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Abstract: Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main
diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the
second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues
are shown by finding the roots of the characteristic polynomial, which is due to the zeros of Chebyshev polynomial
of the second kind, and the eigenvectors are obtained by solving symmetric tridiagonal linear systems in terms
of Chebyshev polynomial of the third kind or the fourth kind. By constructing the inverse of the transformation
matrices, we give the spectral decomposition of this kind of tridiagonal matrices. Furthermore, the inverse (if the
matrix is invertible), powers and a square root are also determined.
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1 Introduction
Tridiagonal matrices arise frequently in many areas
of mathematics and engineering [1, 2, 3, 4]. In some
problems in numerical analysis one is faced with solv-
ing a linear system of equations in which the matrix
of the linear system is tridiagonal and Toeplitz, except
for elements at the corners. For example, for the ho-
mogeneous difference system

u(l + 1) = Au(l), l ∈ Z,

where A is a nonsingular constant matrix and Z is the
set of all integers including zero, the general solution
can be written as u(l) = Alc, l ∈ Z, where c is an
arbitrary constant vector. Thus, to obtain the general
solution of the above homogeneous difference system,
we need to give the general expression for Al.

It is well known that if a matrix A has spectral de-
composition A = SΛS−1, then the lth (l ∈ N) power
of A can be obtained by Al = SΛlS−1, where Λ is
a diagonal matrix, the diagonal entries of which are
the eigenvalues of A and S is the transforming matrix
formed by eigenvectors of A with them as columns
[5]. Therefore, the spectral decomposition plays an
important role in computing powers of a matrix.

Rimas derived the general expression of the lth
power (l ∈ N) for one type of symmetric tridiagonal
matrices with 0, 1, 0 as lower diagonal entries, main
diagonal entries and upper diagonal entries respec-
tively in [6, 7, 8, 9]. And then he done some work
about arbitrary positive integer powers for tridiagonal

matrix

B =



1 1
1 0 1

1 0 1
. . . . . . . . .

1 0 1
1 1


in [10, 11] and presented that the expression of the lth
power (l ∈ N) of the matrix B is

Bl =
1

n
Q(l) =

1

n
(qij(l));

here

qij(l) =
n∑

k=1

βkλ
l
kT 2i−1

2

(
λk
2

)
T 2j−1

2

(
λk
2

)
,

i, j = 1, 2, . . . , n,

βk =

{
1, if k = n,
2, if k ̸= n,

λk = −2 cos kπ
n , k = 1, 2, . . . , n, are the eigenvalues

of the matrix B, n (n ∈ N) is the order of the matrix
B. In addition, the odd order matrix B is nonsingu-
lar and the expression can be applied for computing
negative integer powers of B. Taking l = −1 he got
the following expression for elements of the inverse
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matrix B−1:

{B−1}ij =
1

n

n∑
k=1

βk
λk
T 2i−1

2

(
λk
2

)
T 2j−1

2

(
λk
2

)
,

i, j = 1, 2, . . . , n.

The even order matrix B is singular and its inverse
and negative powers do not exist.

J. Gutirrez-Gutirrez derived the entries of positive
integer powers of an n× n Hermitian tridiagonal ma-
trix in [12]. And in [13] he studied the entries of pos-
itive integer powers of an n × n complex tridiagonal
Toeplitz (constant diagonals) matrix of the form

An = tridiagn(a1, a0, a−1)

=



a0 a−1

a1 a0 a−1

a1
. . . . . .
. . . . . . a−1

a1 a0 a−1

a1 a0


,

where a1a−1 ̸= 0. He gave the following result:
Consider a1, a0, a−1 ∈ C, a1a−1 ̸= 0 and n ∈

N. Let An = tridiagn(a1, a0, a−1), β =
√

a1
a−1

and

λh = −2 cos hπ
n+1 for every 1 ≤ h ≤ n. Then

[Aq
n]j,k =

βj−k

2n+ 2

[
2(1 + (−1)n+1)aq0Uj−1(0)Uk−1(0)

+

⌊n
2
⌋∑

h=1

(4− λ2n−h+1)Uj−1

(
λn−h+1

2

)
× Uk−1

(
λn−h+1

2

)
[(a0 + a−1βλn−h+1)

q

+ (−1)j+k(a0 − a−1βλn−h+1)
q]

]

for all q ∈ N and 1 ≤ j, k ≤ n, where ⌊x⌋ denotes the
largest integer less than or equal to x.

In this paper, we consider the near-Toeplitz tridi-
agonal matrices of order n (n ∈ N, n ≥ 2) with the
same specific perturbations in the first and last main
diagonal entries as follows:

A =


α+ b c
a b c

. . . . . . . . .
. . . b c

a α+ b

 , (1)

where α, a, b, c ∈ C, and α = ±
√
ac, ac ̸= 0.

If a = c, then A is symmetric. For a general
real symmetric matrix is orthogonally equivalent to a
symmetric tridiagonal matrix, so solving the spectral
decomposition problem of the symmetric tridiagonal
matrices makes a contribution to that of the general
real symmetric matrices.

The outline of the paper is as follows. In next
section, we review some basic definition and facts
about the Chebyshev polynomials and an equality on
the sum of trigonometric function without proof. In
section 3, we first compute trace, determinant, the
characteristic polynomial, the eigenvalues and eigen-
vectors. The eigenvalues and eigenvectors are calcu-
lated by using root-finding scheme and solving sym-
metric tridiagonal linear system of equations respec-
tively, which are different from the techniques used
in [14]. As we all know, the powers are easily deter-
mined if we know the spectral decomposition. There-
fore, we present the spectral decomposition by con-
structing the inverse of the similarity matrix of which
column vectors are eigenvectors of A. On the grounds
of the spectral decomposition, we discuss the condi-
tions under which A can be unitarily diagonalizable.
In addition, we give some conclusions when A is a
symmetric tridiagonal matrix. In section 4, using the
results in section 3, we present the powers, inverse (if
invertible) and a square root of A . In the end, to make
the application of the obtained results clear, we solve a
difference system as example and verify the result ob-
tained by J. Rimas is a special case of our conclusion.
Moreover, the algorithms of Maple 13 are given.

2 Preliminaries
There are several kinds of Chebyshev polynomials. In
particular we shall introduce the first and second kind
polynomials Tn(x) and Un(x), as well as a pair of
related (Jacobi) polynomials Vn(x) andWn(x), which
we call the Chebyshev polynomials of the third and
fourth kinds [15, 16].

Definition 1. The Chebyshev polynomials Tn(x),
Un(x), Vn(x) and Wn(x) of the first, second, third
and fourth kinds are polynomials in x of degree n de-
fined respectively by

Tn(x) = cosnθ,

Un(x) = sin (n+ 1) θ/sin θ,

Vn(x) = cos

(
n+

1

2

)
θ

/
cos

1

2
θ,

Wn(x) = sin

(
n+

1

2

)
θ

/
sin

1

2
θ,

when x = cos θ, − 1 ≤ x ≤ 1.
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Lemma 2. The four kinds of Chebyshev polynomial
satisfy the same recurrence relation:

Xn(x) = 2xXn−1(x)−Xn−2(x),

with X0(x) = 1 in each case and X1(x) = x, 2x,
2x− 1, 2x+1, respectively. Furthermore, three rela-
tionships can be derived from the above relations:

2Tn(x) = Un(x)− Un−2(x),

Vn(x) = Un(x)− Un−1(x),

Wn(x) = Un(x) + Un−1(x).

In the light of the Laplace expansion, expanding
the following determinants along their last rows and
using the three-term recurrence for Un(x) in Lemma
2, we find Un(x) can be expressed by the determinant,
namely,

U0 (x) = 1,

U1 (x) = 2x,

U2 (x) =

∣∣∣∣ 2x z
y 2x

∣∣∣∣ = 2xU1 (x)− U0 (x) ,

...

Un (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x z

y 2x
. . .

. . . . . . . . .
. . . 2x z

y 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2xUn−1 (x)− Un−2 (x) ,

where yz = 1.

Lemma 3. The equality

n−1∑
h=1

cos
khπ

n
=

{
0, if k is odd,
−1, if k is even,

holds for every n ∈ N, k = 1, · · · , 2n− 1.

3 Spectral Decomposition
Employing the Laplace expansion, the expression of
Un(x) in terms of determinant, and the relations be-
tween the Chebyshev polynomials in Lemma 2, we
have the following assertions.

Lemma 4. If A is a tridiagonal matrix of the form
(1), then the trace of A is

trA = nb+ 2α,

the determinant of A is

detA = |α|n−1(2α+ b)Un−1

(
b

2|α|

)
,

and the characteristic polynomial of A is

pA(λ) = |α|n−1(λ− b− 2α)Un−1

(
λ− b
2|α|

)
. (2)

Proof: The trace of A is equal to the sum of all the
diagonal entries, so we have trA = nb+ 2α from the
form of A.

Let Bn (the subscript n denotes the order) be a
tridiagonal matrix with constant entries along the di-
agonal, namely,

Bn =


b c
a b c

. . . . . . . . .
a b c

a b

 .

On the basis of the determinant expression of Un(x),
we deduce an equality concerning the determinant of
Bn and Chebyshev polynomial of the second kind by
extracting

√
ac from each row of Bn:

detBn = (
√
ac)n

∣∣∣∣∣∣∣∣∣∣∣∣

b√
ac

√
c
a√

a
c

b√
ac

√
c
a

. . . . . . . . .√
a
c

b√
ac

√
c
a√

a
c

b√
ac

∣∣∣∣∣∣∣∣∣∣∣∣
= (
√
ac)nUn

(
b

2
√
ac

)
. (3)

By expanding the determinant of A along the first col-
umn and the last column, we have

detA =

∣∣∣∣∣∣∣∣∣∣∣

α+ b c
a b c

. . . . . . . . .
a b c

a α+ b

∣∣∣∣∣∣∣∣∣∣∣
n×n

= (α+ b)2 detBn−2 − 2(α+ b)acdetBn−3

+ a2c2 detBn−4.

According to the equality (3) between detBn and
Un(x) and the relations of Chebyshev polynomials in

WSEAS TRANSACTIONS on MATHEMATICS Zhaolin Jiang, Nuo Shen, Juan Li

E-ISSN: 2224-2880 1137 Issue 12, Volume 12, December 2013



Lemma 2, we have

detA = (α+ b)2(
√
ac)n−2Un−2

(
b

2
√
ac

)
− 2(α+ b)(

√
ac)n−1Un−3

(
b

2
√
ac

)
+ (
√
ac)nUn−4

(
b

2
√
ac

)
= (α+ b)2|α|n−2Un−2

(
b

2|α|

)
− 2(α+ b)

× |α|n−1Un−3

(
b

2|α|

)
+ |α|nUn−4

(
b

2|α|

)
= |α|n

[
(α+ b)2

|α|2
Un−2

(
b

2|α|

)
− 2(α+ b)

|α|

× Un−3

(
b

2|α|

)
+ Un−4

(
b

2|α|

)]
= |α|n−1(2α+ b)Un−1

(
b

2|α|

)
.

Similar to the determinant, the characteristic
polynomial

pA(λ) = |α|n−1(λ− b− 2α)Un−1

(
λ− b
2|α|

)
can be calculated by pA(λ) = det(λI −A), where I
is the identity matrix. ⊓⊔

Consequently, the eigenvalues of A can be ob-
tained through computing the zeros of the characteris-
tic polynomial (2). In view of the roots ofUn−1(x) are
xi = cos iπ

n , i = 1, 2, . . . , n−1, so the eigenvalues of
A are

λi =

{
b+ 2|α| cos iπ

n , i = 1, . . . , n− 1,
b+ 2α, i = n.

From this, we can obtain the following conclusions:

(a) The expression of determinant can be also writ-
ten as detA = (2α+b)

∏n−1
i=1

(
b+ 2|α| cos iπ

n

)
.

Concerning the formula of determinant in
Lemma 4, we obtain

|α|n−1(2α+ b)Un−1

(
b

2|α|

)
= (2α+ b)

n−1∏
i=1

(
b+ 2|α| cos iπ

n

)
,

namely,

|α|n−1Un−1

(
b

2|α|

)
=

n−1∏
i=1

(
b+ 2|α| cos iπ

n

)
.

(b) If n is even, then λn−i = 2b − λi, i =
1, 2, . . . , n2 − 1, λn

2
= b and λn = b + 2α; If

n is odd, then λn−i = 2b− λi, i = 1, 2, . . . , ⌊n2 ⌋
and λn = b+2α. From this, we can again obtain
that trA = nb + 2α. In addition, the spectral
radius of A is b+ 2|α|.

(c) If b ̸= −2|α| cos iπ
n (i = 1, 2, . . . , n − 1) and

b ̸= −2α, then A is invertible.

It is generally known that the corresponding
eigenvectors of A can be attained via solving the
equation

(λI−A)v = 0, v ̸= 0, (4)

in which the coefficient matrix λI−A is nonsymmet-
ric. It is more convenient to solve the equation system
if we change the coefficient matrix into a symmetric
matrix.

Let D = diag(d0, d1, . . . , dn−1) and dk =

(a/c)k/2.
Suppose u solves equation

(λI−A)Du = 0, (5)

which can be deduced to the linear system of equa-
tions with the symmetric tridiagonal matrix, then v =
Du is an eigenvector of A.

Let xi = cos iπ
n , i = 1, 2, . . . , n − 1. When α =

−
√
ac, the equation (5) can be written as(

λ− b
|α|

+ 1

)
u1 − u2 = 0,

−u1 +
λ− b
|α|

u2 − u3 = 0,

−u2 +
λ− b
|α|

u3 − u4 = 0,

...

−un−2 +
λ− b
|α|

un−1 − un = 0,

−un−1 +

(
λ− b
|α|

+ 1

)
un = 0.

Solving the above equations, we have some solutions

u(i) =


[W0(xi),W1(xi), . . . ,Wn−1(xi)]

T,
i = 1, . . . , n− 1,[

1,−1, . . . , (−1)n−1
]T
, i = n.

Hence, solutions of the equation (4), the eigenvectors
of A with α = −

√
ac , are

v(i) =


[d0W0(xi), d1W1(xi), . . . , dn−1Wn−1(xi)]

T,
i = 1, . . . , n− 1,[

d0,−d1, . . . , (−1)n−1dn−1

]T
, i = n.
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When α =
√
ac, the equation (5) can be written

as (
λ− b
|α|

− 1

)
u1 − u2 = 0

−u1 +
λ− b
|α|

u2 − u3 = 0

−u2 +
λ− b
|α|

u3 − u4 = 0

...

−un−2 +
λ− b
|α|

un−1 − un = 0

−un−1 +

(
λ− b
|α|

− 1

)
un = 0.

The system has solutions

u(i) =


[V0(xi), V1(xi), . . . , Vn−1(xi)]

T,
i = 1, . . . , n− 1,

[1, 1, . . . , 1]T , i = n.

Therefore, the solutions of the equation (4) are

v(i) =


[d0V0(xi), d1V1(xi), . . . , dn−1Vn−1(xi)]

T,
i = 1, . . . , n− 1,

[d0, d1, . . . , dn−1]
T , i = n,

which are the eigenvectors of A with α =
√
ac.

Using the above results on the eigenvalues and the
corresponding eigenvectors of A, we give the spec-
tral decomposition of A and demonstrate it. Note that
Λ = diag(λ1, λ2, . . . , λn) and λi (i = 1, . . . , n) are
eigenvalues of A in the remainder of the paper. We
introduce the fact about the spectral decomposition in
[5] as the following lemma.

Lemma 5. If A has n linearly independent eigenvec-
tors v(1),v(2), . . . ,v(n), form a nonsingular matrix S
with them as columns, then A = SΛS−1, where

Λ =

 λ1
. . .

λn


and λ1, . . . , λn are eigenvalues of A.

Theorem 6. If A has the form (1) with α = −
√
ac.

Then A = SΛTST (D−1)2, where

S =


d0W0 (x1) d0W0 (x2)
d1W1 (x1) d1W1 (x2)

...
...

dn−1Wn−1 (x1) dn−1Wn−1 (x2)

· · · d0
· · · −d1

...
· · · dn−1(−1)n−1

 ,
T = diag(t1, . . . , tn) and

th =

{
(1− xh)/n, h = 1, 2, . . . , n− 1,
1/n, h = n.

Proof: Obviously, the only thing we need to do is to
show that STST(D−1)2 = I. If i = j, then

[STST(D−1)2]ii =

n−1∑
h=1

thW
2
i−1 (xh) + tn

=
1

n

(
n−

n−1∑
h=1

cos
(2i− 1)hπ

n

)
.

From Lemma 3, we have [STST(D−1)2]ii = 1.
If i ̸= j and i+ j is even, then

[STST(D−1)2]ij

= di−j

(
n−1∑
h=1

thWi−1 (xh)Wj−1 (xh) + tn

)

=
di−j

n

(
n−1∑
h=1

cos
(i− j)hπ

n

−
n−1∑
h=1

cos
(i+ j − 1)hπ

n
+ 1

)
.

According to Lemma 3, we have

[STST(D−1)2]ij = 0.

If i+ j is odd, then

[STST(D−1)2]ij =
di−j

n

(
n−1∑
h=1

cos
(i− j)hπ

n

−
n−1∑
h=1

cos
(i+ j − 1)hπ

n
− 1

)
.

By Lemma 3, we have [STST(D−1)2]ij = 0. And
STST(D−1)2 = I follows from the above discus-
sion. ⊓⊔
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Corollary 7. Let A be a tridiagonal matrix of the
form (1) with α = −

√
ac. If |a| = |c|, then A can

be unitarily diagonalizable.

Proof: A scalar multiple of an eigenvector
of A is still an eigenvector of A, so v

(i)
1 =√

1−xi
n [d0W0(xi), d1W1(xi), . . . , dn−1Wn−1(xi)]

T,

i = 1, 2, . . . , n − 1, and v
(n)
1 =√

1
n

[
d0,−d1, . . . , (−1)n−1dn−1

]T are still eigen-

vectors of A. Let U be a matrix with v
(1)
1 , . . . ,v

(n)
1

as columns. If we want to prove that A = UΛU∗

(U∗ is the Hermitian adjoint, whose entries are the
conjugate transpose of entries of U ), then what we
need to do is to verify that UU∗ = I . Obviously,

[UU∗]ij = di−1dj−1

(
n−1∑
h=1

1− xh
n

Wi−1(xh)

×Wj−1(xh) +
1

n

)
.

If i = j, then

[UU∗]ii = di−1di−1

(
n−1∑
h=1

1− xh
n

W 2
i−1(xh) +

1

n

)

= |di−1|2
(

n−1∑
h=1

1− xh
n

W 2
i−1(xh) +

1

n

)
.

From the proof of Theorem 6, we have

n−1∑
h=1

1− xh
n

W 2
i−1(xh) +

1

n
= 1.

Since |a| = |c|, |di−1|2 = |ac |
i−1 = 1. Thus,

[UU∗]ii = 1. If i ̸= j, then

n−1∑
h=1

1− xh
n

Wi−1(xh)Wj−1(xh) +
1

n
= 0

by the proof of Theorem 6. From the above discus-
sion, we know that the transformation matrix U is
unitary and A with α = −

√
ac can be unitarily di-

agonalizable when |a| = |c|. ⊓⊔

Theorem 8. A is a tridiagonal matrix of the form (1)
with α =

√
ac. Then A = PΛQP T (D−1)2, where

P consists of the eigenvectors of A, i.e.,

P =


d0V0 (x1) d0V0 (x2) · · · d0
d1V1 (x1) d1V1 (x2) · · · d1

...
...

...
dn−1Vn−1 (x1) dn−1Vn−1 (x2) · · · dn−1

 ,

Q = diag(q1, . . . , qn) and

qh =

{
(1 + xh)/n, h = 1, 2, . . . , n− 1,
1/n, h = n.

Proof: The technique used in the proof is the
same as Theorem 6 and we need to demonstrate that
PQPT(D−1)2 = I. First, we have

[PQPT(D−1)2]ij

= di−1d
−1
j−1

(
n−1∑
h=1

qhVi−1(xh)Vj−1(xh) + qn

)

=
di−j

n

(
n−1∑
h=1

cos
(i− j)hπ

n

+

n−1∑
h=1

cos
(i+ j − 1)hπ

n
+ 1

)
.

According to Lemma 3, we obtain the following con-
clusions: If i = j, then

n−1∑
h=1

cos
(2i− 1)hπ

n
= 0,

and [PQPT(D−1)2]ii =
1
n(n−1+1) = 1. If i ̸= j,

then
n−1∑
h=1

cos
(i− j)hπ

n
+

n−1∑
h=1

cos
(i+ j − 1)hπ

n
= −1,

and [PQPT(D−1)2]ij = 0. Therefore, we have
PQPT(D−1)2 = I. ⊓⊔

Corollary 9. Let A be a tridiagonal matrix of the
form (1) with α =

√
ac. If |a| = |c|, then A can

be unitarily diagonalizable.

Proof: Firstly, we know that the vectors v
(i)
2 =√

1+xi
n [d0V0(xi), d1V1(xi), . . . , dn−1Vn−1(xi)]

T,

i = 1, . . . , n− 1, and v
(n)
2 =

√
1
n [d0, d1, . . . , dn−1]

T

are still eigenvectors of A. Let V be a matrix with
v
(1)
2 , . . . ,v

(n)
2 as columns. If we want to prove that

A = V ΛV ∗ (V ∗ is the Hermitian adjoint, whose
entries are the conjugate transpose of entries of V ),
then what we need to do is to verify that V V ∗ = I .
Obviously,

[V V ∗]ij = di−1dj−1

(
n−1∑
h=1

1 + xh
n

Vi−1(xh)

× Vj−1(xh) +
1

n

)
.
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If i = j, then

[V V ∗]ii = di−1di−1

(
n−1∑
h=1

1 + xh
n

V 2
i−1(xh) +

1

n

)

= |di−1|2
(

n−1∑
h=1

1 + xh
n

V 2
i−1(xh) +

1

n

)
.

From the proof of Theorem 8, we have

n−1∑
h=1

1 + xh
n

V 2
i−1(xh) +

1

n
= 1.

Since |a| = |c|, |di−1|2 = |ac |
i−1 = 1. Thus,

[V V ∗]ii = 1. If i ̸= j, then

n−1∑
h=1

1 + xh
n

Vi−1(xh)Vj−1(xh) +
1

n
= 0

by the proof of Theorem 8. From the above discus-
sion, we know that the transformation matrix V is
unitary and A with α =

√
ac can be unitarily diag-

onalizable when |a| = |c|. ⊓⊔

Corollary 10. Let A be a tridiagonal matrix of the
form (1) with α = −

√
ac or α =

√
ac. If a = c,

then two arbitrary tridiagonal matrices A and B with
this kind of form are simultaneously diagonalizable,
that is, there is a single similarity matrix S such that
S−1AS and S−1BS are both diagonal.

Proof: If a = c, then D is the identity matrix in
Theorem 6 and Theorem 8. The conclusion can be
obtained directly from Theorem 6 and Theorem 8. ⊓⊔

Corollary 11. Let F be a family of the matrices of the
form (1) with a = c, α = −|a| or α = |a|. Then F
is a simultaneously diagonalizable family and a com-
muting family.

Proof: From Corollary 10, we know that F is a si-
multaneously diagonalizable family, that is, for any
A,B ∈ F, there exists a single similarity matrix S
such that S−1AS = Λ1 and S−1BS = Λ2, where
Λ1, Λ2 are diagonal matrices. Then

AB = SΛ1S
−1SΛ2S

−1 = SΛ1Λ2S
−1

= SΛ2Λ1S
−1 = SΛ2S

−1SΛ1S
−1 = BA.

Therefore, F is not only a simultaneously diagonaliz-
able family but also a commuting family. ⊓⊔

4 Powers and Inverse
As we all know, if the matrix A has spectral decom-
position A = SΛS−1, then the lth (l ∈ N) power
of A can be obtained by Al = SΛlS−1, where Λ is
a diagonal matrix, the diagonal entries of which are
the eigenvalues of A and S is the transforming matrix
formed by eigenvectors of A with them as columns
[5]. In the previous section, we have stated the spec-
tral decomposition of A. In this section, we calculate
the powers, inverse and a square root of A.

Theorem 12. If A has the form (1) with α = −
√
ac

and xh = cos hπ
n , h = 1, 2, . . . , n − 1. Then the i, j

entry of Al is

[Al]ij =
di−j

n

{
n−1∑
h=1

[
(b+ 2|α|xh)l(1− xh)

×Wi−1(xh)Wj−1(xh)

]
+ (−1)i+j(b+ 2α)l

}
.

Proof: According to Theorem 6, we have the follow-
ing results: If i+ j is even, then

[Al]ij =

n−1∑
h=1

di−jWi−1 (xh)λ
l
hthWj−1 (xh) + di−jtnλ

l
n

=
di−j

n

{
n−1∑
h=1

[
(b+ 2|α|xh)l(1− xh)Wi−1(xh)

×Wj−1(xh)

]
+ (b+ 2α)l

}
.

If i+ j is odd, then

[Al]ij =

n−1∑
h=1

di−jWi−1 (xh)λ
l
hthWj−1 (xh)− di−jtnλ

l
n

=
di−j

n

{
n−1∑
h=1

[
(b+ 2|α|xh)l(1− xh)Wi−1(xh)

×Wj−1(xh)

]
− (b+ 2α)l

}
.

The conclusion follows from the above discussion. ⊓⊔

Corollary 13. Let A be a tridiagonal matrix of the
form (1) with α = −

√
ac and xh = cos hπ

n , h =
1, 2, . . . , n−1. If b ̸= 2αxh, h = 1, 2, . . . , n−1, and
b ̸= −2α, that is, A is invertible, then l can be taken
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negative integer in Theorem 12. In particular,

[A−1]ij =
di−j

n

{
n−1∑
h=1

[
1− xh

b+ 2|α|xh
Wi−1(xh)

×Wj−1(xh)

]
+

(−1)i+j

b+ 2α

}
,

and the matrix C, whose i, j entry is

[C]ij =
di−j

n

{
n−1∑
h=1

[
(1−xh)

√
b+ 2|α|xhWi−1(xh)

×Wj−1(xh)

]
+ (−1)i+j

√
b+ 2α

}
,

is a square root of A with α = −
√
ac.

Theorem 14. If A has the form (1) with α =
√
ac

and xh = cos hπ
n , h = 1, 2, . . . , n − 1. Then the i, j

entry of Al is

[Al]ij =
di−j

n

{
n−1∑
h=1

[
(b+2αxh)

l(1+xh)Vi−1(xh)

× Vj−1(xh)

]
+ (b+ 2α)l

}
.

Proof: By reference to the proof of Theorem 12 and
employing Theorem 8, the theorem can be proved. ⊓⊔

Corollary 15. Let A be a tridiagonal matrix of the
form (1) with α =

√
ac and xh = cos hπ

n , h =
1, 2, . . . , n − 1. If b ̸= −2αxh, h = 1, 2, . . . , n − 1,
and b ̸= −2α, then l can be taken negative integer in
Theorem 14. Furthermore,

[A−1]ij =
di−j

n

{
n−1∑
h=1

[
1 + xh
b+ 2αxh

Vi−1(xh)

× Vj−1(xh)

]
+

1

b+ 2α

}
,

and the matrix D, whose i, j entry is

[D]ij =
di−j

n

{
n−1∑
h=1

[
(1+xh)

√
b+ 2αxhVi−1(xh)

× Vj−1(xh)

]
+
√
b+ 2α

}
,

is a square root of A with α =
√
ac.

5 Numerical examples
In this section, Example 16 indicates that the conclu-
sion presented in [10, 11] is a special case of Theorem
14. Example 18 explains the application of our work
by solving a simple homogeneous difference system.

Example 16. Consider the matrix

B =



1 1
1 0 1

1 0 1
. . . . . . . . .

1 0 1
1 1


.

On the basis of the conclusions in preceding part, we
derive the following assertions:

(a) The eigenvalues of B are λi = 2 cos iπ
n , i =

1, 2, . . . , n − 1 and λn = 2. The corresponding
eigenvectors are

v(i) =


[V0(xi), V1(xi), . . . , Vn−1(xi)]

T,
i = 1, . . . , n− 1,

[1, 1, . . . , 1]T , i = n,

where xi = cos iπ
n . Moreover, if n is even, then

λn−i = −λi, i = 1, 2, . . . , n2 − 1, λn
2
= 0 and

λn = 2; If n is odd, then λn−i = −λi, i =
1, 2, . . . , ⌊n2 ⌋ and λn = 2. From this, we deduce
that if n is odd, then B is invertible and if n is
even, then B is singular.

(b) The trace of B is trB = 2. The determinant
of B is detB = 2Un−1(0) = 2

∏n−1
i=1 2 cos iπ

n .
And if n is even, then detB = 0; If n ≡ 1
(mod 4), then detB = 2; If n ≡ 3 (mod 4),
then detB = −2.

(c) Let xh = cos hπ
n , h = 1, 2, . . . , n − 1. Then the

i, j entry of Bl is

[Bl]ij =
1

n

n−1∑
h=1

(2xh)
l(1+xh)Vi−1(xh)Vj−1(xh)+

2l

n
.

If n is odd, then the i, j entry of the inverse of B
is

[B−1]ij =
1

n

n−1∑
h=1

1 + xh
2xh

Vi−1(xh)Vj−1(xh)+
1

2n
.

The matrix B1, whose i, j entry is

[B1]ij =
1

n

n−1∑
h=1

[
√
2xh(1 + xh)Vi−1(xh)

× Vj−1(xh)

]
+

√
2

n
,
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is a square root of B.

Proof: We demonstrate that the result (c) is equiva-
lent to the expression given in [10, 11]. Let θh = hπ

n ,
λh = −2 cos hπ

n and xh = cos hπ
n , h = 1, 2, . . . , n −

1, then λh = −2xh, xh = cos θh. Since λn−i = −λi,
i = 1, 2, . . . , ⌊n2 ⌋, we have

[Bl]ij =
1

n

n−1∑
h=1

2λlhT 2i−1
2

(
λh
2

)
T 2j−1

2

(
λh
2

)
+

1

n
λlnT 2i−1

2

(
λn
2

)
T 2j−1

2

(
λn
2

)
=

1

n

n−1∑
h=1

2(2xh)
lT 2i−1

2
(xh)T 2j−1

2
(xh) +

2l

n

=
1

n

n−1∑
h=1

2(2xh)
l cos

2i− 1

2
θh cos

2j − 1

2
θh +

2l

n

=
1

n

n−1∑
h=1

[
(2xh)

l (1 + cos θh)
cos
(
i− 1

2

)
θh

cos θh
2

×
cos
(
j − 1

2

)
θh

cos θh
2

]
+

2l

n

=
1

n

n−1∑
h=1

(2xh)
l(1 + xh)Vi−1(xh)Vj−1(xh) +

2l

n
.

The proof is completed. ⊓⊔
In view of the matrix B in [10, 11], we consider

the matrix C of the similar form with B and give the
related facts.

Example 17. Consider the matrix

C =



−1 1
1 0 1

1 0 1
. . . . . . . . .

1 0 1
1 −1


.

We derive the following results:

(a) The eigenvalues of C are λi = 2 cos iπ
n , i =

1, 2, . . . , n−1 and λn = −2. The corresponding
eigenvectors are

v(i) =


[W0(xi),W1(xi), . . . ,Wn−1(xi)]

T,
i = 1, . . . , n− 1,[

1,−1, . . . , (−1)n−1
]T
, i = n,

where xi = cos iπ
n . Moreover, if n is even, then

λn−i = −λi, i = 1, 2, . . . , n2 − 1, λn
2

= 0

and λn = −2; If n is odd, then λn−i = −λi,
i = 1, 2, . . . , ⌊n2 ⌋ and λn = −2. From this, we
deduce that if n is odd, then C is invertible and
if n is even, then C is singular.

(b) The trace of C is trC = −2. The determinant of
C is detC = −2Un−1(0) = −2

∏n−1
i=1 2 cos iπ

n .
And if n is even, then detC = 0; If n ≡ 1
(mod 4), then detC = −2; If n ≡ 3 (mod 4),
then detC = 2.

(c) Let xh = cos hπ
n , h = 1, 2, . . . , n − 1. Then the

i, j entry of C l is

[Cl]ij =
1

n

n−1∑
h=1

[
(2xh)

l(1− xh)Wi−1(xh)

×Wj−1(xh)

]
+

(−1)i+j

n
(−2)l.

If n is odd, then the i, j entry of the inverse of C
is

[C−1]ij =
1

n

n−1∑
h=1

[
1− xh
2xh

Wi−1(xh)

×Wj−1(xh)

]
+

(−1)i+j

−2n
.

The matrix C1, whose i, j entry is

[C1]ij =
1

n

n−1∑
h=1

[
√
2xh(1− xh)Wi−1(xh)

×Wj−1(xh)

]
+

(−1)i+j

n

√
−2,

is a square root of C.

Example 18. Consider the homogeneous difference
system u(l + 1) = Au(l), l ∈ Z, where the matrix A
is given by 

5 8 0 0 0
2 1 8 0 0
0 2 1 8 0
0 0 2 1 8
0 0 0 2 5

 .
Solving the homogeneous difference system, we know
that the general solution can be written as u(l) =
Alc, l ∈ Z, where c is an arbitrary constant vector.
By using Theorem 14 and Maple 13 programme, we
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can calculate Al, so the general solution u(l) = Alc
is also computed. For example, we get

u(5) =


20181.00 34920.00 44160.00
8730.00 13761.00 26920.00
2760.00 6730.00 10049.00
880.00 1832.00 6730.00
208.00 880.00 2760.00

56320.00 53248.00
29312.00 56320.00
26920.00 44160.00
13761.00 34920.00
8730.00 20181.00

 c

by Maple 13 programme.

Note that Theorem 12 and Theorem 14 can be ex-
ecuted by Maple 13 programme. The algorithm of
Theorem 12 is as follows:

> restart:
> with(linalg):
> n:=n: l:=l: a:=a; b:=b: c:=c:
Al:=array(1..n,1..n):
x:=cos(h*pi/n):

> for i from 1 by 1 to n do
for j from 1 by 1 to n do
Al[i,j]:=evalf((sum((b+2

*sqrt(a*c)*x)ˆl*(1-x)

*(ChebyshevU(i-1,x)
+ChebyshevU(i-2,x))

*(ChebyshevU(j-1,x)
+ChebyshevU(j-2,x)),
h=1..n-1)+(-1)ˆ(i+j)

*(b-2*sqrt(a*c))ˆl)

*sqrt(a/c)ˆ(i-j)/n)
end do

end do;
> print(Al);

The algorithm of Theorem 14 is as follows:

> restart:
> with(linalg):
> n:=n: l:=l: a:=a; b:=b: c:=c:
Al:=array(1..n,1..n):
x:=cos(h*pi/n):

> for i from 1 by 1 to n do
for j from 1 by 1 to n do
Al[i,j]:=evalf((sum((b+2

*sqrt(a*c)*x)ˆl*(1+x)

*(ChebyshevU(i-1,x)
-ChebyshevU(i-2,x))

*(ChebyshevU(j-1,x)
-ChebyshevU(j-2,x)),

h=1..n-1)+(b+2*sqrt(a*c))
ˆl)*sqrt(a/c)ˆ(i-j)/n)

end do
end do;

> print(Al);

where a, b, c are the entries of A, n is the order of
A, l is the power index. The lth power of A can be
obtained if we input a, b, c, n and l.

6 Conclusion
Being inspired by the research done by J. Rimas and
J. Gutirrez-Gutirrez, we not only generalize their work
concerning the positive integer powers of tridiagonal
matrices, but also explore other basic properties in-
cluding trace, determinant, eigenvalues, eigenvectors
and so on. Unfortunately, In this paper, we consider
only two kinds of tridiagonal matrices. If possible, we
can discuss more general tridiagonal matrices.

Acknowledgements: The project is supported by
the Development Project of Science & Technology
of Shandong Province (Grant Nos. 2012GGX10115)
and the AMEP of Linyi University, China. The second
author is the corresponding author.

References:

[1] S. Martı́nez, F. Bullo, J. Cortés and E. Frazzoli,
On synchronous robotic networks-part I, IEEE
Trans. Automat. Control 52, 2007, pp. 2199–
2213.

[2] S. Martı́nez, F. Bullo, J. Cortés and E. Frazzoli,
On synchronous robotic networks-part II, IEEE
Trans. Automat. Control 52, 2007, pp. 2214–
2226.

[3] R.-P. Agarwal, Difference Equations and In-
equalities, Marcel Dekker, New York, 2nd ed.,
2000.

[4] G. James, Advanced Modern Engineering Math-
ematics, Pearson, England, 4th ed., 2011.

[5] R.-A. Horn, C.-R. Johnson, Matrix Analysis,
Cambridge University Press, New York, 1990.

[6] J. Rimas, On computing of arbitrary positive in-
teger powers for one type of symmetric tridiag-
onal matrices of even order-I, Appl. Math. Com-
put. 168, 2005, pp. 783–787.

[7] J. Rimas, On computing of arbitrary positive in-
teger powers for one type of symmetric tridiag-
onal matrices of odd order-I, Appl. Math. Com-
put. 171, 2005, pp. 1214–1217.

WSEAS TRANSACTIONS on MATHEMATICS Zhaolin Jiang, Nuo Shen, Juan Li

E-ISSN: 2224-2880 1144 Issue 12, Volume 12, December 2013



[8] J. Rimas, On computing of arbitrary positive in-
teger powers for one type of symmetric tridiago-
nal matrices of even order-II, Appl. Math. Com-
put. 172, 2006, pp. 245–251.

[9] J. Rimas, On computing of arbitrary positive in-
teger powers for one type of symmetric tridiag-
onal matrices of odd order-II, Appl. Math. Com-
put. 174, 2006, pp. 676–683.

[10] J. Rimas, On computing of arbitrary posi-
tive integer powers for tridiagonal matrices
with elements 1, 0, 0, . . . , 0, 1 in principal and
1, 1, 1, . . . , 1 in neighbouring diagonals-I, Appl.
Math. Comput. 186, 2007, pp. 1254–1257.

[11] J. Rimas, On computing of arbitrary posi-
tive integer powers for tridiagonal matrices
with elements 1, 0, 0, . . . , 0, 1 in principal and
1, 1, 1, . . . , 1 in neighbouring diagonals-II, Appl.
Math. Comput. 187, 2007, pp. 1472–1475.

[12] J. Gutirrez-Gutirrez, Positive integer powers of
certain tridiagonal matrices, Appl. Math. Com-
put. 202, 2008, pp. 133–140.

[13] J. Gutirrez-Gutirrez, Powers of tridiagonal ma-
trices with constant diagonals, Appl. Math. Com-
put. 206, 2008, pp. 885–891.

[14] W.-C. Yueh, Eigenvalues of several tridiagonal
matrices, Appl. Math. E-Notes. 5, 2005, pp. 66–
74.

[15] J.-C. Mason and D.-C. Handscomb, Chebyshev
Polynomials, CRC Press, Bocas Raton, 2003.

[16] L. Fox and I.-B. Parker, Chebyshev Polynomials
in Numerical Analysis, Oxford University Press,
New York, 1968.

WSEAS TRANSACTIONS on MATHEMATICS Zhaolin Jiang, Nuo Shen, Juan Li

E-ISSN: 2224-2880 1145 Issue 12, Volume 12, December 2013




