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Abstract: - Most of the statistical estimation procedures are based on a quite simple principle: find the 
distribution that, within a certain class, is as similar as possible to the empirical distribution, obtained from the 
sample observations. This leads to the minimization of some statistical functionals, usually interpreted ad 
measures of distance or divergence between distributions. In this paper we study the majorization pre-order of 
the distance between distributions. This concept, known in literature as relative majorization, is extended to the 
weak definition of majorization, which is more relevant in many practical contexts such as estimation problem. 
Providing mathematical proofs, we study under which conditions statistical functionals are consistent with 
respect to the relative weak majorization (from above) pre-order. 
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1 Introduction 
Within the field of statistical inference, most of the 
estimation procedures consist in minimizing an 
appropriate measure of distance between a 
theoretical and an empirical (observed) distribution. 
Statistical functionals which are suitable to measure 
distance between distributions are the well known 
divergence measures [1], [8]. In this paper we 
propose to analyze divergence measures and their 
properties by using majorization theory [18], [12]. 
Majorization is a pre-order on vectors used to 
analyze f the components of a vector are more or 
less “uniform”, compared to another vector. 
Majorization can be generalized from vectors to 
measureable functions, as summarized in section 2. 
To be more specific, in the paper we refer to a 
generalization known as relative majorization [10] 
(r-majorization) which can be used to compare any 
couple of theoretical distributions (say H, G) with 
respect to a benchmark distribution (say F) in terms 
of dissimilarity. In particular, if G is smaller than a 
H relative to the ordering, then G is closer to F than 

H. With the assumption that the theoretical 
distribution is discrete and that our benchmark 
distribution (for estimation purpose) is the empirical 
distribution, we classify divergence measures into 
two main classes, according to the duality in their 
formulation: we shall call them form A and form B. 
Then, we analyze two different situations, viz.: i) 
the empirical and theoretical distributions are 
defined on the same set; ii) the support of the 
empirical distribution is included in the support of 
the theoretical distribution. In case i) we provide 
conditions under which divergence measures of the 
form A or B preserve r-majorization. This is done 
respectively in section3.2 (form A) and section 3.3 
(form B). Nevertheless, in case ii) the conditions for 
(strong) r-majorizations are not fulfilled, as frequent 
in many practical situations (such as the case of 
small samples): thus we extend the study to the 
more general case of weak r-majorization (section 
3.3), providing conditions that a statistical 
functional must satisfy in order to preserve also the 
weak pre-order. We find that, among the most 
popular divergence measures, some of them only 
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preserve the strong pre-order but are not consistent 
with respect to the weak one. This is confirmed by 
empirical results, summarized in section 3.4. 
 

2 Notation and preliminary results 
Majorization [12] is a pre-order on vectors aimed to 
determine whether the components of a vector are 
more (or less) “spread out” or more (or less) “equal” 
than the components of another vector. Functions of 
the vectors that are consistent with this pre-order are 
called Schur-convex [18]. Majorization and Schur-
convexity can be generalized from vectors to 
integrable functions (see, among others [24], [10]): 
for this purpose, the definition of the re-arrangement 
of a function [22] is required.  
In this Section we shall refer to a positive measure µ 
on a set I ⊆ ℜ. 
 
Definition 1. Let u be a real valued nonnegative µ-
integrable function on I. We introduce the notation 

)()( tu µ
↓  to denote the decreasing rearrangement of u 

with respect to µ, that is 
 

)()( tu µ
↓ = sup{� | �(�) > t},  

 
for every t∈[0,µ(I)], where �(�)=µ(Az),  Az={	 ∈
� | �(	) > � }. 
 
Note that both �(�) and )()( tu µ

↓  are right continuous 

functions. Similarly, we define the increasing 
rearrangement of u with respect to µ as: 
 

)()( tu µ
↑ =  inf {� | �(�) > t},  

 
for every t∈[0,µ(I)], where �(�)  = µ(Bz),  Bz={	 ∈
� | �(	) ≤ �}. In this case also, �(�)  and )()( tu µ

↓  

are right continuous functions.  

As special cases, the superscript (�) may be 
dropped, when it is understood from the context, 
that is: 1) if µ is the counting measure, for any 
vector � = (��, ��, … , ��) ∈ ℜ�, �� ≥ 0, let denote 
�↓ (�↑) the decreasing (increasing) rearrangement of 
vector �; 2) if µ is the Lebesgue measure, and u is a 
real valued non-negative µ-integrable function on I, 
let denote �↓ (�↑) the decreasing (increasing) 
rearrangement of �. 

Definition 2. Let u, v be real valued nonnegative µ-
integrable functions on a set I .We say that v µ-
majorizes u  [3] and we write � ≺(�) � if: 

i)  �↑
(�)(!)"!#

$ ≥  �↑
(�)(!)"!#

$ ,  ∀� ∈
&0, �(�)'.                                                         

ii)   �"�( =  �"�(  .                                                                                                                             
 
Alternative definitions of generalized majorization 
with respect to a measure are given by Joe [10], van 
Evren and Harremoes [25]. It is worth noting that 
this definition is related to the concept of second 
order stochastic dominance [9], the usefulness  of 
stochastic orderings and their applications (e.g. in 
Finance) have been discussed so fare (see, among 
others, [20], [21]).  
When conditions for µ-majorization are not 
completely satisfied, there are also weak definitions 
of µ- majorization. In particular, we will need the 
following one. 
 
Definition 3. Let u, v be real valued nonnegative be 
µ-integrable functions on a set I . We say that v 
weakly µ-majorizes u  from above and write 
� ≺(�)

) � when only i) in Definition 2 holds. 
 
A generalization of Karamata’s theorem 
(independently studied by [14], [11] and proved also 
in [15]) allows us to characterize a class of 
functionals which are consistent with respect to 
strong and weak µ-majorization. This result, proved 
in Chong [1974, theorem 1.6] and Joe [1987, 
theorem 2.1] can be summarized as follows. 
 
Theorem 1. Let u, v be real valued nonnegative be 
µ-integrable functions on a set I. 

i) � ≺(�) �  if and only if: ∫∫ ≤
II

dvdu µφµφ )()( , 

for all continuous convex functions φ.                                                                                              

ii)  � ≺(�)
) � if and only if: ∫∫ ≤

II

dvdu µφµφ )()( , 

for all decreasing continuous convex 
functions φ. 
                                                                                

The theorem says that the functional ∫
I

du µφ )(  is 

consistent with strong µ-majorization (φ convex) or 
weak µ-majorization from above (φ convex and 
decreasing). It is worth noting that point i) 
(characterization theorem of µ-majorization) may 
be interpreted as a definition of  the generalized 
majorization. 
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3 Minimum divergence and 
majorization 
 
3.1 Divergence measures 
 
Let * be a family of discrete probability 
distributions with a common support, say S; then, 
+ = ,	�, 	�, … - is an at most countably infinite set. 
For every distribution G belonging to *, . is a step 
function; let g the function defined on the set S as 

follows: )()()( −−= xGxGxg , where 

)(lim)( yGxG
xy↑

− = . Let us write for short ii gxg =)(  

for every ix S∈ . Otherwise said, ig  represents the 

jump of . at the point ix . There are two cases: 1) 

∞<= mS# ; 2) ∞=S# . Correspondingly, there are 
two cases for g: 1) g is a finite vector 

),...,,( 21 mgggg= ; 2) g is an infinite sequence 

,...),( 21 ggg=  ([18], p.25). 
It is well known that the empirical distribution 
function (EDF) is a consistent estimator of .(	). 
Now, if nXXX ,...,, 21  are iid with distribution 
 . ∈ *, let us denote by F the EDF corresponding to 
the observed sample nxxx ,...,, 21 . More formally: 

∑
=

=
n

i
x xI

n
xF

i

1

)(
1

)( , where )(xI a  is the function 

defined as 1)( =xIa  if ax ≤ , and 0 otherwise. 

Finally, let FS  be the support of the EDF, and let f  

be the function defined on the set S as follows: 

)()()( −−= xFxFxf . Otherwise said, )( ixf
represents the empirical relative frequency of the 
point ix .  
Define �/ (or �0) to be the (probability) measure 
corresponding to the distribution function . (or 1); 
�/ and �0 are finite-valued nonnegative measures 
with �0 dominated by �/, �0 ≪ �/. Note that, by 
construction, FS S⊆  (in particular, the inclusion is 

always strict in the case 2), then 0≥f , whileg  is 
always greater than 0.  
In a nonparametric approach to statistical inference, 
the estimand is sometimes the distribution . itself. 
In that case, an estimation problem may be solved 
with the minimum distance method. The minimum 
distance estimator for a distribution, with respect to 
a given “distance” function d, is defined as the 
distribution (if it exists and it is unique) from * 
which is “closest” to 1 in the sense of the distance 
d. Here the distance is intended to be a functional 
"(3, 4) of two distributions 3 and 4 with the 

following properties: as a function of 4, d attains its 
minimum "$ for 3 = 4, and "(3, 4) > "$ for 
3 ≠ 4 ([5], p.65). It is worth noting that d is not a 
distance in the strict sense. Indeed, for instance, d is 
not a symmetrical functional of 3 and 4. To 
emphasize this fact, we will refer to "(3, 4) as 
divergence of 4 with respect to 3 (or divergence of 
4 from 3), and we shall speak of minimum 
divergence (MD) estimation method (see among 
others [6], [26]). Several divergence measures can 
be used to construct estimators. Perhaps the most 
known is the relative entropy (also known as 
Kullback-Leibler divergence, or Kullback-Leibler 
distance) of 4 from 3, defined as  ln 8

9
"3 =

 : ln 8
9

";, where 3 and 4 are dominated by a 

common < −finite measure ; and where : =
"3 ";⁄  and ? = "4 ";⁄  represent the corresponding 
Radon-Nikodym derivatives of 3 and 4 with respect 
to ;. 
In our context, reasonable divergence measures can 
be based on the ratio  � @⁄  (or @ �⁄ ). Indeed, 
majorization can be interpreted as an ordering of 
“closeness to uniformity”. Then, the main idea is 
that the more the value of the ratio (� @⁄  or @ �⁄ )  is 
close to one, the more 1 is “similar” to . (or . is 
“similar” to 1). 
We can distinguish two different main cases:  

A) Undominated case. In general, the measure 
�/ is not dominated by �0, then the ratio 
function @ �⁄  does not generally integrate to 

one since:  @ �⁄  "1AB
≤  ". = 1A . 

B) Dominated case. As �0 ≪ �/, the function 
� @⁄  is the Radon-Nikodym derivative 

"1 ".⁄ , then  � @⁄  ".A =  "1 = 1AB
 

 
Correspondingly, we distinguish two different 
families of divergence measures that we shall call 
functionals of type-A and functionals of type-B [17], 
that is 

A) "D(1, .) = E0FG(@ �⁄ )H =

 G(@ �⁄ ) "1AB
= ∑ G(@ �⁄ )�AB

, . ∈ * 

B) "J(., 1) = E/FG(� @⁄ )H =

 G(� @⁄ ) ".A = ∑ G(� @⁄ )@A , . ∈ * 
 

where G is a continuous and convex function. Note 
that the functional "D yields a divergence measure 
of . with respect to 1, while the functional "J 
yields a divergence measure of 1 with respect to ., 
actually "D and "J are generally not symmetric. 
Moreover, for a given convex function G, "D is 

WSEAS TRANSACTIONS on MATHEMATICS Tommaso Lando, Lucio Bertoli-Barsotti

E-ISSN: 2224-2880 668 Volume 13, 2014



simply the “dual” version of "J. Many well known 
estimation methods are based on the minimization 
of divergence measures which belong to these 
classes, such as the Kullback-Leibler divergence 
[16], the Chi square divergence ([4], [13]) and the 
Hellinger divergence ([2], [23]). However, 
according to the function G, a divergence measure 
can be appropriate or inappropriate for estimation 
purpose. We will discuss it in the sequel. 
It is immediate to see under which conditions 
functionals of type A could be reasonable 
divergence measures. We consider reasonable 
divergence measures all the statistical functionals 
which are consistent with respect to a particular 
majorization ordering, defined below, which 
indicates the “relative dissimilarity” between 
distributions. Actually, as a direct consequence of 
theorem 1, the following results hold. 

Proposition 1. 

1) For every pair of distributions . and  K ∈
*, (@ �⁄ ) ≺(�B) (ℎ �⁄ ) ⇔           
"D(1, .) ≤ "D(1, K) for any convex 
function  G in "D. 

2) For every pair of distributions . and  K ∈
*, (@ �⁄ ) ≺(�B)

) (ℎ �⁄ ) ⇔           
"D(1, .) ≤ "D(1, K) for any decreasing 
and convex function  G in "D. 

Borrowing and extending to the weak case the 
definition by Joe [10] of r-majorization (relative 
majorization), the conditions (@ �⁄ ) ≺(0) (ℎ �⁄ ) and 
(@ �⁄ ) ≺(0)

) (ℎ �⁄ ) could be re-defined as follows. 
 
Definition 4. 
We say that G is r-dominated  by H with respect to 
F and write . ≾0 K when (@ �⁄ ) ≺(0) (ℎ �⁄ ) or 
identically @ is r-majorized by ℎ with respect to �,    
@ ≺O

P ℎ [10]. 
Similarly, we say that G is weakly r-dominated from 
above by H with respect to F and write . ≾0

) K 
when (@ �⁄ ) ≺(0)

) (ℎ �⁄ ). 
 
Then proposition 1 can be rephrased as follows. 
 
Proposton 1′′′′. 

1) For every pair of distributions . and  K ∈
*, . ≾0 K  ⇔  "D(1, .) ≤ "D(1, K) for 
any convex function  G in "D. 

2) For every pair of distributions . and  K ∈
*, . ≾0

) K  ⇔  "D(1, .) ≤ "D(1, K) for 
any decreasing and convex function  G in 
"D. 

The pre-orders defined by ≾0  and ≾0
) suggest 

which distribution, between . and K, should be 
preferred (in terms of their similarity with respect to 
the EDF 1). In particular, the use of the strong or 
the weak pre-order is justified as follows. In 
practical estimation contexts, (strong) r-dominance 
can be verified only when SSF = , which presumes 

that ∞<S#  and that the random sample is large 
enough to have at least one empirical observation 
for any point in S. This is a quite restrictive 
hypothesis. In the more general case, when SSF ⊆ , 
weak r-dominance should be used. Moreover, note 
that the strong condition . ≾0 K  means that . is 
closer to 1, compared to K. On the other hand, 
. ≾0

) K   means that means that . is closer to 1, 
compared to K as well as �/(Q ∈ +0) ≥ �R(Q ∈
+0): thus, in the weak case, the distribution which 
maximizes the probability of  the set +0 is generally 
preferred. 
So, proposition 1′ establishes under which 
conditions functionals "D(1, .) preserve the r-
majorization pre-order (strong or weak). 
Nevertheless, as divergence measures of the form B 
are based on the reciprocals of the ratio @ �⁄ , their 
consistency with respect to a relation of r-
majorization cannot be immediately derived. Yet, 
Theorem 3 below establishes that (under certain 
conditions) functionals of the form B also satisfy the 
property of consistency with respect to weak r-
majorization. This depends on the equivalence of 
weak majorization between the ratio functions @ �⁄  
and ℎ �⁄  and a sort of (strong) majorization between 
their reciprocals, as it is proved in the following 
Theorem 2. Finally, consistency of type-B 
funtionals with respect to weak r-domnance is 
simply proved in corollary 1. 
 
Theorem 2. For every pair of distributions . and 

 K ∈ *: . ≾0
) K if and only if (� @⁄ )↑

(/) ≺
(� ℎ⁄ )↑

(R). 

Proof. It is sufficient to prove that  S↑
(0)(�)"� ≥T

$

 U↑
(0)(�)"�T

$  , ∀� ∈ &0,1', if and only if 

 �↑
(/)(�)"� ≥  �↑

(R)(�)"�T
$

T
$ , ∀� ∈ &0,1', ∀� ∈

&0,1', where S = @ �⁄ , U = ℎ �⁄ , � = � @⁄  and 
� = � ℎ⁄ . 

First of all, observe that � and  �↑
(/)are 

equimeasurable: 
 

{ }
{ }21

21

)(:]1,0[

)(:

ztazt

ztazSt
G

G

≤<∈=

=≤<∈

↑λ
µ
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where V is the Lebesgue measure. The same result 

holds for �  and �↑
(R). Thus, considering that 0=f  

on the set FSS− : 

==== ∫∫∫ ↑ 1)(
1

0

)( dG
g

f
dG

g

f
dtta

FSS

G  

dtbdH
h

f
dH

h

f H

SSF

∫∫∫ ↑===
1

0

.           

 
Similarly we can observe that, by assumption, 

)()(1 FHFG SS µµ ≥≥ . Denote by  k  the cardinality 

of the set SF, hence kSF =)(ν .  

We can represent SF by the set ),...,,( 21 kwww , whose 
elements are defined by: 

)(

)(

)(

)(

1

1

−

−≥
i

ii

wf

wg

wif

wg
,  ki ,...,2= ; 

or similarly with the set ),...,,( 21 kzzz , defined by: 

)(

)(

)(

)(

1

1

−

−≥
j

j

j

j

zf

zh

zf

zh
,  kj ,...,2= . 

Hence, the non-decreasing rearrangements of S and 
U with respect to µF are monotone, non-decreasing 
and piecewise linear functions on [0,1], in 
particular: 
 

S↑
(0) =

)(

)(

i

i

wf

wg
  

for ])(,)([
1

1

1
∑∑

=

−

=

∈
i

m
m

i

m
m wfwft , ki ,...,1= ; 

U↑
(0) =

)(

)(

j

j

zf

zh
    

  for    ])(,)([
1

1

1
∑∑

=

−

=

∈
j

m
m

j

m
m zfzft ,   .,...,1 kj =   

where 0)()( 00 == zfwf  and obviously  

1)()(
11

==∑∑
==

k

m
m

k

m
m zfwf . 

The integral between 0 and x of a monotone, non-
decreasing and piecewise linear function is a 
continuous monotone, strictly-increasing and 
piecewise linear function on [0,1]. We respectively 
obtain: 

x
wf

wg
dttrxU

i

i
x

F
G )(

)(
)()(

0

)( == ∫ ↑ ,   

for  ])(,)([
1

1

1
∑∑

=

−

=

∈
i

m
m

i

m
m wfwft , .,...,1 ki = ; 

x
zf

zh
dttsxU

j

j
x

F
H )(

)(
)()(

0

)( == ∫ ↑ ,    

for  ])(,)([
1

1

1
∑∑

=

−

=

∈
j

m
m

j

m
m zfzft , .,...,1 kj = , 

 
where 0)()( 00 == zhwg . Remind also that 

)()()()(1 kFHkFG zHSwGS =≥=≥ µµ .  

)(xUG  is invertible on [0,1] and its inverse function

)()( 1 yUG
−  is also continuous,  monotone, strictly-

increasing and piecewise linear on  [0, )( FG Sµ ] 

(notice that )1()( GFG US =µ ): 
 

y
wg

wf
yU

i

i
G )(

)(
)()( 1 =−    

for ])(,)([
1

1

1
∑∑

=

−

=

∈
i

m
m

i

m
m wgwgy ,  .,...,1 kj =  

 
Consider the non-increasing re-arrangement of gf  

with respect to µG. Observe that 
 

)(

)(

)(

)(

1

1

−

−≥
i

i

i

i

wf

wg

wf

wg
  ⇔  

)(

)(

)(

)(

1

1

i

i

i

i

wg

wf

wg

wf
≥

−

− , ki ,...,2= . 

yields: 









∈

∈= ∑∑
−

==↓

]1),([0

])(,)([
)(

)(
)(

1

11

)(

FG

i

m
m

i

m
m

i

i
G

St

wgwgt
wg

wf
ta

µ
,  

for ki ,...,1= , 
which is monotone, non-increasing and piecewise 
linear. Similarly: 
 









∈

∈= ∑∑
−

==↓

]1),([0

])(,)([
)(

)(
)(

1

11

)(

FH

i

m
m

i

m
m

i

i
H

St

zhzht
wh

wf
tb

µ
,  

for ki ,...,1= . 

The integral of  �↑
(/) between 0 and y gives: 

== ∫ ↓ dttayV
y

G
G

0

)( )()(  









∈

∈= ∑∑
=

−

=
]1),([1

])(,)([
)(

)(

1

1

1

FG

i

m
m

i

m
m

i

i

Sy

wgwgyy
wg

wf

µ
, .,...,1 ki =  

In other words: 





∈
∈

=
−

]1),([1

)](,0[)()(
)(

1

FG

FGG
G

Sy

SyyU
yV

µ
µ

. 

Similarly we obtain: 
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∈
∈=

−

]1),([1

)](,0[)()(
)(

1

FH

FHH
H

Sy

SyyU
yV

µ
µ

. 

)()( xUxU HG ≥ , for ]1,0[∈x , if and only if 

)()()()( 11 yUyU HG
−− ≤ , for y∈ [0, )( FH Sµ ], 

which is equivalent to )()( yVyV HG ≤  for y∈ [0, 

1], as 1)( =yVH  for y∈ [ )( FH Sµ , )( FG Sµ ] and 

1)()( == yVyV HG  for  y∈ [ )( FG Sµ ,1]. But since 

1)1()1( == HG VV  we obtain: 

 

dttbdtta
y

H
y

G
∫∫ ↓↓ ≤
0

)(

0

)( )()(    ⇔    

dttbta
y

H
y

G
∫∫ ↑↑ ≥
0

)(

0

)( )()( ,  ∀y∈ [0, 1],         

 
which yields the thesis. 
 
Hence, weak r-majorization is equivalent to 
continuous (strong) majorization between 
reciprocals. We can now prove that, under some 
conditions, functionals of type-B are also 
“reasonable” divergence measures. 

 
Theorem 3. For every pair of distributions . and 
 K ∈ *: . ≾0

) K ⇔ "J(., 1) ≤ "J(K, 1) for any 
function G in "J which is convex and defined in 0. 

Proof. By assumption 

dttrdtts
x

F
x

F
∫∫ ↑↑ ≥
0

)(

0

)( )()( ,   ∀x∈ [ ]1,0 . 

 
Theorem 2 establishes that this condition is 
equivalent to:  
 

dt
h

f
dt

g

f HG
xx )(

0

)(

0

µµ

↑≥↑ ∫∫ ,   ∀x∈ [ ]1,0 ,      

where dt
h

f
dt

g

f HG )(1

0

)(1

0

µµ

↑=↑ ∫∫ . 

 

The functions � and  �↑
(/)are equimeasurable: 

 
{ }
{ }21

21

)(:]1,0[

)(:

ztazt

ztazSt
G

G

≤<∈=

=≤<∈

↑λ
µ

 

where V is the Lebesgue measure. The same result 

holds for � and �↑
(R). Moreover the functions   �↑

(/) 

and and  �↑
(R) are non-decreasing and continuous 

from the right in [0,1]. They also take value 0 in 
)](1,0[ FG SP− . 

If φ is continuous, convex and defined in 0, the 
Karamata [14] theorem yields: 
 

dt
h

f
dt

g

f HG

∫∫ 









↑≥










↑

1

0

)(1

0

)( µµ

φφ .     

Finally, for equimeasurability, the last inequality is 
equivalent to: 
 

( )

( )∑∑∑

∑∑∑

−

−

+






=






≥

≥+







=









FF

FF

SSSS

SSSS

qh
h

f
h

h

f

gg
g

f
g

g

f

0

0

φφφ

φφφ
 

which proves the theorem. 

Observe that )(1 FG
SS

Sg
F

µ−=∑
−

, hence the 

distribution which maximizes the probability of FS  
is generally preferred. 
Thus, we conclude that functionals of the Form A 
(with φ  convex and decreasing) and Form B (with φ  
convex and defined in 0) are consistent with respect 
to the weak r-majorization pre-order (with respect to 
the empirical distribution). The following corollary 
shows that functionals of the form B (with φ  
convex, not necessarily defined in 0, exactly like 
functionals of the form A) are also consistent when 
(strong) r-majorization holds, besides weak. 
 
Corollary 1. 
For every pair of distributions . and  K ∈ *: 
. ≾0 K ⇔ "J(., 1) ≤ "J(K, 1) for any convex 
function G in "J. 

Proof. The proof can be easily derived from proofs 
of theorems 2 and 3.  
 
 
3.4 Applications of some well known 
divergence measures 
To show the usefulness of our classification and 
properties, we now provide some examples which 
involve two of the main divergence measures used 
in statistical estimation: the Kullback-Leibler (KL) 
divergence and the Chi-square (Chi^2). We obtain 
the KL or the Chi^2 divergence if we respectively 

set )ln()( tt −=φ or 2)1()( −= ttφ in "D or "J. In 
particular, we have the following four different 
formulas. 
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1) KL form A: Kullback-Leibler divergence 

( )∑−=
FS

A fgfGFKL ln),(  

2) KL form B: Reverse Kullback-Leibler 
divergence ([8], [19]) 

( )∑−=
S

B gfgFGKL ln),(  

3) Chi^2 form A: Neyman modified Chi-
Square divergence ([8], [7]) 

( ) ffgGF
FS

A

2
1),( ∑ −=χ  

4) Chi^2 form B: Chi Square divergence  

( ) ggfFG
S

B

2
1),( ∑ −=χ  

 
Example 1 
A random sample of dimension n=100 generated 
from a Binomial distribution )5.0,6(Bi  yields the 
following empirical frequencies for the points 

6,...,1,0=x : 

)
100

1
,

25

3
,

10

3
,

4

1
,

100

23
,

25

2
,

100

1
())6(),...,0(( =ff  

which define the empirical distribution F. Now, 
compare F to )48.0,6(~BiP  and )52.0,6(~BiQ . 

Note that }6,..,1,0{ === xSSF , thus we can 
compare P and Q by strong r-majorization. Note 
that: 
 

)0.0122 0.0794, 5,0.311,0.21 0.252, 0.109, 0.0197,(

))6(),...,0((

=
=pp

)0.0197 0.109, 0.252, 0.311, 0.215, 0.0794, 0.0122,(

))6(),...,0((

=
=qq

 

 
The increasing re-arrangement of the ratios fp

(weighted by Fµ ) seems to be more “even” and 

uniform compared to the re-arrangement of  fq , 
as shown in figure 1. 
 
 

 

Figure 1: Increasing re-arrangements 

)( F

f

p µ

↑  and 

)( F

f

q µ

↑

(dashed) 
 
Actually, we obtain 3 ≾0 4 as  

)()(
)(

0

)(

0

xU
f

q
dt

f

p
xU Q

xx

P

FF

=↑≥↑= ∫∫
µµ

,  

for ]1,0[∈x . This is shown in figure 2. 

 
Figure 2: PU  and QU  (dashed). 

 
It is easy to verify that both the KL and the Chi^2 
divergence measures (form A and B) are consistent 
with the pre-order 

),(0.01474470.0387575),( PFKLQFKL AA =>= ; 
),(0.0157374 0.0378333),( FPKLFQKL BB =>= ; 

),(0.0342506 0.0756226),( PFQF AA χχ =>= ; 
),(0.0280714 0.0811313),( PFQF BB χχ =>= . 

This property holds for theorem 1, point i) (for 
functionals of the form A) and corollary 1 (form B). 
Nevertheless, in many practical situations, condition 

SSF =  is not satisfied. Thus, functional which do 
not fulfill conditions of theorem 1 point ii) (for 
functionals of the form A) and theorem 3 (form B) 
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could provide misleading results, as shown in the 
following example. 
Example 2 
A random sample of dimension n=20 generated 
from a Poisson distribution )4(P  yields the 
following empirical frequencies for the points 

6,...,1,0=x : 

)
10

1
,

20

1
,

20

7
,

4

1
,

20

1
,

20

3
,

20

1
())6(),...,0(( =ff   

which define the empirical distribution F. Now, 
compare F to )8.3(~PP  and )2.4(~PQ . Observe 
that 0)( =xf  for ,...8,7=x : actually we have 

,..}1,0{}6,..,1,0{ ==⊂== xSxSF , thus we can 
compare P and Q only by weak r-majorization. Note 

that ∑∑
∈∈

=>=
FF SxSx

xqxp )(867464.0909108.0)( . 

Moreover we obtain that: 

)()(
)(

0

)(

0

xU
f

q
dt

f

p
xU Q

xx

P

FF

=↑≥↑= ∫∫
µµ

for ]1,0[∈x  

as shown in figure 3: thus 3 ≾0
) 4. 

 
Figure 3: PU (dashed) and QU . 

  
Finally it is possible to verify that only KL (form A) 
and Chi^2 (form B) preserve the weak majorization 
pre-order (note that KL form B is not defined when 

SSF ≠   as )ln()( tt −=φ  is not finite in t=0). 

),(0.275265 0.349993),( PFKLQFKL AA =>= ; 
),(0.560979 0.555154),( PFQF AA χχ =<= ; 

),(0.451497 0.61325),( FPFQ BB χχ =>= . 
We conclude that the choice of Aχ  or BKL  in a 

situation when SSF ≠  can seriously lead to choose 
the wrong distribution. This is confirmed by a 
simulation study. 
 
Simulation 1 
500 replications of random samples of dimension 
n=10 were generated from a Binomial distribution 

)5.0,2(Bi : for each replication we checked that 

}2,.1,0{ === xSSF . The MD method, applied to 
the KL and Chi^2 divergence measures (form A or 
B) lead in any case to acceptable results in terms of 
mean squared error (MSE). Actually, note that the 
minimization of KL (form A) exactly leads to the 
maximum likelihood estimate (MLE) whose optimal 
properties are well known. From table 1 we observe 
that MD estimates corresponding to the considered 
divergence measures (especially Chi^2 form A) are 
(on average) close to the MLE estimates in terms of 
MSE, hence it is appropriate to use any of those 
methods when SSF = . 
Simulation 2 
500 replications of random samples of dimension 
n=10 were generated from a Binomial distribution 

)5.0,10(Bi : for each replication we surely have that 

}10,..,1,0{ ==⊆ xSSF . As only KL form A and 
Chi^2 form B preserve the weak r-majorization pre-
order, other MD methods are not appropriate for this 
situation, as confirmed by simulation results in 
terms of MSE. Actually, KL form B is not defined 
anytime SSF ≠  (for theorem 3) and the MSE of 
Chi^2 form A is (on average) approximately 24 
times the MSE of KL form A (MLE) and Chi^2 
form B, which on the other hand are really close. 
 
Average 

M.S.E. 

KL (A) KL(B) Chi^2 

(A) 

Chi^2 

(B) 

Sim.1 0.012 0.02 0.013 0.021 

Sim.2 0.00260 ---- 0.063 0.00265 

Table 1: average MSE over 500 replications. As for simulation 
1 the four methods provide good/acceptable estimates. As for 
simulation 2 only KL form A and Chi^2 form B seem to work 
appropriately. 
 
 
 

4 Conclusion 
In order to compare theoretical distributions with 
respect to a reference distribution (represented in 
our case by the empirical distribution), majorization 
theory can provide useful guidelines. In particular 
we use relative majorization [10] to analyze the 
distance between the theoretical and empirical 
distributions. As in many practical situations strong 
r-majorization cannot be fulfilled, we propose weak 
r-majorization (from above) as the most appropriate 
pre-order to compare distributions. Thus we search 
for a class of statistical functionals which preserve 
such pre-order. Within the class of divergence 
measures [1], classified in form A and B, the results 
can be summarized as follows. Assuming that the 

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

WSEAS TRANSACTIONS on MATHEMATICS Tommaso Lando, Lucio Bertoli-Barsotti

E-ISSN: 2224-2880 673 Volume 13, 2014



distribution is discrete, divergence measures of the 
form A are consistent with respect to weak r-
majorization from above, thus can be appropriately 
used in estimation, under the condition that ϕ is 
decreasing and convex. As for divergences of the 
form B, ϕ has to be convex and defined in 0. The 
theoretical results of the paper provide practical 
guidelines for the choice of divergence measures in 
estimation problem, as confirmed by examples in 
section 3.4.  Although this paper refers to the 
context of statistical estimation, dissimilarity or 
distance measures can be applied in many different 
studies.  
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