An Algorithm for Storage Tanks Deflection Identification Based on Pattern Search

YUCHENG CHEN School of Applied Mathematics Xiamen University of Technology NO.600, ligong Road, Jimei, Xiamen CHINA Ycchen@xmut.edu.cn

HUASHUI ZHAN School of Applied Mathematics Xiamen University of Technology NO.600, ligong Road, Jimei, Xiamen CHINA 2012111007@xmut.edu.cn

Abstract: By analyzing the function relationship between the retained volume of oil and numerical readings of oil probe in storage tanks with two spherical crowns, a mathematical model is given for identifying the horizontal and vertical deflection angles. According this model, a Matlab program, which is based on Hooke-Jeeves Pattern Search Algorithm (HJPSA), is implemented for precisely establishing the deflection angles. A set of data about the volume of oil pumped out, the numerical readings of the oil probe and the retained oil, which is obtained by experiment, indicates that the storage tanks may occurs the horizontal and vertical deflections 6.69 degrees and 13.33 degrees respectively. Moreover, for the retained oil in the storage tanks, a recalibrated table is shown at the end of the paper.

Key-Words: Deflection identification, Least Square Method, Hooke-Jeeves Pattern Search Algorithm

1 Introduction

The storage tanks, which is a horizontal type cylinder metal cans with two spherical crowns at both ends, is widely used in storing oil and other liquids at airports and gas stations, etc. Zhan, Duan and Peng concern on the storage tanks with no crowns at both ends, analyze the relationship among the retained volume, oil level height and deflection parameters in some different ways and obtain some models to recalibrate the tank capacity table [1, 2, 3]. Zhao study the retained oil, probe numerical readings and deflection parameters of the storage tanks. An approximate calculating method is given to establish the tank capacity table for the given deflection parameters [4]. Unfortunately, when the horizontal and vertical deflections are indeterminated, this method is useless to estimate the deflection parameters.

In this paper, according to the idea of numerical integral [5], the storage tanks are subdivided into many frustums. The shadow area of any circular cross section is studied in detail, a general expression of it is represented. And so, the volume of any frustum could be evaluated, and the volume of the storage tanks is the cumulative sum of all the frustums. For now, a more accurate mathematical model is proposed, which is more efficient for Matlab programming. An objective function based on the Least Square Method is established for precisely evaluating the deflection parameters of the storage tanks. According to HJPSA, the minimum of the function and the corresponding deflection parameters that the storage tanks occurs could be evaluated precisely. Fortunately, by the model in this paper, a recalibrated table for the retained oil in the storage tanks will be obtained much easily.

2 A Model to Calculate the Retained Oil

When the storage tanks with two spherical crowns at both ends occurs no deflection, a front view with a space rectangular coordinates is given in Figure 1. Let the oil probe be the axis z, the bottom plane be the plane xOy (the axis x is not marked), L_1 , L_2 be the left and right boundaries of cylinder part, y_l , y_r be the left and right boundaries of the entire storage tanks, and O_1 , O_2 be the centers of the two spherical crowns, respectively. In the storage tanks, h is the oil level height (numerical readings of the oil probe at this moment), R is the radius of the circular cross section of the cylinder part.

Using the planes paralleled to plane xOz, the storage tanks is subdivided into many frustums. A circular cross section at any $y \in [y_l, y_r]$ is shown in Figure 2. Let r_y , h_y be the radius and oil height respectively. The shadow area in the circular cross sec-

Figure 1: Front view of the storage tanks

tion of the tanks is denoted by $S(r_y, h_y)$, then

$$S(r_y, h_y) = 2 \int_0^{h_y} \sqrt{2zr_y - z^2} dz$$

= $\frac{\pi r_y^2}{2} + (h_y - r_y) \sqrt{2r_y h_y - h_y^2}$
 $+ r_y^2 \arcsin \frac{h_y - r_y}{r_y}.$ (1)

When the oil level height is h, the retained volume in the tanks is denoted by V(h), then

$$V(h) = \int_{y_l}^{y_r} S(r_y, h_y) dy, \qquad (2)$$

in which r_y and h_y are both the functions of y.

According to the geometrical relations in the spherical crown which are shown in Figure 1, the length of AB is denoted by r_y , then

$$r_{y} = \begin{cases} \sqrt{2r(y-y_{l}) - (y-y_{l})^{2}}, & y \in [y_{l}, L_{1}] \\ R, & y \in [L_{1}, L_{2}] \\ \sqrt{2r(y_{r}-y) - (y_{r}-y)^{2}}, & y \in [L_{2}, y_{r}] \end{cases}$$
(3)

The oil level height in the circular cross section is denoted by $h_y = CD$, then (i) For $y \in [y_l, L_1]$ or $y \in [L_2, y_r]$,

$$h_{y} = \begin{cases} c + r_{y}, & r_{y} \ge |c| \\ 2r_{y}, & r_{y} < |c| \text{ and } c > 0 \\ 0, & r_{y} < |c| \text{ and } c \le 0 \end{cases}$$
(4)

in which c = h - R. (ii) For $y \in [L_1, L_2]$,

$$h_y = h. (5)$$

Obviously, if you put (1), (3), (4), (5) into (2), it is much more complicated to work out the value of the definite integral, which may not be represented to an analytical expression. According to the definition of the definite integral, (2) can be rewritten into an infinite sum form, namely

$$V(h) = \sum_{i=1}^{\infty} S(r_{y_i}, h_{y_i}) \Delta y_i.$$
 (6)

For the numerical integral, V(h) could be finitely subdivided into n equal parts, then will be proximately represented by the following formula,

$$V(h) \approx \frac{y_r - y_l}{n} \sum_{i=1}^n S(r_{y_i}, h_{y_i})$$
 (7)

According to the formulas (1), (3), (4), (5), (7), a Matlab program for calculating V(h) will be easily implemented. Assume that $y_l = -3$, $y_r = 7$, $L_1 = -2, L_2 = 6, R = 1.5, n = 10000$, using the Matlab program, a function relationship between the retained oil V(h) and the oil level height h can be drawn, see Figure 3. All the discrete points (the readings of displayed height and corresponding displayed volume which are given by the oil probe in Appendix 1) are on the curve V(h) precisely. It indicates that these data points are gained at the moment that the tanks occurs no deflection.

The storage tanks are likely to occur horizontal or vertical deflection after using a period of time. Suppose that the tanks occurs a horizontal deflection angle α only. A space rectangular coordinates is established just like Figure 1, see Figure 4. For now, the oil height h at the oil probe is coincided to the readings as before, and the oil plane $z = h - y \tan \alpha$ is not paralleled to the plane xOy. We can subdivide it into many frustums as it did before, and the circular cross section is shown in Figure 2 as well.

All the expressions above can be retained except h_y , since the oil plane expression is not the same as it is before. And we can still discuss h_y as it did before.

Figure 3: The function relationship between V(h) and h

Figure 4: A front view when the tanks occurs a horizontal deflection angle α

(i) For
$$y \in [y_l, L_1]$$
 or $y \in [L_2, y_r]$,

$$h_y = \begin{cases} c' + r_y, & r_y \ge |c'| \\ 2r_y, & r_y < |c'| \text{ and } c' > 0 \\ 0, & r_y < |c'| \text{ and } c' \le 0 \end{cases}$$
(8)

in which $c' = h - y \tan \alpha - R$. (ii) For $y \in [L_1, L_2]$,

$$h_y = \begin{cases} h - y \tan \alpha, & h - y \tan \alpha \ge 0\\ 0, & h - y \tan \alpha < 0 \end{cases}$$
(9)

Considering the storage tanks also occurs a vertical deflection angle β , the circular cross section at the oil probe is shown in Figure 5. Let the oil height h = CD, the readings of the oil probe $h_d = AB$, and $\beta = \angle BOD$. Then the following equation must hold:

$$h = R + (h_a - R)\cos\beta. \tag{10}$$

If you put (8), (9) and (10) into (1), (2), (3) and (7), a formula $V = V(h_d, \alpha, \beta)$ will be established. Nevertheless, the calculation is so complex that you could not work out an analyzing expression. Even so, it will be easily to do some adjustments to the Matlab program by (8), (9) and (10).

Figure 5: A circular cross section at the oil probe

3 An Approach for Accurately Establishing the Deflection Angles α and β

Suppose α and β are constant. Then using the equation $V = V(h_d, \alpha, \beta)$, a sequence (V_1, V_2, \dots, V_N) which is corresponding to the sequence of oil level height $(h_{d_1}, h_{d_2}, \dots, h_{d_N})$, can be evaluated by the Matlab program.

Suppose $\Delta V_i = V_{i+1} - V_i$, $\Delta h_i = h_{d_{i+1}} - h_{d_i}$, $(i = 1, 2, \dots, N-1)$, then a sequence of 2-tuples will be written as follow,

$$(\Delta h_1, \Delta V_1), (\Delta h_2, \Delta V_2), \cdots, (\Delta h_{N-1}, \Delta V_{N-1}).$$
 (11)

Suppose that $(\Delta h_1, \Delta V_1^*), (\Delta h_2, \Delta V_2^*), \cdots, (\Delta h_{N-1}, \Delta V_{N-1}^*)$ is another sequence of 2-tuples from the experiment. Naturally, we look forward to finding out the value of α and β , making the two sequences fully closed to each other. The Least Square Method tells us how to do [6]. An objective function is given as follow,

$$F(\alpha, \beta) = \sum_{i=1}^{N-1} (\Delta V_i - \Delta V_i^*)^2.$$
 (12)

The value of $F(\alpha, \beta)$ must be positive and the less the better. The next work is to determine the parameters α and β , which could make the value of $F(\alpha, \beta)$ to be the least.

Since $F(\alpha, \beta)$ has not analytical expression, in order to obtain the optimal solution of the function, the direct search methods will be efficient for this purpose. The Hooke-Jeeves Pattern Search Algorithm which is proposed by Hooke and Jeeves in 1961, is one of the direct search methods [6, 7]. Many Optimizations eventually turn into a question of searching the maximal(or minimal) value of an objective function with multi parameters. [8, 9, 10, 11, 12, 13, 14] show some examples of solving practical problems based on pattern search method.

Let $x_0 = [\alpha_0, \beta_0]$ be the initial base point. Then $x_k = [\alpha_k, \beta_k]$ is the base point after k steps move. For the kth axial move, let $e_1 = [1, 0]$ and $e_2 = [0, 1]$ be the two directions, $\delta_k (> 0)$ be the step length, y be the recent base point. Then $y = y + \delta_k e_j [y = y - \delta_k e_j)$ indicate that the base point will move δ_k to a new base point along the positive (negative) direction of e_j . For the combined pattern move, $y = 2x_{k+1} - x_k$ means the base point. Let $\sigma(\in (0, 1))$ be the contractive factor and $\varepsilon(> 0)$ be the maximum margin of error between the base point and the real point. Then the circulation of the algorithm is terminated while $\delta_k < \varepsilon$.

The implementation of HJPSA is formalized as follows:

Hooke-Jeeves Pattern Search Algorithm

1. Obtain initial base point x_0 . Determine the step length δ_0 , the contractive factor σ and the max error ε .

2. Determine a new base point. Let $y = x_k$, j = 1.

3. The axial move. Move the base point along the positive direction of e_j . If $F(y + \delta_k e_j) < F(y)$, then let $y = y - \delta_k e_j$, go to 4. If not, go to 5.

4. Move the base point along the negative direction of e_j . If $F(y - \delta_k e_j) < F(y)$, then let $y = y + \delta_k e_j$, go to 5. If not, go to 5 immediately.

5. If j < 2, let j = j + 1, return to 3. If not, let $x_{k+1} = y$, go to 6.

6. The kth combined pattern move. If $F(x_{k+1}) < F(x_k)$, do combined pattern move from the base point x_{k+1} along the accelerative direction, namely, $y = 2x_{k+1} - x_k$, $\delta_{k+1} = \delta_k$, k = k+1, j = 1, return to 3. If not, go to 7.

7. Check if the termination criterion is satisfied. If $\delta_k < \varepsilon$, terminate, return the approximate optimal solution. If not, go to 8.

8. Contract the step length. If $x_{k+1} = x_k$, let $\delta_{k+1} = \sigma \delta_k$, k = k+1, return to 2. If not, let $x_{k+1} = x_k$, $\delta_{k+1} = \delta_k$, k = k+1, return to 2.

Let $\alpha_0 = 2^\circ$, $\beta_0 = 4^\circ$, the initial step length $\delta_0 = 1^\circ$, the contractive factor $\sigma = 0.1$, and the max error $\varepsilon = 0.1$. Then by HJPSA, an approximate optimal solution $(\alpha, \beta) = (6.69^\circ, 13.33^\circ)$ will be worked out according to the data in Appendix 1. A searching

approach is given in Table 1.

Table 1: An approach for	(α, β) by HJPSA
--------------------------	----------------------------

(α, β)	$F(\alpha,\beta)$	$ $ (α, β)	$F(\alpha,\beta)$
(2,4)	6359	(6.9,12.1)	258.03
(3,5)	4117.96	(6.9,12.3)	257.89
(5,7)	1137.61	(6.8,12.6)	249.26
(8,8)	716.74	(6.8,12.9)	249.15
(8,8)	716.74	(6.7,13.3)	245.82
(7,9)	279.67	(6.7,13.3)	245.82
(7,11)	273.09	(6.7,13.3)	245.82
(7,12)	271.94	(6.69,13.33)	245.78
(7,12)	271.94	(6.69,13.33)	245.78
(7,12)	271.94	(6.69,13.33)	245.78

Assume that

$$e_i = |\Delta V_i - \Delta V_i^*|, e_{\max} = \max\{e_i\}, \quad (13)$$
$$\varepsilon_i = \frac{|\Delta V_i - \Delta V_i^*|}{\Delta V_i^*} \times 100\%, \varepsilon_{\max} = \max\{\varepsilon_i\}, (14)$$

for all $i = 1, 2, \cdots, N-1$. If the storage tanks occurs horizontal and vertical deflection angles $\alpha = 6.69^{\circ}$ and $\beta = 13.33^{\circ}$ respectively, then by (13), (14), we obtain that $e_{\max} = 3.04$, $\varepsilon_{\max} = 4.27\%$. Using the Matlab program again to evaluate the retained oil, a recalibrated table for the retained oil with the intervals of 10cm will be easily worked out, set Table 2.

Table 2: A recalibrated table for the retained oil with the intervals of 10cm

Probe	Retained	Probe	Retained
Reading(cm)	Oil (L)	Reading(cm)	Oil (L)
10	354.51	160	33047.95
20	1062.06	170	35857.84
30	2215.33	180	38648.58
40	3692.52	190	41404.71
50	5420.62	200	44110.51
60	7357.84	210	46749.76
70	9473.07	220	49305.59
80	11740.75	230	51760.23
90	14138.75	240	54094.56
100	16647.15	250	56287.66
110	19247.56	260	58315.83
120	21922.72	270	60151.09
130	24656.1	280	61757.86
140	27431.78	290	63084.01
150	30234.18	300	64018.23

4 Conclusion

Compared with the model given in [4], the mathematical model to evaluate the retained oil in the storage tanks in this paper can be easily implemented through Matlab programming. By HJPSA, the horizontal and vertical deflection angles that the storage tanks occurs will be accurately established. It is useful to recalibrate the tanks capacity table. Table 2 shows a recalibrated table for the retained oil with the intervals of 10cm. Indeed, by the Matlab program, an arbitrary precision capacity table for the storage tanks could be worked out. If someone wants to develop a management system of oil level measurement for the storage tanks, this model is much valuable to him.

Appendix 1

A set of experiment data from some storage tanks. We record down the oil pumped out, the displayed height and corresponding displayed volume of the oil probe respectively.

NO	Oil Pumped	Displayed	Displayed
Out/L		Height /mm	Volume/L
201	60	2632.23	60448.88
202	149.09	2624.3	60311.43
203	68.45	2620.67	60248.03
204	199.27	2610.29	60065.11
205	70.05	2606.61	59999.69
206	136.36	2599.59	59874.06
207	232.74	2587.6	59657.02
208	107.97	2582.05	59555.51
209	49.24	2579.57	59509.94
210	80.65	2575.44	59433.77
211	120.29	2569.46	59322.85
212	108.24	2564.12	59223.17
213	83.46	2559.83	59142.66
214	229.93	2548.47	58927.69
215	181.7	2539.63	58758.61
216	238.52	2528.01	58534.01
217	131.79	2521.63	58409.58
218	238.33	2510.23	58185.31
219	42.92	2508.17	58144.52
220	171.34	2500.07	57983.36
221	212.34	2490.06	57782.53
222	92.38	2485.73	57695.08
223	243.85	2474.4	57464.67
224	206.69	2464.77	57267.02
225	224.5	2454.51	57054.65
226	169.26	2446.77	56893.24
227	220.09	2436.85	56684.86
228	117.54	2431.55	56572.86

NO	Oil Pumped	Displayed	Displayed
NO	Out/L	Height /mm	Volume/L
229	93.44	2427.32	56483.12
230	114.46	2422.2	56374.11
231	174.69	2414.35	56206.14
232	232.77	2404.05	55984.22
233	110.86	2399.15	55878.05
234	138.59	2393.12	55746.87
235	242.21	2382.5	55514.45
236	186.43	2374.35	55334.9
237	275.38	2362.44	55070.68
238	92.65	2358.4	54980.57
239	239.28	2348.13	54750.4
240	206.68	2339.37	54552.85
241	104.63	2334.88	54451.17
242	158.8	2328.13	54297.75
243	142.43	2322.14	54161.06
244	189.17	2314.14	53977.71
245	238.95	2304.14	53747.27
246	73.58	2301.09	53676.72
247	245.27	2290.87	53439.37
248	251.78	2280.46	53196.16
249	134.59	2274.92	53066.14
250	153.02	2268.61	52917.56
251	188.26	2260.89	52735.08
252	220.97	2251.88	52521.14
253	229.97	2242.46	52296.37
254	237.73	2232.88	52066.65
255	144.04	2226.99	51924.85
256	158.25	2220.7	51772.96
257	287.87	2209.13	51492.32
258	192.77	2201.4	51303.95
259	262.67	2190.91	51047.2
260	121.96	2186.14	50930.04
261	208.47	2177.92	50727.53
262	198.58	2170.04	50532.69
263	297.29	2158.4	50243.62
264	72.41	2155.54	50172.37
265	178.4	2148.54	49997.62
266	184.06	2141.32	49816.82
267	74.38	2138.42	49744.05
268	285.23	2127.37	49465.96
269	279.15	2116.53	49191.94
270	166.23	2110.14	49029.86
271	254.41	2100.32	48779.99
272	89.64	2096.84	48691.21
273	214.75	2088.64	48481.56
274	120.77	2084.03	48363.42
275	168.81	2077.58	48197.79
_		continued of	n next nage

Displayed

Volume/L

37735.15

conti	nued from prev	vious page		conti	nued from prev	vious page
NO	Oil Pumped	Displayed	Displayed	NO	Oil Pumped	Displayed
NO	Out/L	Height /mm	Volume/L	NO	Out/L	Height /mm
276	272.92	2067.14	47928.87	324	148.15	1691.31
277	103.92	2063.17	47826.34	325	120.83	1687.01
278	131.94	2058.14	47696.24	326	88.98	1683.87
279	181.74	2051.3	47518.96	327	142.33	1678.77
280	142.11	2045.92	47379.23	328	121.05	1674.48
281	264.62	2035.94	47119.35	329	240.4	1665.96
282	313.84	2024.06	46808.88	330	75.05	1663.3
283	96.66	2020.47	46714.83	331	133.08	1658.55
284	116.16	2016.11	46600.46	332	134.22	1653.73
285	239.12	2007.08	46363.09	333	303.81	1642.93
286	154.5	2001.33	46211.59	334	181.64	1636.48
287	314.56	1989.59	45901.47	335	268.23	1626.92
288	316.03	1977.87	45590.8	336	226.45	1618.89
289	226.29	1969.43	45366.43	337	276.49	1609.06
290	285.9	1958.83	45083.88	338	87.44	1605.92
291	163.75	1952.81	44923.05	339	331.77	1594.13
292	224.69	1944.49	44700.35	340	293.8	1583.65
293	321.69	1932.64	44382.33	341	72.05	1581.14
294	205.69	1925.05	44178.12	342	187.88	1574.48
295	309.66	1913.71	43872.31	343	148.35	1569.22
296	249.73	1904.51	43623.6	344	233.46	1560.92
297	186.43	1897.67	43438.33	345	120.98	1556.62
298	231.42	1889.27	43210.41	346	220.76	1548.82
299	297.79	1878.4	42914.84	347	224.72	1540.79
300	109.19	1874.41	42806.16	348	224.46	1532.79
301	162.87	1868.46	42643.93	349	183.46	1526.3
302	328.52	1856.54	42318.32	350	65.53	1523.95
303	166.13	1850.51	42153.3	351	200.46	1516.81
304	237.66	1841.92	41917.87	352	170.84	1510.73
305	303.97	1830.91	41615.55	353	86.76	1507.65
306	330.11	1818.96	41286.7	354	187.61	1501.06
307	235.69	1810.42	41051.26	355	181.73	1494.55
308	86.15	1807.34	40966.26	356	210.27	1487.03
309	66.88	1804.98	40901.09	357	282.54	1476.98
310	225.69	1796.8	40675.04	358	253.04	1467.97
311	213.49	1789.13	40462.79	359	300.69	1457.25
312	323.39	1777.51	40140.74	360	70.11	1454.73
313	263.59	1768.05	39878.12	361	118.47	1450.53
314	240.84	1759.42	39638.21	362	185.56	1443.93
315	201.31	1752.19	39437	363	323.97	1432.35
316	128.8	1747.59	39308.87	364	277.01	1422.45
317	324.38	1735.97	38984.85	365	181.51	1415.93
318	206.56	1728.57	38778.25	366	149.46	1410.6
319	64.47	1726.26	38713.71	367	72.2	1408.01
320	251.13	1717.3	38463.22	368	262.95	1398.6
321	201.55	1710.1	38261.74	369	197.9	1391.53
322	72.35	1707.51	38189.22	370	111.01	1387.53
323	305.18	1696.61	37883.79	371	174.85	1381.26
		continued of	on next page			continued

1687.01 37614.49 1683.87 37526.35 1678.77 37383.13 1674.48 37262.6 1665.96 37023.08 1663.3 36948.26 1658.55 36814.61 1653.73 36678.94 1642.93 36374.74 1636.48 36192.94 1626.92 35923.33 1618.89 35696.73 1609.06 35419.17 1605.92 35330.47 1594.13 34997.3 1583.65 34700.98 1581.14 34629.99 1574.48 34441.58 1569.22 34292.75 1560.92 34057.83 1556.62 33936.1 33715.25 1548.82 1540.79 33487.84 1532.79 33261.23 1526.3 33077.38 1523.95 33010.8 1516.81 32808.51 1510.73 32636.23 1507.65 32548.96 32362.23 1501.06 1494.55 32177.83 31964.75 1487.03 1476.98 31680 31424.74 1467.97 1457.25 31121.1 1454.73 31049.73 1450.53 30930.79 30743.92 1443.93 1432.35 30416.13 1422.45 30136.01 1415.93 29951.59 1410.6 29800.87 1408.01 29727.64 29461.68 1398.6 1391.53 29261.94 1387.53 29148.98 1381.26 28971.96 ontinued on next page Volume 13, 2014

Displayed Volume/L

19132.09

19018.44

18880.29

18607.78

18338.22

18135.68

17933.11

17805.83

17570.93

17311.22

17144.71

16977.27

16805.03

16681.41

16455.87

16172.9

15889.56

15648.56

15531.81

15306.54

15222.71

15141.26

15042.81

14955.81

14758.91

14690.59

14435.27

14205.87

13927.29

13756.79

13546.88

13280.49

13100.67

12983.73

12699.59

12642.77

12516.14

12235.51

12100.96

11980.09

11904.03

11640.87

11561.89

11437.14

11181.08

11018.54

10830.14

10649.77

conti	inued from prev	vious page			conti	nued from prev	vious page
NO	Oil Pumped	Displayed	Displayed	1	NO	Oil Pumped	Displayed
INU	Out/L	Height /mm	Volume/L		INU	Out/L	Height /mm
372	103.94	1377.57	28867.81		420	122.34	1024.33
373	263.82	1368.05	28599.24		421	109.36	1020.05
374	157.63	1362.37	28439.09		422	134.35	1014.84
375	317.84	1350.95	28117.3		423	265.55	1004.54
376	59.23	1348.78	28056.19		424	261.97	994.32
377	286.14	1338.49	27766.55		425	196.85	986.62
378	229.92	1330.22	27533.96		426	195.02	978.9
379	204.09	1322.84	27326.55		427	122.92	974.04
380	235.19	1314.33	27087.57		428	226.9	965.05
381	255.78	1305.06	26827.49		429	252.54	955.08
382	80.7	1302.12	26745.05		430	159.7	948.67
383	297.81	1291.34	26443.03		431	162.52	942.21
384	58.55	1289.2	26383.11		432	166.93	935.55
385	134.84	1284.26	26244.87		433	118.14	930.76
386	105.09	1280.46	26138.58		434	218.17	922
387	309.59	1269.19	25823.64		435	273.32	910.97
388	74.59	1266.51	25748.82		436	271.65	899.88
389	213.87	1258.7	25530.91		437	232.94	890.41
390	228.59	1250.33	25297.63		438	112.97	885.81
391	232.85	1241.82	25060.73		439	216.63	876.91
392	291.52	1231.17	24764.66		440	80.75	873.59
393	69.58	1228.61	24693.57		441	78.26	870.36
394	274.83	1218.44	24411.4		442	94.48	866.45
395	199.23	1211.15	24209.41		443	84.35	862.99
396	240.5	1202.21	23962.04		444	189.36	855.14
397	114.57	1198.09	23848.16		445	64.76	852.41
398	199.32	1190.65	23642.72		446	244	842.18
399	243.63	1181.63	23394		447	221.72	832.95
400	312.12	1170.06	23075.57		448	267.55	821.69
401	172.18	1163.62	22898.62		449	162.77	814.77
402	77.28	1160.77	22820.38		450	200.98	806.22
403	68.22	1158.19	22749.6		451	254.71	795.32
404	222.45	1149.9	22522.38		452	171.33	787.93
405	267.6	1139.94	22249.89		453	112.21	783.11
406	238.23	1131.02	22006.33		454	2/1.64	7/1.35
407	143.68	1125.57	21857.74		455	54.02	768.99
408	303.6	1114.1	21545.6		450	121.5	763.72
409	191.38	1005.26	21350.06		457	267.19	751.99
410	304.75	1095.36	21037.34		458	128.44	746.34
411	/1./1	1092.63	20963.48		439	114.5	741.25
412	108.7	1088.36	20853.45		400	12.15	/ 58.04
415	254.23		20390.32		401	249.97	720.89
414	293.8	100/.00	20290.19		402 462	/4./3	710.01
413	200.77	1057.84	20020.33		403	242.19	718.21
410	129.02	1032.88	10700 42		404 465	242.18	707.24
41/	91.24	1049.30	19/99.43		403 166	133.83	602.00
41ð //10	213.31	1038.89	19319.72		400 467	1/9.43	601 25
419	232.4	1029.04	1923/.31		40/	109.32	084.25
1		commuea o	т пехі page				commuea

continued on next page

continued from previous page				
NO	Oil Pumped	Displayed	Displayed	
NO	Out/L	Height /mm	Volume/L	
468	196.36	675.27	10444.23	
469	48.46	672.98	10391.99	
470	157.16	665.7	10226.44	
471	48.8	663.38	10173.84	
472	219.44	653.11	9941.94	
473	113.93	647.71	9820.62	
474	220.43	637.24	9586.64	
475	93.66	632.78	9487.47	
476	163.22	624.97	9314.53	
477	233.2	613.59	9064.22	
478	49.86	611.11	9009.94	
479	51.84	608.57	8954.45	
480	47.19	606.36	8906.24	
481	178.87	597.55	8714.85	
482	161.73	589.56	8542.35	
483	62.71	586.42	8474.84	
484	199.66	576.46	8261.77	
485	162.83	568.28	8087.99	
486	51.86	565.58	8030.88	
487	53.85	562.89	7974.1	
488	66.32	559.53	7903.35	
489	189.63	549.64	7696.21	
490	58.51	546.71	7635.17	
491	83.87	542.34	7544.4	
492	84.74	537.9	7452.52	
493	60.32	534.85	7389.6	
494	199.47	524.27	7172.62	
495	168.82	515.29	6990.02	
496	174.06	505.95	6801.65	
497	156.82	497.44	6631.41	
498	131.25	490.28	6489.23	
499	94.42	485.02	6385.39	
500	156.18	476.4	6216.36	
501	56.73	473.22	6154.36	
502	60.81	469.74	6086.74	

Appendix 2

1. A Matlab function for calculating the shadow area of the circular cross section.

```
1 function S=Srh(r,h)
2 %% A function for calculating the oil
3 %% area S of the circular cross section
4 %% with the radius r and oil level
5 %% height h.
6 %% ------
7 if r==0 || h==0
8 S=0;
9 else
```

11 end

2. A Matlab function for calculating the retained oil while the tanks occurs a horizontal deflection angle α and the oil probe reading is h. If $\alpha = 0$, then V = V(h).

```
1 function [V,ry,hy,Sy]=Volume(yl,yr,h,alpha)
2 %% A function for calculating the
3 %% retained oil V while the tanks
4 %% occurs a horizontal deflection
5 %% angle alpha and the oil probe
6 %% reading is h. If alpha=0, then
7 %% V=V(h).
9 %% [yl,yr], the left and right
10 %%boundaries of the11 %%entire storage tax
             entire storage tanks
12 %% alpha, horizontal deflection angle
13 %% h, the readings of the oil probe
14 %% ry, a row of recording the radius
15 %% of the circular cross sections
_{16} %% hy, a row of recording the oil level
17 %% height of the circular cross
        sections
18 응응
  %% Sy, a row of recording the oil area
19
  %% of the circular cross sections
20
21 % ------
22 n=10000; \% the number of the
  % frustums
23
24 dy=(yr-yl)/n; % the height of the
                % frustums
25
26 y=linspace(yl,yr,n+1);
27 R=1.5; % the radius of the circular
           % cross section of the cylinder
28
           % part
29
30 H=1.0; % H=L1-yl or H=L2-yr.
31 L1=-2.0; % the left boundary of the
           % cylinder part
32
33 L2=6.0; % the right boundary of the
           % cylinder part
34
35 r = (H^2 + R^2) / (2 \star H);
36 ry=zeros(1,n+1);
37 hy=zeros(1, n+1);
38 for i=1:n+1
    if y(i)<=L1
39
          ry(i)=sqrt(2*r*(y(i)-yl)-(y(i)-yl)
40
              ^2);
41
          c=h-y(i) *tan(alpha)-R;
42
          if ry(i)>=abs(c)
              hy(i) = h-y(i) * tan(alpha) - R+ry(i)
43
                  ;
44
          else
             if c \le 0
45
46
                 hy(i)=0;
47
              else
                 hy(i)=2*ry(i);
48
              end
49
          end
50
```

```
elseif y(i)>=L2
51
           ry(i)=sqrt(2*r*(yr-y(i))-(yr-y(i)) 28 Vtotal=zeros(1,m);
52
               ^2);
            c=h-y(i)*tan(alpha)-R;
53
            if ry(i)>=abs(c)
54
                hy(i)=h-y(i)*tan(alpha)-R+ry(i) 32 yr=7;
55
                   ;
            else
56
                if c<=0
57
58
                    hy(i)=0;
59
                else
                   hy(i)=2*ry(i);
60
                end
61
           end
62
       else
63
64
           ry(i)=R;
            hy(i) = h-y(i) \star tan(alpha);
65
            if hy(i)>=2*R;
66
67
               hy(i)=2*R;
            elseif hy(i) <=0</pre>
68
               hy(i)=0;
69
            end
70
71
       end
72 end
73
   Sy=zeros(1,n+1);
74
  for i=1:n
           Sy(i) = Srh(ry(i), hy(i));
75
76 end
77 V=dy*sum(Sy);
```

3. A Matlab function for evaluating the value of $F(\alpha, \beta)$. Moreover, the function has some other outputs which are also very important for us.

```
1 function [Vtotal, DeltaV, rtol, maxtol,
7 %% alpha, the horizontal deflection
8 %% angle
9 %% beta, the vertical deflection angle18 %% traceMinS, the trace of the10 %% h, a column about the oil level19 %%corresponding va
11 %% height
12 %% OutV, a column about the volume of
13 %% the oil pumped out
14 %% Vtotal, a column of the retained
     volume corresponding with
15 응응
16 응응
           the oil level height h
 %% DeltaV, a column about the change of
17
18
  응응
 level height changed
19
 %% rtol, the relative error,
20
         (DeltaV-OutV)/OutV*100%
21 응응
22 %% maxtol, the maximum of the relative
23 응응
         error
24 %% minS, the function value of
25 %% F(alpha, beta)
26 %% -
```

```
27 m=length(h);
29 DeltaV=zeros(1,m)';
 30 rtol=zeros(1,m)';
 31 yl=-3;
 33 alpha=alpha/180;
 34 beta=beta/180;
 35 R=1.5;
 36 h=R+(h./1000-R).*cos(beta);
37 for i=1:m
 38
        Vtotal(i)=Volume(yl,yr,h(i),alpha);
 39 end
 40 Vtotal=Vtotal'*1000;
 41 DeltaV(2:m)=Vtotal(1:m-1)-Vtotal(2:m);
 42 rtol(2:m) = (DeltaV(2:m) - OutV(2:m))./OutV(2:m)
       ).*100;
 43 minS=sum((DeltaV(2:m)-OutV(2:m)).^2);
 44 maxtol=max(abs(rtol));
```

4. A Matlab function with the ideal of Hooke-Jeeves Pattern Search Algorithm. It will give a searching trace of α and β , and record down the trace of the corresponding value of $F(\alpha, \beta)$.

```
1 function [xstar,traceMinS] =
                                                 patternsearchmethod(h,OutV,x0)
                                           2 %% A Matlab function with the ideal of
                                           3 %% Hooke-Jeeves Pattern Search
                                           4 %% Algorithm.It will give a searching
                                           5 %% trace of alpha and beta, and record
                                           6 %% down the trace of the corresponding
                                           7 %% value of F(alpha, beta).
                                           8 % -----
                                           9 %% h, a column about the oil level
                                         16 %% xstar, the searching trace of alpha
                                         17 %% and beta
                                         19 %% corresponding value
                                          20 응응
                                                           of F(alpha, beta).
                                      21 %% -----
                                         22 delta=zeros(100,1); % a column about
                                         23
                                                                   %the change of the
                                          24
                                                                   %step length
                                         25 delta(1)=1;
eltaV, a column about the change of 26 sigma=0.1; % the contractive factor
the retained oil when the oil 27 epsilon=0.1; % the maximum margin of
level height changed 28 % error
                                                            % the contractive factor
                                          29 X=zeros(100,2);
                                          30 X(1,:)=x0;
                                         31 traceMinS=zeros(100,1);
                                         32 [Vtotal,DeltaV,rtol,maxtol,minS] =mainfun(h
                                                 ,OutV,X(1,1),X(1,2));
                                          33 traceMinS(1)=minS;
                                          34 E = [1, 0; 0, 1];
```

```
35
   k = 1:
   while k<=100
36
        y=X(k,:);
37
        fy=traceMinS(k);
38
        j=1;
39
        while j<=2
40
             t=y+delta(k) * E(j,:);
41
             [Vtotal,DeltaV,rtol,maxtol,minS] =
42
                 mainfun(h,OutV,t(1),t(2));
             if minS<fv
43
                  fy=minS;
44
45
                  y=t;
             else
46
47
                  t=v-delta(k) * E(i,:);
                  [Vtotal, DeltaV, rtol, maxtol, minS
48
                       ] =mainfun(h,OutV,t(1),t(2)
                       );
                  if minS<fy
49
                       fy=minS;
50
                       y=t;
51
                  end
52
             end
53
             if j<2
54
                  j=j+1;
55
             else
56
57
                   X(k+1,:) = y;
                   traceMinS(k+1)=fy;
58
                   if traceMinS(k+1) < traceMinS(k)</pre>
59
                        y=2 * X (k+1,:) - X (k,:);
60
                        delta(k+1)=delta(k);
61
                        k=k+1;
62
63
                        j=1;
                   else
64
                        if delta(k) < epsilon
65
                             xstar=X;
66
                             return;
67
                        else
68
69
                             if X(k+1,:) == X(k,:)
70
                                  delta(k+1) =sigma*
                                       delta(k);
71
                                  k=k+1;
72
                                  break;
                             else
73
                                  X(k+1,:) = X(k,:);
74
                                  delta(k+1)=delta(k
75
                                       );
                                  k=k+1;
76
77
                                  break;
78
                             end
                        end
79
80
                   end
             end
81
82
        end
83
   end
84
   xstar=X;
```

Acknowledgements: This work was funded by the Science Foundation of Xiamen University of Technology under Grant No. JBXN001.

References:

- J. Zhan, C. Wang, X. Wang, A Volume Calculation for Horizontal Inclined Elliptic Cylinder Tank, *China Metrology*, No.4, 2006, pp.73-74.
- [2] C. Duan, L. Deng, W. Deng, A Function for Calculating the Capacity of a Horizontal Elliptic Cylinder Tank with Probe Device, *Journal of Civil Aviation Flight University of China*, Vol.22, No.6, 2011, pp. 49-51.
- [3] Y. Peng, S. Ma, C. Li, Volume and Height Calculating Method for the Horizontal Inclined Elliptic Cylinder Tank, *Automation & Instrumentation*, No.5, 2011, pp.170-172.
- [4] X. Zhao, G. Xu, Y. Liu, Evaluate the Capacity of the Horizontal Inclined Storage Tanks Based on Definite Integral, *Oil-Gas Storage and Transportation*, Vol. 31, No.4, 2012, pp.310-313.
- [5] C. Ma, Modern Numerical Integral (Matlab), Press of National Defense Industry, Peijin, 2013,
- [6] K. Chen, Optimization Calculation Method, Press of Northwest Telecommunications Industry College of China, 1985.
- [7] R. Hooke, T. Jeeves, Direct search solutions of numerical and statistical problems, *Journal of the Association for Computing Machinery*, No.8, 1961, pp. 212-229.
- [8] T. D. Wang, A. Deshpande, B. Shneiderman, A temporal pattern search algorithm for personal history event visualization, *Knowledge* and Data Engineering, IEEE Transactions on, Vol.24, No.5, 2012, pp. 799-812.
- [9] P. Du, L. Bryony, C. Jonathan, An extended pattern search approach to wind farm layout optimization, *Journal of Mechanical Design*, Vol.134, 2012, pp.081002.
- [10] R. Miloua, Z. Kebbab, F. Chiker, et al., Determination of layer thickness and optical constants of thin films by using a modified pattern search method, *Optics Letters*, Vol.37, No.4, 2012, pp.449-451.
- [11] M. F. AlHajri, K. M. El-Naggar, M. R. Al-Rashidi, et al., Optimal extraction of solar cell parameters using pattern search, *Renewable Energy*, Vol.44, 2012, pp.238-245.
- [12] I. A. Espíto Santo, E. M. G. P. Fernandes, M. M. Araúo, et al., An augmented Lagrangian pattern search method for optimal WWTP designs, *Proceedings of the 6th WSEAS International Conference on System Science and Simulation in Engineering (ICOSSSE07)*, 2007, pp.313-318.
- [13] N. D. Ramirez-Beltran, R. J. Kuligowski, J. M. Castro, et al. A projection algorithm for satellite rainfall detection, WSEAS Transaction on Systems, Vol.6, 2009, pp. 763-772.

[14] S. Hou, N. Maruyama, M. Hirota, et al. Optimization Framework for Road Network Directed by Unblocked Reliability for Given Network Topology and Inelastic Demand with Stochastic User Equilibrium, WSEAS Transactions on Business and Economics, Vol.6, 2009, pp. 292-301.