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Abstract: In this paper, we investigate spectral norms for circulant-type matrices, including circulant, skew-
circulant and g-circulant matrices. The entries are product of binomial coefficients with Fibonacci numbers and
Lucas numbers, respectively. We obtain identity estimations for these spectral norms. Employing these approaches,

we list some numerical tests to verify our results.
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1 Introduction

Circulant, skew-circulant and g-circulant matrices
play important roles in various applications with good
foundation. Circulant-type matrix had been applied
to the area of discussion about economics, digital im-
age disposal, linear forecast, design of self-regress,
etc. For example, the economists can employ spectral
norms of those matrices to construct the optimal filter
for an economic model, and form the building blocks
for most modern circulant-type filters to investigate
the rule of certain economics, and so on. The prop-
erties of this kind of matrix support lots of benefits for
the engineer applications. For the details, please refer
to [1,7,8, 12, 13, 14, 15, 18, 21, 22, 23, 25], and the
references therein. The skew-circulant matrices were
collected to construct pre-conditioners for LMF-based
ODE codes, Hermitian and skew-Hermitian Toeplitz
systems were considered in[3, 10, 11, 17], Lyness
employed a skew-circulant matrix to construct an s-
dimensional lattice rules in[16].

Recently, there are lots of research on the spectral
distribution and norms of circulant-type matrices. In
[5], the authors pointed out the processes based on the
eigenvalue of circulant-type matrices with i.i.d. en-
tries, furthermore, they claimed that they converged to
a Poisson random measures in vague topology. There
were discussions about the convergence in probability
and distribution of the spectral norm of circulant-type
matrices in [6]. The authors in [4] listed the limiting
spectral distribution for a class of circulant-type matri-
ces with heavy tailed input sequence. Eric Ngongiep
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et al. showed that the singular values of g-circulants
in [19].

Solak established the lower and upper bounds for
the spectral norms of circulant matrices with classical
Fibonacci and Lucas numbers entries in [20]. Ipek in-
vestigated an improved estimation for spectral norms
in [26]. In this paper, we derive some identity esti-
mates of spectral norms for some circulant-type ma-
trices with product of binomial coefficients with Fi-
bonacci numbers and Lucas numbers, respectively.

The Fibonacci and Lucas sequences {F}} and
{Ly} are defined by the following recursive relations

Fon=Fy 1+ F,2
with Fy =0, F1 =1, and
Lyp=Lpn 1+ Lnpo

with Lo = 2, [ = 1.
The binomial coefficients (Z) are, for all natural
numbers k, defined by

(1+X)" = kzzo (Z)Xk

It is clear that, for k > n,

n n n
= =1 =0.
(o) =)= ()
Let (Z) be the k-th binomial coefficient of n, F},

and L, denotes the k-th Fibonacci and Lucas number,
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respectively. For anyone p € N, we have the follow-
ing formulas [9]

n
n
Z (i)Fi-i-p = Fonqyp,

1=0

"o (1)
Z ( .)Li+p = L2n+pa
i—o \*
and
Z <i>2lFi+p = F3nip,
=0
noN (2)
Z <Z.>22Li+p = L3n1p-

1=0

2 Circulant-type matrices

Definition 1 [13, 15] A circulant matrix is an n X n
complex matrix of the form

ag a1 an—1
an—1 ag Ap—2
A, = n—2 QAan—1 Gp—3 3)
al a9 ag nxn
The first row of A, is (ag, a1, - ,aj, -+ ,an_1), its

(j+1)-th row is obtained by giving its j-th row a right
circular shift by one positions.

Equivalently, a circulant matrix can be described
as a polynomial

n—1
A= f(ne) = am, )
i=0
where
01 0
0 0 1 0
Ne = :
00 O 1
1 0 0 0

nxn

Obviously, n?} = I,,.

We are now in a position to discuss the eigenval-
ues of A.. Motivated by the relation between matrix
and polynomial, we declare that the eigenvalues of 7.
are the corresponding eigenvalues of A, with the func-
tion f in (4), which is

MAD) = FA0) = 3 aA(me)'
1=0
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Since
)‘j(ﬁc):fﬂj, (]ZOala 1)7

Thus A;(Ac) can be

, T —

27

where w = cos%7r + isin 5F.

calculated via

n—1
Nj(Ae) =) ai(w), )
=0

Similarly, let us recall a skew-circulant matrix.

Definition 2 [13, 15] A skew-circulant matrix is an
n X n complex matrix of the following form

agp ai Ap—1
—Gnp—1 agp an—2
Ay = —an—2 an—1 ap—3 (6)
—a1 —a2 ao

Also, a skew-circulant matrix can be described as
matrix polynomial

n—1
Asc = f(nsc) = Z ainém
1=0

where
0 1 0 0
0 0 1 0
Nsc = : R
0 0 0 1
-1 0 0 0
nxn
Obviously, n7, = —1I,,.

To calculate the eigenvalues of A, for the same
reason, we obtain

n—1
AMAse) = fF(A(nse)) = Z air(Nse)".
1=0

Since
)‘](nsc) = wjaa (,7 - 07 17 e, — 1)7
where
2r . 27 T .., T
W = COS — +18In —, = COos — + %SIn —,
n n n n
s0 A;j(Agc) can be computed via
n—1
Ni(Ase) =) ai(Wa)'.

i
=)

i
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Definition 3 [4, 24] A g-circulant matrix is ann X n
complex matrix of the following form

ap ai an—1
Gp—g  Apn—g+1 ap—g—1
Ag = anp—2g An—2g+1 Gp—2g—1 , (D
Qg Ag+1 g—1

where g is a nonnegative integer and each of the sub-
scripts is understood to be reduced modulo n.

The first row of A, is (ag, a1, ,an—1),its (j+1)-th
row is obtained by giving its j-th row a right circular
shift by g positions(equivalently, g mod n positions).
Note that g = 1 or ¢ = n + 1 yields the standard
arculant matriz. If g = n — 1, then we obtain the
so called reverse circulant matrix [4].

Definition 4 [2] The spectral norm || - ||2 of a matrix
A with complex entries is the square root of the largest
eigenvalue of the positive semidefinite matrix A* A:

HAH2 =V )‘maX(A*A)-

where A* denotes the conjugate transpose of A.
Therefore if A is an n X n real symmetric matrix or A
is a normal matrix, then

(®)

4l = max |A,

where A1, Aa, - -+, \p are the eigenvalues of A.

3 Spectral norms of some circulant
matrices

We will analyse spectral norms of some given circu-
lant matrices, whose entries are combined binomial
coefficients with Fibonacci or Lucas numbers, respec-
tively. For the convenience of the discussion, we set
p = 01in (1), and the same conclusions can be deduced
for Vp € N.

3.1 Spectral norms of some circulant matri-
ces with modified (") F; and (%) L;

Definition 5 Some circulant matrices are defined as
the following forms:

(o) Fo (W) Fn
(::)Fn (nﬁl)an

By = (nﬁl).F”—l (nﬁg).Fn—S 7
(A (1) Fy
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(0) Lo () Ln
(Z)L” (nﬁl)Lnfl
By = (ni1)'Ln—1 (nﬁg)‘Ln—S ,
(1)L (gjLo
(9) Fo — (") Frn
— () Fm (1) Frna
B3 = (y) Pt —(,7" ) Frn—2 ’
~(T) A (0) Fo
— () Fo (") Frm
(m) Fim —(,"" ) Fm—1
B4 _(mrﬁl) Fm*1 (mTﬁQ).me2
(T)Fl - (%;)Fo
(9) Lo ~("™) L,
() Lm (1) Lin—1
B5 = (mnzl Lim—1 _(m Q)Lm—Z ,
~(T) L1 ('0) Lo
—(%9) Lo (™) L
() Lm (1) L1
Bg = ~(ny) L (," ) Lm—2 ,
(Tle —(%;)Lo

where m, n are integers, and m is odd.

Obviously,
By = —B3, Bg=—Bs.
Our main results for those matrices are as follows.

Theorem 1 Let By be the matrix defined as in defini-
tion 5. Then we have

| B1ll2 = Fap.
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Proof. Since the circulant matrix Bj is normal (see
Definition 4), we claim that the spectral norm of B;
is equal to its spectral radius. Furthermore, applying
the irreducible and entrywise nonnegative properties,
we claim that || By ||2 (i.e., its spectral norm), is equal
to its Perron value. We select an (n + 1)-dimensional
column vector

then

Biv = i (?)Fj V.

Jj=0

n
Obviously, Y (’;) Fj is an eigenvalue of Bj associ-
§=0
ated with v, which is necessarily the Perron value of
B;. Employing (1), we obtain

| B1ll2 = Fap.

This completes the proof. U
Using the same approach, we can prove the fol-
lowing result.

Theorem 2 Let By be the matrix defined as in Defi-
nition 5. Then we have

| Ball2 = Lap.

Proof. Using the same techniques of Theorem 1 and
irreducibility and entrywise nonnegativity of the nor-
mal matrix By, we declare that the spectral norm of
Bs is the same as its Perron value.

Let
ol =(1,1, ---,1).
n+1
Then
" /n
BQU = (ZO <Z>LZ)U
1=

Since Z (') L; is an eigenvalue of By associated with

the posmve eigenvector v, it is equal to Perron value
of By. Combining with the identities, we obtain

| B2ll2 = Lon,

which completes the proof. U

Corollary 1 Let A, be defined as (3). For any p € N,
the following statements are true:

()1 ((6) Ep, (1 )F1+pa( ) Eoipree s (3) Fut)
is the first row of Ac, then
[Acll2 = Fonip-
E-ISSN: 2224-2880
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(2) 1 ((6) Lps (1) Lrsps (5) L2ps - 5 (3) L)

is the first row of A, then
[Acll2 = Lontp.

Theorem 3 Let B3 and By be defined as in Definition
5, respectively, and m be odd. Then

|Bsll2 = Fom, [|Ball2 = Fam.

Proof. Noticing (5) and (8), it is clear that the spectral
norm of B3 can be calculated by

> a

=0

}:Zyw,

az

|| Bs||2 —OI%aX |\j(Bs)| = max

0<]<m
{znm

where a; = (—1)" (") F;.

7

Note that, if m is odd, the m + 1 is even, then

Ajo (1)

is an eigenvalue of 7, so the identity holds, 7.e.,

m
IBsllz = lal.
=0

Combining (1) and (10) yields || Bs||2 = Fam.
In the same manner, we can show || By|la = Fopp.
This completes the proof. O

max
0<]<m

=wlo = -1

(10)

Corollary 2 Let A. be defined as (3) and m is odd.
Then we have

(1) 1 () Fp— () Fri.
the first row of A., then

o= () Prnep) s

”AC||2 = F2m+p7

where Vp € N.

21 (~(2) P () Frpe.
first row of A, then

(") Frogp) is the

[Acll2 = Fomp,

where Vp € N.

Theorem 4 Let B5 and Bg be defined as in Definition
5, respectively, and m be odd. Then
|Bsll2 = Lom, ||Bsll2 = Lam. (11)

Proof. From proof of Theorem 3 , we see that (11)
holds. t
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Corollary 3 Let A, be defined as (3) and m be odd.
Then we have

(D) If ((§) Lo, = (V) Lty -+ = () Lintp) i
the first row of A, then

[Acll2 = Lom-tp,

where Vp € N.

(2)1If (‘(?)Lw (T)Llﬂn e
first row of A, then

(") Lingp) is the

”ACH2 = L2m+p7

where Vp € N.
3.2 Spectral norms of some circulant matri-
ces with modified (7)2°F; and (7)2'L;

Definition 6 The circulant matrices are defined as the
following forms

()2 Fo . (M2"F,
(M)2"F, v ()2 F
By = [(2)2" P (n5)2" P Fos
(2R (1)2°Fy
(6)2°Lo (m)2" Ly
(n)2" Ly ne1)2" L
BZ = (nﬁ1)2n_1L”*1 (nﬁS)Qn_gL -3
(1)2'Ls (6)2°Lo
(0)2°Fo — ()2 Fon
()2 Fin (™ )2
By =| ()2 Fina ~(pg)2™  Fpn
—(7)2'F (5)2°Fo
—()2 Fy )2 F,
()2 Fn —(, )2
B4: (m"—ll)2m71Fm—1 (m"_LQ) 2m72Fm—2
(T)2' P —(9)2°Fy
(5)2°Lo ~ ()2 L
()2 Lon (™ )2 Ly
Bs = |(nt1)2™  Lina ()2 ? L2
(1)2'Ly ()2°Lo
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—()2°L ("2 L,

(M2 L = ()2 L
Bl (2 Ly ()2

(1)2' Ly —(m)2°Ly

where m, n are integers, and m is odd. Obviously,

By = —Bs, Bg = —B;s.

Employing the same approaches as in the above
subsection, we list the main results for those matrices.

Theorem 5 Let B; be defined as in Definition 6.
Then ~
[Bill2 = Fin.

Theorem 6 Let By be defined as in Definition 6. The
we have R
| B2ll2 = Lan.

Corollary 4 Let A, be defined by (3). Forany p € N,
we have

D () Fyy ()2 v ()2 Py (D)2
is the first row of A, then
[Acllz = Fantp-
() Ly ()21 ()P Lo ()2 L)

is the first row of A, then
”AC||2 = L3n+p-

Theorem 7 Let By and By be defined as in Definition
6, respectively, and m be odd. Then

HB3H2 = F3pm, HB4H2 = F3,.
Corollary 5 Let A. be defined as in (3) and m be odd.

Then
(1) UC((%I)QOFW _(T)QIFHW T _(2) szmﬂ?)

is the first row of A, then

”ACH? = F3m+p7

where Vp € N.
2 (~ (D)2 Fy, ()2 Frpee., (22" Py

is the first row of A, then
[Acll2 = Famip,

where Vp € N.

Theorem 8 Let Bs and Bg be defined as in Definition
6, respectively, and m be odd. Then

|Bs|l2 = Lam. || Bsll2 = Lam. (13)
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Corollary 6 Let A. be as (3) and m be odd. Then we
have

D (D)L~ ()2 Lip oo~ ()2" L)
is the first row of A., then
[ Acll2 = L3m+p,
where Vp € N.
2 ()2 L (D)2 Lo s ()2 Lons)

is the first row of A, then

”AC||2 = L3m+p7
where Vp € N.

4 Spectral norms of skew-circulant
matrices

4.1 Spectral norms of skew-circulant matri-
ces with modified (") F; and (%) L;

An odd-order alternative skew-circulant matrix is de-
fined as follows, where s is even.

QR - (F
—(F o —()F
Br = (581)'Fs 1 (sfz)'stz . (14a)
()R (3) Fo
— (o) Fo (i
(3)Fs (71 Fs
Bs=|—(: 1)Fs 1 382 . (14b)
9
() Lo i)
(3)Ls ( ’
By=| (Z0)Ls : ) . (14¢)
()
—(o) Lo —(3)Ls
(z)Ls il)Lsfl
Bro= |~ (21 Ls—1 —(,%) Ls—2| . (144
~() ~())Lo
Obviously,

Bs = —B7, Big = —Bqy.
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Theorem 9 Let B; and Bg be defined as in (14a) and
(14b), respectively, and s be even. Then

| Br|l2 = Fas, ||Bsllz = Fos.

Proof. We use (2) and (8) to calculate the spectral
norm of B;. Forall j =0,1,--- s,

S
Zai(wja)z
i=0

S
< Z |ai] - [(w @)’
where a; = (—1)"(3) F;.

—Zw—z() 3

=0
Since all skew-circulant matrices are normal, we
deduce that

Aj(Br)| =

15)

| B7llz = [nax |\ (B7)] -

If s is even, then s + 1 is odd. We assert that
Ase = —1 is an eigenvalue of 7. We calculate the
corresponding eigenvalue of B as follows

S S
=D aide = ai(~
1=0 1=0

where we have used (2).
Noticing that (15), we claim that )\3(37) is the

maximum eigenvalue of B7), which means

S
S
521 =3 (07
=0

Thus, from (1) we obtain || B7||2 = Fas.
Following the same techniques for Bg, we com-
plete the proof. O

Corollary 7 Let A,. be defined as (6) and let s be
even. Then we have

D () Py () Frape..
row of A, then

, () Fosp) is the first

||A80H2 = F2s+p’

where ¥p € N.
(2) if (—(0)Fp

first row of Age, then

||A86H2 = F2s+p’

() Figps - — () Fgp) is the

where p € N.
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Theorem 10 Let By be the matrix de fined as in
(14d), and let s be even. Then

| Boll2 = Las,

Moreover,
| Bioll2 = Las.

Proof. Replacing B; by By in (15) yields

s s .
=0

Note that A\s. = —1 is an eigenvalue of ns. (s + 1
is odd), we obtain the corresponding eigenvalue of By

Xj(Bo) =Y aiX, = ai(-1)
1=0 =0

50

where a; = (—1)""(5) L; in By.
Obviously,

[A5(Bo)| = <§>Li:max IXj(Bo)|.  (16)
=0

i 0<j<s

Since the skew-circulant matrix Bg is normal,
combining (1), (8) and (16) yields

S
S
180l = o (801 = 3 ()
= L2s-

Similarly, we can calculate the identity for B1g. Then
we complete the proof. g

Corollary 8 Let Ay be as (6) and s be even. Then

(1)if ((§)Lps — () Li4ps - - - (3) Losp) is the first
row of Age, then

||A80”2 = L28+p7

where ¥p € N.

2 (~() L () i
first row of Age, then

,— (%) Lsyp) is the

HASCHQ = L28+p7

where p € N.
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4.2 Spectral norms of skew-circulant matri-
ces with modified (7)2'F; and (7)2'L;

Similarly, set s is even, then we list some odd-order
alternative skew-circulant matrices as follows.

(6)2°Fo
—()2°Fs
B7 = (sjl) 2871F5—1

(J2°Fs
(2R
(siQ) 2872FS—2

()2 A (6)2°F

(17a)
—(5)2°Fy . —(5)2°F,
Q)2 F, . ()2 e
By = [-(2)2 e —(2) 2 s
-(1)2' A —(5)2°Fo
(17b)
(6)2°Lo (3)2°Ls
—(3)2°Ls —(2)2 Loy

s—1
BQ = (531)25_11/5*1 (532)25_21/5*2

()2 I (6)2"Lo

(17¢)
—(5)2"Lo —(3)2°Ls
(5)2°Ls (,2)2 7 Loy
Bl() = _(531)28_11’3*1 _(si2)28_2L5*2
—(1)2' Ly —(5)2°Lo
(17d)

Obviously, Bg = —B7, BIO = —Bg.

Theorem 11 Let B; be defined as before, and s be
even. Then ~
| B7l|2 = F3s,

and ~
| Bsll2 = F3s.

Corollary 9 Let A, be defined by (6) and s be even.
Then we have

(1) f ()20 Py ~()2 Fuip...
the first row of A, then

||A80H2 = F3S+pa

()2 F) s

where Vp € N.
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) i (~()2°Fy. ()2 Fri ..
is the first row of A, then

()27 Fsp)

||ASCH2 = F3s+pa

where p € N.

Theorem 12 Let By and By be the matrix defined by
(17c) and (17d), respectively, and let s be even. Then

|Bglla = Lzs, || Bioll2 = Las-

Corollary 10 Let A, be defined as in (6) and let s be
even. Then

() iF ()2 L ~()2 L.
the first row of A, then

()2 L) i

HA86”2 = L3S+p7

where ¥p € N.

(2) if (_(S)QOLI% (ng)21L1+P’ e
is the first row of Ag., then

= ()27 Lssy)

||A86”2 = L3S+pa

where p € N.

5 Spectral norms of g-circulant ma-
trices

Inspired by the above propositions, we will analyse
spectral norms of some given g-circulant matrices.

Lemma 1 [24] The (n + 1) x (n + 1) matrix Qg is
unitary if and only if

(n+1,9) =1, (18)

where Qg is a g-circulant matrix with first row e*
[1707' o 70]

Lemma 2 [24] A is a g-circulant matrix with first

row [ag, a1, -, ay) if and only if
A=Q,C, (19)
where
C = circ(ag, a1, ,an).

In the following, we assume that (n + 1, ¢g) = 1.
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5.1 Spectral norms of g-circulant matrices
with modified (") F; and (7)L;

We list two (n + 1) x (n + 1) g-circulant matrices as
following.

(6) Fo ()
(nfz+1) F”—9+1 (nﬁg) Fn—g
Bi1 = (n—an—i-l)Fn*2g+1 (n—nZg) Fn*QQ
(Z)Fg (gﬁl)F9*1
(20a)
(6) Lo () Ln
my ()L
n—ng-i-l n—g+1 nn—g n—g
Blg = n—2g+1)Ln_29+1 (n—2g) Ln_29
(Z) Lg te (gﬁl)L9*1
(20b)

Theorem 13 Let By, and Bio be defined as the ma-
trix (20a) and (20b), respectively. Then

|Bi1ll2 = Fon, ||Bizll2 = Lon.

Proof. According to Lemma 1 Lemma 2, the g-
circulant matrix B is normal, we claim that the spec-
tral norm of B is equal to its spectral radius. Apply-
ing the irreducible and entrywise nonnegative prop-
erties, we claim that || By1||2 (i.e., its spectral norm),
is equal to its Perron value. We select a (n + 1)-

dimensional column vector v = (1, 1, ---, 1)7, then
n n
BH’U = (ZO (Z)E> V.
1=

n
Obviously, Z; (?) F; is an eigenvalue of Bj; associ-
1=
ated with v, which is necessarily the Perron value of

Bi:1. Employing (1), we obtain
| Biill2 = Fon.

Employing the same techniques, we can obtain
the equality for Bis. This completes the proof. O

Corollary 11 Let A, be as (7) and (n + 1,g) = 1.
Then

(1)1 () Fpe () P
row of Ag, then

s () Frap) is the first

[Aglle = Fan+p,
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where Vp € N.

(2) if ((S)va (?)Llﬂh T
row of Ay, then

, (") Lip) is the first

[Agll2 = Lon+p,

where Vp € N.

5.2 Spectral norms of g-circulant matrices
with modified (7)2°F; and (7)2'L;

We list two (n+ 1) x (n+1) g-circulant matrices
with (’;) 2'F; and (T;) 2'L;. Following the same tech-
niques, we can prove these theorems.

(()2°F ... (3)2"Fy
(2" Fn e ()27 P
Biy= |GI)2 7 Py o ()0)2" P
(1)2'Fy (7)20 R,
(2la)
(2°Lo - (7)2"La
(2" Ln e ()27 L
312 = (nﬁl)QnilLN—l s (ny_l2) 2" 2L, o
()2'L, ()2 L
(21b)

Theorem 14 Let BH and Blg be defined as in (21a)
and (21b), respectively. Then

|Bi1]l2 = F3n, || Bi2ll2 = Lan.

Corollary 12 Let Ay be asin(7)and (n+1,g) = 1.
The we have

(1) ()2F ()2 Fri..
the first row of Ay, then

) (Z) 2nFn+p) Is

[Agll2 = Fantp,

where Vp € N.

) i ()2 Ly ()2 i
the first row of Ay, then

()2 Lstp) is

[ Agll2 = Lan+p,
where p € N.
Here, we give a proposition without proof.

Proposition 1 Ler Ay, (i = 1,2) be a g;-circulant
matrix as in (7), respectively. Then

[Ag, ll2 = | Ag, 12,
where (n+1,g1) =1, (n+1,92) = 1 and g1 # go.
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6 Numerical examples

Example 1. In this example, we give the numerical
results for B and By in Table 1.

Table 1: Spectral norms of circulant matrices B; and
By

n 23456 ] 7] 8
1Bl 21| 55 | 144 [ 377 | 987
Ballz | 7 | 18 | 47 | 123 | 322 | 843 | 2207

W
o]

Example 2. In this example, we list the numeri-
cal results for alternative circulant matrices B; (i =
3,4,5,6) in Table 2.

Table 2: Spectral norms of alternative circulant matri-
ces

m 1135 7] 9
[Bsllz | 1| 8 | 55 | 377 | 2584
[Ball2 | 1| 8 | 55 | 377 | 2584
Bs|lz | 3 | 18 | 123 | 843 | 5778
| Bsll2 | 3| 18 | 123 | 843 | 5778

Example 3. In this example, we reveal the numerical
results for alternative skew-circulant matrices B; (i =
7,---,10) in Table 3.

Table 3: Spectral norms of alternative skew-circulant
matrices

S 21 4 6 8
Bzl | 4 ]21] 144 | 987
|Bslla | 4|21 | 144 | 987
|Bolla | 7 |47 | 3222207
|Buoll2 | 7 | 47 | 322 | 2207

Example 4. In this example, we show the numerical
results for B and Bjs in Table 4.

Table 4: Spectral norms of By and B2

n+1 5 7 8
g 23456 3]5
[Buillz | 21 | 21 | 21 | 144 | 144 | 377 | 377
| Biall2 | 47 | 47 | 47 | 322 | 322 | 843 | 843
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The above results demonstrate that the identities
of spectral norms for the given matrices hold.

7 Conclusion

This paper had discussed the explicit formulations
for identity estimations of spectral norms for circu-
lant, skew-circulant matrices and g-circulant matrices,
whose entries are binomial coefficients combined with
Fibonacci and Lucas numbers, respectively. Further-
more, if a; take other values, we can obtain more
interesting identities. The same approaches can be
used to verify those identities. By setting different
p € N, we can obtain much more results. It is an
open problem to investigate the properties of B;, (i =
1,2,---,12), such as the explicit formulations for de-
terminants and inverses, only using the entries in the
first row. The economists can use them to construct
the optimal filter for some economic model and design
the most modern circulant-type filters, investigate the
rules of some given model in economics.
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