)eu(s−τ11(s))

−a12(s)ev(s−τ12(s)) − c1(s)
]
ds = 0,
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which yields that

(1− ϵ0)(ā10 − ϵ0)
eu(η) +m+

1

≤ 1

eu(η) +m+
1

η̄ − η − τ+10
η̄ − η

1

η̄ − η − τ+10

∫ η̄

η+τ+10

a10(s) ds

≤ 1

η̄ − η

∫ η̄

η+τ+10

a10(s)

eu(s−τ10(s)) +m1(s)
ds

≤ 1

η̄ − η

∫ η̄

η

a10(s)

eu(s−τ10(s)) +m1(s)
ds

=
1

η̄ − η

∫ η̄

η

[
a11(s)e

u(s−τ11(s))

+a12(s)e
v(s−τ12(s)) + c1(s)

]
ds

≤ 1

η̄ − η

∫ η̄

η

[
a11(s)e

ρ1 + a12(s)e
ϱ1 + c1(s)

]
ds

≤ (ϕ̄1 + ϵ0). (24)

From (24), it follows that

u(η) ≥ ln

[
(1− ϵ0)(ā10 − ϵ0)

ϕ̄1 + ϵ0
−m+

1

]
. (25)

Further, we obtain from the first equation of system
(5) that ∫ n0T0+T0

n0T0

|u̇(s)|ds

=

∫ n0T0+T0

n0T0

λ

∣∣∣∣ a10(s)

eu(s−τ10(s)) +m1(s)

−a11(s)eu(s−τ11(s)) − a12(s)ev(s−τ12(s))

−c1(s)
∣∣∣∣ ds

≤
(
a+10
m−

1

+ ϕ+1

)
T0. (26)

It follows from (25)-(26) that

u(t) ≥ u(η)−
∫ n0T0+T0

n0T0

|u̇(s)|ds

≥ ln

[
(1− ϵ0)(ā10 − ϵ0)

ϕ̄1 + ϵ0
−m+

1

]
−
(
a+10
m−

1

+ ϕ+1

)
T0

:= ρ3, ∀t ∈ [n0T0, n0T0 + T0]. (27)

Obviously, ρ3 is a constant independent of n0. So
it follows from (27) that

u∗ = inf
s∈R

u(s) = inf
n0∈Z

{
min

s∈[n0T0,n0T0+T0]
u(s)

}
≥ inf

n0∈Z
{ρ3} = ρ3. (28)

Similar to the argument as that in (28) , we can obtain
that

v∗ ≥ ln

[
(1− ϵ0)(ā20 − ϵ0)

ϕ̄2 + ϵ0
−m+

2

]
−
(
a+20
m−

2

+ ϕ+2

)
T0 := ϱ3. (29)

Set C0 = |ρ1| + |ρ3| + |ϱ1| + |ϱ3| + 1. Clearly,
C0 is independent of λ ∈ (0, 1). Let Ω = {z ∈ X :
∥z∥X < C0}. From the proof in Theorem 13, it is easy
to verify that Ω satisfies conditions (a)-(c) of Lemma
9. Obviously, all the conditions of Lemma 9 are sat-
isfied. Therefore, system (4) has one almost periodic
solution, that is, system (2) has at least one positive al-
most periodic solution. This completes the proof.

Together with Theorem 13 and Theorem 18, we
can easily show that

Theorem 18. Assume that (H1)-(H3) and (H6) hold,
then system (2) admits at least one positive almost pe-
riodic solution.

Theorem 19. Assume that (H1)-(H2) and (H4)-(H5)
hold, then system (2) admits at least one positive al-
most periodic solution.

Together with Corollaries 14-16, we obtain that

Corollary 20. Assume that (H1)-(H3) and (H6)
hold. Suppose further that aij , τij , mi and ci in sys-
tem (2) are continuous nonnegative periodic functions
with periods αij , βi, σi and δi, respectively, i = 1, 2,
j = 0, 1, 2, then system (2) has at least one positive
almost periodic solution.

Corollary 21. Assume that (H1)-(H2) and (H4)-
(H5) hold. Suppose further that aij , τij , mi and
ci in system (2) are continuous nonnegative periodic
functions with periods αij , βi, σi and δi, respectively,
i = 1, 2, j = 0, 1, 2, then system (2) has at least one
positive almost periodic solution.

In Corollaries 20-21, let αij = βi = σi = δi = ω,
i = 1, 2, j = 0, 1, 2, then we have

Corollary 22. Assume that (H1)-(H3) and (H6)
hold. Suppose further that aij , τij ,mi and ci in system
(2) are continuous nonnegative ω-periodic functions,
i = 1, 2, j = 0, 1, 2, then system (2) has at least one
positive ω-periodic solution.
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Corollary 23. Assume that (H1)-(H2) and (H4)-
(H5) hold. Suppose further that aij , τij , mi and ci
in system (2) are continuous nonnegative ω-periodic
functions, i = 1, 2, j = 0, 1, 2, then system (2) has at
least one positive ω-periodic solution.

4 Two examples and numerical sim-
ulations

Example 24. Consider the following Schoener’s com-
petition model with time-varying delays:

ẋ1(t) = x1(t)

[
| sin(

√
3t)|

x1(t−sin2(
√
2t))+1

− sin2(
√
3t)x1(t− 1)

−10−4

3000 x2(t)− 10−5

]
,

ẋ2(t) = x2(t)

[
| cos(

√
2t)|

x2(t)+1

−10−4

3000 x1(t)

− cos2(
√
2t)x2(t− cos2(t))− 10−5

]
.

(30)

Then system (30) has at least one positive almost pe-
riodic solution.

Proof. Corresponding to system (2), we have ā10 =

ā20 =
2
π , ā11 = ā22 =

1
2 , mi ≡ 1, a12 = a21 ≡ 10−4

3000 ,
c1 = c2 ≡ 10−5, i = 1, 2. Obviously, (H1)-(H2)
hold. Further, for ∀t0 ∈ R, we can choose ω = 8 so
that (7) holds, that is,

1

T

∫ a+T

a
ai0(s) ds ∈

[
1

π
,
3

π

]
,

1

T

∫ a+T

a
aii(s) ds ∈

[
1

4
,
3

4

]
,

∀T ≥ ω

2
= 4, i = 1, 2.

By a easy calculation, we obtain that

ρ1 = ϱ1 ≈ 6, ν̄1 = ν̄2 > 0.00005.

So (H3)-(H4) in Theorem 13 hold. Therefore, all the
conditions of Theorem 13 are satisfied. By Theorem
13, system (30) admits at least one positive almost
periodic solution (see Figure 1). This completes the
proof.
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Figure 1 State variables x1 and x2 of system (30)
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Figure 2 Phase responses of states x1 and x2 of sys-
tem (30)

Remark 25. In system (30), | cos
√
2t| is

√
2π
2 -

periodic function and | sin
√
3t| is

√
3π
3 -periodic func-

tion. So system (30) is with incommensurable peri-
ods. Through all the coefficients of system (30) are
periodic functions, the positive periodic solutions of
system (30) could not possibly exist. However, by The-
orem 13, the positive almost periodic solutions of sys-
tem (30) exactly exist.

Example 26. Consider the following almost periodic
Schoener’s competition model with time-varying de-
lays:

ẋ1(t) = x1(t)

[
| sin

√
2t|+| sin

√
3t|

2x1(t−sin2(
√
2t))+2

− sin2(
√
3t)x1(t− 1)

−10−4

3000 x2(t)− 10−5

]
,

ẋ2(t) = x2(t)

[
| cos(

√
2t)|

x2(t)+1 −
10−4

3000 x1(t)

−0.5
(
cos2(

√
2t) + cos2(

√
3t)
)

x2(t− cos2(t))− 10−5

]
.

(31)

In system (31), | sin
√
2t| + | sin

√
3t| and

cos2(
√
2t) + cos2(

√
3t) are almost periodic func-

tions, which are not periodic functions. Similar to the
argument as that in Example 24, it is easy to obtain
that system (30) admits at least one positive almost
periodic solution.

WSEAS TRANSACTIONS on MATHEMATICS Liyan Pang, Lijun Xu, Yaqin Li, Tianwei Zhang

E-ISSN: 2224-2880 734 Volume 13, 2014



References:

[1] Z. Lu, L. Chen, Analysis on a periodic Schoener
model, Acta. Math. Sci. 12, 1992, pp. 105-109.

[2] C. Yuan, C. Wang, Permanence and periodic so-
lutions of the nonautonomous Schoener’s com-
peting system with diffusion, J. Biomath., 1(2),
1997, pp. 17-20 (in Chinese).

[3] L. Zhang, H. Huo, J. Chen, Asymptotic behavior
of the nonautonomous competing system with
feedback controls, J. Biomath., 16(4), 2001, pp.
405-410.

[4] Q. Liu, R. Xu, Periodic solutions of Schoener’s
competitive model with delays, J. Biomath.,
19(4), 2004, pp. 385-394 (in Chinese).

[5] H. Xiang, K. Yan, B. Wang, Positive peri-
odic solutions for discrete Schoener’s compet-
itive model, J. Lanzhou Univ. Technol., 31(5),
2005, pp. 125-128 (in Chinese).

[6] Q. Liu, R. Xu, W. Wang, Global asymptotic sta-
bility of Schoener’s competitive model with de-
lays, J. Biomath., 21(1), 2006, pp. 147-152 (in
Chinese).

[7] X. Li, W. Yang, Permanence of a discrete n-
species Schoener competition system with time
delays and feedback controls, Adv. Differ. Equ.,
vol. 2009, Article ID 515706, 10 pages.

[8] L. Wu, F. Chen, Z. Li, Permanence and global
attractivity of a discrete Schoener’s competition
model with delays, Math. Comput. Model., 49,
2009, pp. 1607-1617.

[9] T. Zhang, Y. Li, Y. Ye, On the existence and
stability of a unique almost periodic solution of
Schoener’s competition model with pure-delays
and impulsive effects, Commun. Nonlinear Sci.
Numer. Simula., 17, 2012, pp. 1408-1422.

[10] M. Fazly, M. Hesaaraki, Periodic solutions
for predator-prey systems with Beddington-
DeAngelis functional response on time scales,
Nonlinear Anal.: RWA, 9, 2008, pp. 1224-1235.

[11] C. Miao, Y. Ke, Positive periodic solutions of
a generalized Gilpin-Ayala competitive system
with time delays, WSEAS Trans. Math., 12(3),
2013, pp.277-285.

[12] K. Zhao, L. Ding, Multiple periodic solutions for
a general class of delayed cooperative systems
on time scales, WSEAS Trans. Math., 12(10),
2013, pp.957-966.

[13] L. Wang, M. Hu, Almost periodic solution of
predator-prey system with beddington-deangelis
functional response on time scales, WSEAS
Trans. Math., 12, 2013, pp. 1124-1133.

[14] K. Wang, Existence and global asymptotic sta-
bility of positive periodic solution for a predator-
prey system with mutual interference, Nonlinear
Anal.: RWA, 10, 2009, pp. 2774-2783.

[15] K. Wang, Y. Zhu, Global attractivity of posi-
tive periodic solution for a Volterra model, Appl.
Math. Comput., 203(2), 2008, pp. 493-501.

[16] K. Wang, Periodic solutions to a delayed
predator-prey model with Hassell-Varley type
functional response, Nonlinear Anal.: RWA, 12,
2011, pp. 137-145.

[17] R. Mankin, A. Sauga, T. Laas, E. Soika,
Environmental-fluctuations-induced slow-fast
cycles in ratio-dependent predator-prey systems,
WSEAS Trans. Math. 6, 2007, pp. 934-941.

[18] Y. Pei, H. Wang, Rich dynamical behaviors of
a predator-prey system with state feedback con-
trol and a general functional responses, WSEAS
Trans. Math. 10, 2011, pp. 387-397.

[19] A. Fink, Almost Periodic Differential Equation,
Spring-Verlag, Berlin, Heidleberg, New York,
1974.

[20] T. Zhang, Almost periodic oscillations in a gen-
eralized Mackey-Glass model of respiratory dy-
namics with several delays, Int. J. Biomath., 7,
2014, 1450029 (22 pages).

[21] R. Gaines, J. Mawhin, Coincidence degree
and nonlinear differential equations, Berlin:
Springer Verlag; 1977.

WSEAS TRANSACTIONS on MATHEMATICS Liyan Pang, Lijun Xu, Yaqin Li, Tianwei Zhang

E-ISSN: 2224-2880 735 Volume 13, 2014




