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Abstract: The level-k FLS (r1,...,r)-circulant matrix over any field is introduced. The diagonalization and
spectral decomposition of level-k FLS (ry, ..., rg)-circulant matrices over any field are discussed. Algorithms

for computing the minimal polynomial of this kind of matrices over any field are presented by means of the
algorithm for the Grobner basis of the ideal in the polynomial ring, and two algorithms for finding the inverses
of such matrices are also presented. Finally, an algorithm for the inverse of partitioned matrix with level-k£ FLS
(r1,...,rg)-circulant blocks over any field is given by using the Schur complement, which can be realized by
CoCoA 4.0, an algebraic system, over the field of rational numbers or the field of residue classes of modulo prime
number.
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1 Introduction This paper is devoted to study the level-k FLS
(r1,...,rg)-circulant matrix over any field, and it is
With the development of the mathematics research, organized as follows.
multilevel circulant matrix had been defined. And In Section 1, a level-k FLS (71, ..., ry)-circulant
it has been used on network engineering, approx- matrix over any field is introduced, and its alge-
imate calculation and Image processing [1-4]. W. braic properties are given. In addition, the diago-
F. Trench [5, 6] considered properties of unilevel nalization and spectral decomposition of level-£ FLS
block circulates and multilevel block a-circulates. S. (r1,...,m)-circulant matrices over [ are discussed.
Zhang, Z. Jiang and S. Liu [7] gave Algorithms for In Section 2, we show that the ring of all level-
the minimal polynomial and the inverse of a level- k FLS (rq,...,7)-circulant matrices over a field is
n(ry, 72, - -, Ty )-block circulant matrix over any field isomorphic to a factor ring of a polynomial ring in
are presented by means of the algorithm for the k variables over the same field, and then present an
Grobner basis for the ideal of the polynomial ring algorithm for the minimal polynomial of a level-k
over the field. M. Morhac, V. Matousek [8] presents FLS (71, ..., 7x)-circulant matrix by mean of the al-
an efficient algorithm to solve a one-dimensional as gorithm for the Grobner basis for a kernel of a ring
well as n-dimensional circulant convolution system. homomorphism.
M. Rezghi, L. Elden [9] defined tensors with diago- In Section 3, we give a sufficient and neces-
nal and circulant structure, and developed framework sary condition to determine whether a level-k FLS
for the analysis of such tensors. S. Georgiou and C. (r1,...,rg)-circulant matrix over a field is singular
Koukouvinos [10] presented a new method for con- or not and then present an algorithm for finding the
structing multilevel supersaturated designs. Z. Jiang inverse of a level-k FLS (r1, ..., ry)-circulant matrix
and S. Liu [11] introduced the level-m scaled circulant over a field.
factor matrix over the complex number field, and dis- In Section 4, an algorithm for finding the inverse
cussed its diagonalization and spectral decomposition of partitioned matrix with level-k FLS (r1,...,7%)-
and representation. A. J. H. Block [12] considered the circulant blocks over a field is presented by using the
property of circulates of level-k. J. Baker discussed Schur complement and the Buchberger’s algorithm.
the structure of multi-block circulates in [13]. More We first introduce some terminologies and no-
details on multilevel circulant matrix see [14, 15]. tation used in the sequel. Let F be a field and
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Flx1,...,zk] the polynomial ring in k variables over
afield F. By Hilbert Basis Theorem, we know that ev-
ery ideal I in F[x1, ..., x| is finitely generated. Fix-
ing a term order in F[zq,..., x|, a set of non-zero
polynomials G = {gi,...,¢:} in an ideal I is called
a Grobner basis for I if and only if for all non-zero
f € 1, there exists i € {1,...,t} such that Ip(g;)
divides Ip(f), where Ip(g;) and Ip(f) are the leading
power products of g; and f, respectively. A Grobner
basis G = {g1,...,¢:} is called a reduced Grobner
basis if and only if, for all 7, lc(g;) = 1 and g; is re-
duced with respect to G — {g;}, that is, for all 4, no
non-zero term in g; is divisible by any Ip(g;) for any
J # i, where lc(g;) is the leading coefficient of g;.

In this paper, we set A = T for any square
matrix A, and < f1,..., fin > denotes an ideal of
Flx1, ...,k generated by polynomials fi,. .., fm.

2 Diagonalization and spectral de-
composition of level-t FLS
(r1,...,7))-circulant matrices

We define N, as the basic FLS r-circulant matrix over
IF, that is,

0 1 0 0 0
0 0 1 0 O
N, = (1)
0 0 0 1
r 1 0 0 O

nxn

It is easily verified that the polynomial g(x) =
™ — x — r is both the minimal polynomial and the
characteristic polynomial of the matrix X, if r # 0

n—1
and 7"~ #£ % In addition, X, is nonsingular
nonderogatory and

N = I, + N,

Let R, be basic FLS r;-circulant matrix over F
and let I,; be the n; xn; unit matrix fort = 1,2,...,k
and N = niny...ng. Set

=1, ®..0L @8, @I, ®...Q I,

ri # 0 and 77! #£ A= for i = 1,2,...,k,

nmn

where ® is a Kronecker product of matrices.

Definition 1 An N x N matrix A over F is called a
level-k FLS (ry,...,r,)—circulant matriz if there
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exists a polynomial
f(xl, ey :ck)
ni—1lng—1 ni—1 ; i
=2 2 o 2 Gy apf €Flm, L @y

i]_=0 i2=0 ZkZO

such that
A= f(ILy,..., 1)

ni—1no—1 ng—1

=> > Y a I @

i1=0 i9=0  ix=0

where the polynomial f(x1,...,x1) will be called
the representor of a level-k FLS (rq,...,7%)-
circulant matrix A and the coefficients a;, ;, ,1; =
1,2,...,n4,7 = 1,2,..., k are just the entries of the
first row of A.

Obviously, if £k = 1, then we obtain the FLS r-
circulant matrix [25].

By the property of the Kronecker product of ma-
trices, the level-k FLS (ry,...,r)- circulant matrix
A can be also expressed as

ni—1ng—1 ne—1

A=Y 000 a4 y N ORZ @ @ Nk,

11=0 i2=0 i =0

For matrix A over F, if Hi-“:l r; # 0, then A is alevel-
k FLS (ri,...,7x)-circulant matrix if and only if A
commutes with the 8, ® R,, ® ... ® N, , that is,

AR, @R, ®...08, ) =R, @R, ®...0N,, )A.

In addition to the algebraic properties that can be
easily derived from the representation (2), we mention
that level-k FLS (rq,. .., r)-circulant matrices have
very nice structure. The product of two level-k FLS
(r1,...,m)-circulant matrices is also a level-k FLS
(ri,...,mx)-circulant matrix. Furthermore, level-k
FLS (r1,...,r)-circulant matrices commute under
multiplication and A~! is a level-k FLS (71, ..., 7%)-
circulant matrix, too.

The following we consider diagonalization and

spectral decomposition of level-k FLS (r1,...,7%)-
circulant matrices over IF.
In this section, let €;0,€;.1, ..., €in;—1 be n; dis-

tinct roots of g;(x;) = x;" — x; — r; in its splitting
field over F, and V,, = V(ei0,€i1,-..,in;—1) de-
notes the Vandermonde matrix of the ¢; ;’s. Then
Vrian‘V;"i = Dy,

7

= diag(z’fi,o, 82',1, e ;Ei,ni—l)yi = 1, 2, ey k (3)
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Theorem2 Let A = f(IIy,...,1Ix) be a level-k

FLS (11, ..., 1))-circulant matrix over F, where
[z, m)
ni—1lna—1 ng—1 i
= > Y ay Tt sy € Floy,. .. x).
120 is=0  ir=0
Then
Ve @V @...0 V) 1AV @V, ©... 0 Vi)
f( gi» 927"'ang)
= diag(f(€1,07 €205 - - 7616,0)’ R
. 7f(€17n1—17 E2,”2_17 LI 7€k,nk71))‘

Proof: By equations (2), (3) and the property of Kro-
necker product of matrices, we have

—1
1
(Vo @V ®... 0 Vi)
:(Vﬁ ®V;”2®"'®V;”k-)_1
ni—1 ne—1 i
(> 0 2 ai. %H“ Hkk)
i1=0 i=0
'(‘/;"1®‘/7’2®"'®‘/7’k)
ni—1 ng—1
= E Z Qg .. Zk[(Vh@ ®V1"k)_1
i‘l =0 1,=0
(N @ ONE) (Ve ... ® Va,)]
ni— 1 ne— 1 .
= C 2 i (VTR @ VIIREY,
1= 0 1= O
®..-®W;1Ni’;%k)
ni—1 ng—1 . X .
= -2 i (Dt @ D2 @ ... @ D)
1= O i=0
:f(D917D927""D9k)
:diag(f(El,(),EQ’o,...,Ek70),...,
fE1m-1,62n0-1, -+ s Ekynp—1))-
O
Corollary 3 Let A = f(IIy,...,II;) be a level-k

FLS (r1,...,r)-circulant matrix over F. Then
(a) Ais a level-k FLS (ry, ..., rg)-circulant ma-
trix over I if and only if

(Vi ®V}2®...®V}k)_1A(V;1 QV,®...0V,)
is a diagonal matrix.
(b) The eigenvalues of A are given by
ni—lna—1  np—1
1132 Je T Z Z Z @iy .. ’kgllmsl;dé e '5%;]'19’

i1=0 72=0 i =0

where 5; =0,1,2,... ny—1,1=1,2,... k.
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By equation (3), the basic FLS r;-circulant matrix
N, over [F is written as

N, =V, DQZVH i=1,2,...,k.
‘We now let
Q;, = diag[0,...,0,1,0,...,0],

Gi=0,1,...,mi—1,i=12,...
pies the (j; + 1)th entry. Then

, k, where 1 occu-

ni—l
ri -
er = Z 5i7jz’BjZ7Z =1,2,. .,k‘,
Ji=0
where
i -1 . .
sz‘ _‘/7“1931‘/7“2 s Ji —0,1,...,77,2'—1,2— 1,2,...,]{,

and then { B, BY", ...
that is,

,B:jﬁl} is the spectral basis,

n;—1

> B =1I,,B}'B]’ = 6;,,B},

ji,l; = 0,1,...,n;, — 1,5 = 1,2,..., k. Moreover,
one can easily express the basis {I,,,X,,,..., X1}
in terms of the basis { B}, BY", ..., B:fiq} by

n;—1

Zga.h Ji

Ji=0

Furthermore, {B;lljgzjk 7 =0,1,...,
1,2,. ..

, k} is the spectral basis, that is,

n; — 1,1 =

ni—1no—1 ng—1

2.2 2B

Jj1=0 j2=0 Jk=0

7'1 T2yny Tk

J1j2.--Jk :I”m?'“”k’

STk PT1,725--5Tk
Bl1l2 lk

B7”1 3725

12 =0j

ni—1,i=1,2,...k

71,72
B T2y 7

1J2--Jrlile Ak Pjjo.. ]k

]iali:O717"'7

where

T‘l,T’Q, T

s T T
J1j2---Jk Bl®B2® ®Bj:

= ‘/7‘]_7’2...7"k (le ® QJQ ® . Q )V_

rir2...TK

and

= (Vo @V ®...0 Vi),

‘/;"17"2...rk

We summarize our discussion in the following.
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Theorem 4 A level-k FLS (71, ...
trix over I can be represented as

, T )-circulant ma-

ni—1lno—1 ng—1
_ R (3! (N
A = g g E ay . 15 IT
11=0 12=0 1,=0
n1—1 T’Lz—l nk,l
11=0 12=0 1, =0
= vt f(Dgy, Dy, . ...

rir2...Tk

’ ng)‘/;ﬁmm?“k

ni—1lng—1 nE—1

B o T1,72,-.-,T
— E E E )‘]1J2---Jklej2 Jk ’

J1=0 j2=0 Jk=0

where
V?"1T2---Tk = (Vm ® v7"2 ®...8 V?"k)?
ni—1ng—1 ngp—1
ik
]1]2 Jk @iy .. ’ksl WJ1 2]2 o Chge
”Ll 0 12 0 lk =0
and
T1,725005T r1 T2 Tk
BJ1J2 Jk le ® Bj2 ®...® Bjk
_ . . 1
- ‘/;"17'2---7"16 (QJI ® Q]Q ®. Q )‘/7‘17‘2 Tt

3 Efficient algorithms for finding
the minimal polynomials of level-%

FLS (rq,...,r)-circulant matrices
Let
F[ILy, ..., 1) = {A|A = f(IL4,..., 1),

flx1, ... xk) € Flzq, ..., x5}

It is a routine to prove that F[IIy, . .., II] is a commu-
tative ring with the matrix addition and multiplication.

Theorem 5 Flzy, ..., zx] /(2]
xp — 1) 2 F[IL, .0 ).

Nk
—T1—=T1,-- -, T —

Proof: Consider the following F'-algebra homomor-
phism

p:Flzy,...,z] — FI,..., 1]
f(.%'l,...,$k) — A:f(Hl,...,Hk)

for
[y, ) € Fla, .. @],
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It is clear that ¢ is an F'-algebra epimorphism. So we
have

Flay, ..., 2]/ {ker ) = F[IL, ..., IL;].
We can prove that

n n
ker o = (2" —xy — 711, xF —ap — ).

In fact, fori =1,2,..., k,

"
x;' —x; —1r; € kerp,

because
Mg
Iliz IIZ r’i — 0

Hence
ker p D (@] — @1 — 71, ..., 2 — T — 7).

Conversely, for any f(z1,...,zr) € ker ¢, we

have
A= f(Ily,...,II;) = 0.

Fix the lexicographical order on F[z1,...,zx] with
x> 9 > ... > xp. xy' — xp — rp dividing
f(x1,...,xL), there exist

ur (1, .., xk), (T, ..., k) € Flzg, ..o, 2]
such that

f(:L‘l, ey xk) = ul(xl, . ,.I‘k)(l‘rfl — 1 — 7“1)

+oi(x1, ..., 28),

where vy (21, ...,x) = 0 or the largest degree of =1
invy(xy,...,zx) is less than ny. If vy (21, ..., 28) =
0, then
[z, .. xp) € (@ —z1—ry, . 2t —xp — ).
Otherwise, z45% — x9 — r dividing vy (zy1,...,xg),

there exist

u2(x17 e ,xk),U2<$1, s '7xk)) S F[xl, s 7xk]
such that

V(71 Tg) = u2(T, ., o) (TR — T2 —T2)

+'U2(f1:1,...,$k),

where va(z1,...,x;) = 0 or the largest degree of x5
invy(z1,...,xk) is less than ng. If vo(xy,...,zx) =
0, then
f(l’l,...,l’k) € <£L'Tlll—$1—T1,...,1}Zk—l’k—rk>.

Otherwise, if the largest degree of =z in
va(z1,...,xE) is less than n; because x; does
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not appear in xy? — 9 — To.
procedure, there exist

Continuing this

ul(l’l,...,l‘k),UQ(l'l,...,J}k),...,uk(l'l,...,:l,‘k),
U]C(SCl,...,fL’k)GF[fﬂl,...,Jik]
such that
flxe, ..o z) = w(xy, ... zp) (2 — 21 — 1)
+ . Fug(z, . o) (2 —xp—rg) Fop(@, .. ag)
where vg(z1,...,2;) = 0 or the degrees of
x1,T2,..., Tk in vg(x1,...,xE) are less than
ni,na, ..., Ny, respectively. Since
f(Iy,...,IIx) =0
and

H;nz — Hz —Tr; = 0
foralli = 1,2,...,k,ug(Ily,...,IIx) = 0. The co-
efficients of all terms in vg(x1,...,xx) are the en-

tries of the matrix vy (Ily,...,IIx) because the de-
grees of x1,x9,...,xp in vg(zy,...,xE) are less

than n1,ne,...,nyg, respectively. Therefore, the co-
efficient of each term in wvi(xy,...,2x) is 0, i.e.,
vg(x1,...,2) = 0. Thus

floe, . ap) € (@ —zr—ry, . 2t —xp — ).

Definition 6 Let I be a non-zero ideal of the poly-
nomial ring Fly1,...,y:]. Then 1 is called an an-
nihilation ideal of square matrices A1, ..., As, de-
noted by I(Ay, ..., Ay), if f(A1,...,Ay) = 0 forall
f(y17"‘7yt) €L

Definition 7 Suppose  that  Ai,..., A, €
F[ILy,..., ] are not all zero matrices. — The
unique monic polynomial g(x) of minimum degree
that simultaneously annihilates A1, ..., A¢ is called
the common minimal polynomial of A1, ..., A;.

We give the special case of [16, Theorem 2.4.10]
here for the convenience of applications.

Lemma 8 Let I be an ideal of Fxy,...,xzx]). Given

fis-ooy fm € Flxq,...,xk], consider the following
F'- algebra homomorphism
o:Flyr,....ym] — Flxy,...,zx)/1
o= [+l

Ym = fm+1
Let K = (Iy1 — f1,-.+,Ym — fm) be an ideal

of Flx1,...,xk,y1,...,Ym] generated by I y; —
flv"'aym_fm- Then

ker o = KNF[y1,...,Yym]

E-ISSN: 2224-2880
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Lemma 9 ') Let A be a non-zero matrix over F, if
the minimal polynomial of A is:

p(z) = apx™ + a1zt + a4 ... +a,
and a,, # 0, then
1
Al = a—(—agAnil — alA"72 — .. = an_ll).
n

The following Lemma is the Exercise 2.38 of
[16].

Lemma 10 Let Ly,Lo,...,L,, be ideals of
Flx1,z2,...,xx] and let
m
J = <1 — Zwi, wlLl,UJQLQ, ceey mem>
i=1
be an ideal of Flx1,x9,..., Tk, w1,. .., Wy,]| gener-
atedby 1 — > w;, wiLy, woLo, ..., wyLy,. Then

ﬂLi = JﬂF[wl,azg,...,:zk].
=1

By the Theorem 5 and the Lemma 8, we can prove
the following theorem.

Theorem 11 The minimal polynomial of a level-k
FLS (71, ..., rg)-circulant matrix A € F[I1y, ... 1]
is the monic polynomial that generates the ideal

ny _

(] B

y Ly,

, Tk))

., T)) is the rep-

T1—T1,... rp—1k,y— f(z1,. ..

NF[y], where the polynomial f(x1, ..
resenter of A.

Proof: Consider the following F'- algebra homomor-
phism

¢ Fly] = Flay, ..., o] /(2] — 21 — 71,
..,J)Zk —.Z'k—T’k> —)F[Hl,,ﬂk]
y—= flxy,...,zk)

(@t — =1, —wp — ) —
A= f(II,..., ).

It is clear that ¢(y) € ker ¢ if and only if g(A) = 0.
By Lemma 8, we have

_ (D ng
ker ¢ = (a7 — a1 — 711, 2F — 1) — 7,

y— f(x1,...,2)) NFy].

By Theorem 11 and Lemma 9, we know that
the minimal polynomial and the inverse of a level-k
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FLS (r1,...,r)-circulant matrix A € F[IIy, ..., II]
is calculated by a Grobner basis for a kernel of
an F'-algebra homomorphism. Therefore, we have
the following algorithm to calculate the mini-
mal polynomial and the inverse of a level-k FLS
(r1,...,rg)-circulant matrix A = f(IIy, ..., IIg):

Step 1 Calculate the reduced Grobner basis G for the
ideal

(x]? —xl—rl,...,xzk — X — T, Y

by CoCoA 4.0, using an elimination order with
1 >T2>...>Tp > 0.

Step 2 Find the polynomial in G in which the vari-
ables x1, 9, ...,z are not appear. This polynomial

p(x) is the minimal polynomial of A.

Step 3 By step 2, if a,, in the minimal polynomial of

2

p(x) = agz™ + az" a2+ .. +ay
is zero, stop. Otherwise, calculate
—1 1 n—1 n—2
A = ;(—aoA —CL1A —...—an,ll).
n

Example 12 Let A = f(II;,113) be a level-2 FLS
(2, 5)-circulant matrix, where

flzy) = 3633/2 + 3x3y + 2%y? + 723

a2y + 222 + 3xy® + 4y* + bay + 2z + 3y + 2.
andIl] = Ny ® I3,1I = Iy ® N5 and

0010 010
Ry = Rs=[00 1],

000 1 510

2 100

100 0100
=010 |.L=]|,,7,

001 000 1

We can now calculate the minimal polynomial
and the inverse of A with coefficients in the field Z14
as following:
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In fact, the reduced Grobner basis for the ideal
<$4 — T — 2ay3 —y—5,z—f(a:,y)>

G = {212 — 421 43210 — 29 — 528 4 4,6

4254+ 324 45234322 —-32+ 1,2+ 211 +32°
—528 — 427 4528 — 525 4423 — 22 + 32+ 1,
y— 2 4210 - 329 — 227 — 226 — 2°

—42* — 223 — 227,

So the minimal polynomial of A is
212 42t 13210 2% 528 4420 4 2P

+324 4+ 523 + 322 — 324+ 1,

and the inverse of A is

A7 = — A 4+ 440 —34°% + AB + 547 — 445

—A* — 343 —5A% - 3A + 31
Theorem 13 The annihilation ideal of level-k
FLS (ri,...,rg)-circulant matrices Aj,...,A; €
F[IIy, ... 1] is
<l’?1 —Z1=T1y.. -, {L‘Zk*l‘k*’l"k,y]_*fl(l’]_, R ‘Tk)7
- Ut _ft(xly"'vxk» mF[yla--'aytL

where the polynomial f;(x1,...,x)) is the represen-

terof A;,i =1,2,...,t.

Proof Consider the following F'- algebra homomor-
phism
,yt] — ]F[l‘l, Ce

@:F[ylv"- ,xk]/<$rfl—$1—7“1,

..,.%‘Zk—.xk—’l“k> —)F[Hl,,ﬂk]

ny _

Y1 — fl(xl,. . .,l’k) + <.%'1
—xp — 1) — Ay = fi(Ily,. ..

N

xl—rl,...,xk

7Hk)

Nk

ye = fe(r, o) + (@ — 2 =, 2

—TL — Tk> — At = ft(Hl,. . .,Hk).

It is clear that p(g(y1,...,y:)) = 0 if and only if
g(Ay,..., A;) = 0. Hence, by Lemma 8,

I(Ay,..., Ay) =kerp =TI NFy1,...,u.

O

According to Theorem 13, we give the follow-
ing algorithm for the annihilation ideal of level-
k FLS (ri,...,rg)-circulate matrices A;,...,A; €
F[Iy, ..., Il
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Step 1 Calculate the reduced Grobner basis G for the
ideal

n n
(a7 2l ST i Ay S 71}

—fi(z1,. .. e — fi(re, oo ag))

by CoCoA 4.0, using an elimination order with x; >
DT >YL > > Yk

,.I‘k),...

Step 2 Find the polynomial in G in which the vari-
ables 1, x9,...,2; are not appear. Then the ideal
generated by these polynomials is the annihilation
ideal of A1, ..., A;.

To calculate the common minimal polynomial of
Ay, ..., A, we first give the following Lemma.

Lemma 14 Let h(x) be the least common multiple of
p1(x),p2(x),...,prp(x). Then

k
((pi(x)) = (h(2))
i=1
Proof: For any
k
f@) € (ips(a)),
i=1
we have
pi(x) | f(x)
fori = 1,2,...,k. Since h(x) is the least common

,pk(), h(z) | f(). So
f(x) € (h(x)).

multiple of p1 (), p2(x), ...

Hence
k

(i) € (h()).

i=1

Conversely, p;j(z) | h(x) for i = 1,2,...k,
because h(x) is the least common multiple of
p1(x),p2(x),...,px(x). Therefore

k

((pi(x)) 2 (h()).

i=1

By Lemma 14 and Lemma 10, If the minimal

polynomial of A; is p;(x) fori = 1,2,...,t, then the
common minimal polynomial of Aj,...,A; is the
least common multiple of p;(x), p2(x), ..., pt(x). So

we have the following algorithm for the common min-
imal polynomial of level-k FLS (71, ..., 7 )-circulant
matrices 4; = f;(Ily,..., ) fori =1,2,... ¢
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Step 1 Calculate the Grobner basis (; for the ideal
(' =z =71, — =,y — fi(zy, o ap)
by CoCoA 4.0 foreachi = 1,2,...,t, using an elim-
ination order with 1 > ... >z} > y.

Step 2 Find out the polynomial g;(y) in G; in which
the variables x;, ...,z do not appear for each ¢ =
1,2,...,t.

Step 3 Calculate the Grobner basis G for the ideal
(1=t wi,wig1(y), - -, wigi(y)) by CoCoA 4.0,
using elimination with wy > ... > w > v.

Step 4 Find out the polynomial ¢g(y) in G in which the
variables wy,...,w; do not appear. Then the poly-
nomial g(y) is the common minimal polynomial of
Ai = fZ(H17)Hk}) for: = 1,2,...,t.

Example 15 Ler Ay = fi(II1,Il3) and Ay =
fa(I1y, Ia) be both level-2 (11,14)-circulant matrices,
where 11} = Ny1 @ Iy, Ils = Iy @ Nyy,

fi(z,y) = 23y 20392 +ady+-32° + Ty +4a?y?
+322y 4202 F P+ Ty oy +-62+2y3 +3y2 + 2y +5,
fa(x,y) = 2%y + 2%y +32°y+22° +62°y° + 5%y
+7xy o’ oy’ +3xy? +ay+4r+6y> +3y -y +4,

and
0 100
0 010
Ru=1 9 901 |
11 10 0
0 100 1000
0 010 0100
Ru=1 o o001 ['"“ 0010
14 10 0 00 0 1

We calculate the common minimal polynomial of
A and A5 in the field Z1; as following:

By CoCoa 4.0, we obtain reduced Grobner basis
for the ideal

<.I4 — L= 11ay4 —Yy- 14’2 - fl(x’y» is

Gy = {212 4221 + 5210 — 229 1 528 — 427 4,5
4325+ 224 — 323 4+ 222+ 5241,

2?2 —x —y2® —dyz — 4y — 521 — 2210 4 29 4 By
427 4426 — 25 4 24 — 23 4+ 422 + 5242,

zy + 5z + 5y2? +y + 3211 — 3210 4 329 — 228
—527 — 220 4 52° 442 + 23 — 322 + 52 +5,

vz 44w —y2? +3yz —y + 2+ 210 £ 529 — 528
—527 — 26 — 32% —42% — 323 + 422 + 52,

y? +2yz? + 5yz —y + 52 4 210 — 2% 528
—527 — 25 422° + 223 4322 +22 5,

yz3 —yz? 4+ 3yz — 4y + 321 + 5210 — 29 — 5.7
—220 — 525 + 424 + 23 + 52 + 3},
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So the minimal polynomial p; (z) of A; is
212 4221 15210 229 4 528 — 427

4425+ 325424 - 3284+ 222452+ 1.

By CoCoa 4.0, we get the reduced Grobner basis
for the ideal

<a:4 —x—11,y* —y— 14,2 — fa(x,y)) is

Go = {215 — 214 — 2,13 _ 3,12 L 9,11 _ 9,10
+29 — 28 4227 4 326 + 225 4+ 522 — 52,
24— 2214 — 218 — 212 1 510 4,9
4428 — 27 — 425 + 224 + 423 + 522 4 22,
rz — 3w 4+ 221 4 3213 + 2212 £ 5211 42210 4 329
—428 4527 4226 4+ 25 4+ 324 — 23 — 422 + 52,
y+ 321 — 3212 43211 42210 - 329 428 - 327
—328 — 525 — 2* — 523 — 22 4+ 32— 2}

So the minimal polynomial ps(z) of Aj is
L5 14 9,13 512 4 9,11 9,10

429 — 28 4227+ 320 42254522 52

By CoCoa 4.0, we obtain the reduced Grobner ba-
sis for the ideal (1 — u — v, up;(z), vp2(2)) is

G={u+v-1,

vzt — 4vzd — 5vz? —dvz 4+ 3v — 5222 — 3221 4 220
—2219 4 5218 4 5217 4 216 4 5215 4,14

45213 — 2212 4 11 4 210 59 4,8 9,7 4 3,6
+425 + 32 — 523 + 522 + 2 -3,

228 4 5222 4 4221 2,20 _ 5,18 4 4,17 _ 9,16
+3215 4 3214 — 4213 4 2212 4 21 4 2,10

+329 — 28 — 27 — 526 + 2% + 323 — 422 + 22).

So the common minimal polynomial p(z) of A; and
A2 is

223 + 5222 + 4221 _ 2220 _ 5218 + 4217 _ 2216
+329 — 28 — 27 — 526 + 21 + 323 — 422 + 22,

4 Efficient algorithms for finding the
inverses of level-k FLS (71, ..., 7%)-
circulant matrices

In this section, we discuss the singularity and the
inverse of a level-k FLS (r1, ..., rg)-circulant matrix.

E-ISSN: 2224-2880 381

Zhaolin Jiang

Theorem 16 Let A € F[II;,... ,II;] be an N x N
level-k FLS (r1,...,ry)-circulant matrix. Then A is
nonsingular if and only if

ni__

Le (f(xr,...,zp), 2]  —z1—11,. .., 2" —2)—T),
where the polynomial f(x1,...,xy) is the representer
of A.

Proof. A is nonsingular if and only if

f(l‘l, .

is an invertible element in

xp) (@t —w =, wt —x — )

F(z1,...,xk) /(a1 — 21 — 711, 20" — o — 7).

By Theorem 5, if and only if there exists

h(zy,... xp) + (@t —@y —r1, .2 —ap — 1)

e Flay,...,zx) /(2 —x1 —r1,. .., 2" —xp —1g)
.,$k>f(x1,...,xk)

+<.’E7111*$1*’I“1,...

such that h(zq, ..
n

7xk-k *{Ek*'l"k;>
n

=14+ @ —a1—r,..., 2" —xp — 1)

if and only if there exist

h(z1,...,x5) ul,...,u; € Flzy, ..., xg]
such that
W@k @y k) ot (@ — 21— 1)

—i—...—i—uk(mzk—wk—rk):l

if and only if

1e <f($1,

7xk)7 x?l -

LT1—T1, .., T — T —T).
O

Let A € F[II,...,II;] be an N x N level-k
FLS (r1,...,rx)-circulant matrix, by Theorem 16, we
have the following algorithm which can find the in-

verse of the matrix A:

Step 1 Calculate the reduced Grobner basis G for the
ideal

<f($1, Ce

where the polynomial f(x1,...,zy) is the representer
of A, by CoCoA 4.0, using a given term order with
x1 > ... >z If G # {1}, then A is singular. Stop.
Otherwise, go to step 2.

n n
JTE), T =y =T, X — T — 1),

Step 2 By Buchberger’s algorithm for computing
Grobner bases, keeping track of linear combinations
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that give rise to the new polynomials in the generating

set, Wegeth(xl,...,xk),ul,...,uk EIF[xl,...,xk]
such that
h(zi,...,z5)f(z1,. .., 2) +wi (2] — 21 —71)
(et —zp—r) =1 4)

Step 3 The variables 1, . . ., x; in the above formula
(4) are replaced by 111, . . . , I, respectively, we have
A7 = h(I0y,...,IL;).

S Inverse of partitioned matrix with
level-k FLS (rq,...,r;)-circulant
matrix blocks

Let Aq, Ay, A3, Ay be level-k FLS (7”1, ey Tk)—
circulant  matrices with  the  representer
fi(we, oo me), folw,. o), fa(zn, . 2n),
fa(x1, ..., xy), respectively. If A; is nonsingular, let
(A A
()

(T —ATMA
>’F2_<0 I

So ¥ is nonsingular if and only if A4 — A3AI1A2 is
nonsingular. Since A1, As, A3, A4 are all level-k FLS

(r1,...,rg)-circulant matrices, then the A; commutes
with the A; if 7 # j. Thus

).

&)

I 0
T = ( —A3ATY T
then

Ay 0

hxlz = ( 0 Ag— AzAT A,

Ai(Ag — A3AT Ag) = A1 Ay — A As. (6)

By the equation (6), we conclude that 3 is non-
singular if and only if A; Ay — As Az is nonsingular.
Since

fl(l'l,- . 'a$k)f4($la cee 7$k)
—fa(z1, ... xk) f3(z, ...

is the representer of A1 A4 — Ao As, then X is nonsin-
gular if and only if

) I'k)

1e <f1(561,... ,xk)f4(m1,. .. ,:ck)
—f2(l’1,...,Zlfk)fg(iﬁl,...,l'k),
ot —wy =y, ot = — ).
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In addition, if X is nonsingular, by the equation
(5), we have

(T —ATMA
0 I
1

.
AT 0
0 (Ag— AzA7 Ay

NEE

T3 Ty
where

Ty = A7 4 (A1 Ay — AsAz) 1A A3 ALY,
To = —(A1 Ay — AsA3) "1 Ay,

Ty = —(A1 Ay — Ay A3) 1 A3,

Ty = (A1A4 — A2A3)_1A1.

) ( —A?,IAll ? )

Therefore, we have the following result.
Theorem 17 Let
Ay Ay

»= (44,

where Ai,As, A3 and A4 are all level-k FLS

(r1,...,rg)-circulant matrices with the representer
Sl aw), fo(@y, o ak), fa(@, - @),
fa(x1, ... xy), respectively. If Ay is nonsingular,
then . is nonsingular if and only if

Le (filar,... mp) falzr, ... k)

—fo(zy, . me) f3(n, .o o),

n n
R I PR e T U2

Moreover, if 3 is nonsingular, then

(T T3
X = ( o1 ) @)
where
Ty = A7M 4 (A1 Ay — AsA3) T AR A3 AT,
Ty = —(A1Ay — A Az) 1 Ay,
Ty = —(A1Ag — AxAz) ' A,
T, = (A1A4 — A2A3)71A1.
Theorem 18 Let
(A A
== &)
where Ay, Ay, A3, Ay are all level-k FLS
(ri,...,mx)-circulant matrices with the representer
fl(xb ceey xk)? fQ(xlv e 7I'k>, f3(x17 sy xk)a
fa(x1, ... xy), respectively. If Ay is nonsingular,
then 3. is nonsingular if and only if
1e <f1(£61, R ,a;k)f4(m1, e ,:ck)
—f2(331, ) xk’)f?)(mla s 737]6))

n n
ot —xy =2t —xg — ).
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Moreover, if 3 is nonsingular, then

(T T3
where
Ty = (A1 Ay — AsA3) 1Ay,
Ty = —(A1 Ay — A As) 1Ay,
Ty = —(A1 Ay — AyAz) ' As,
Ty = AZI + (A1A4 — A2A3)_1A2A3A21.
Proof. Since A, is nonsingular, then
I —AA! I 0
by 1
0 I Ay Az T
Ay —AA7YAs 0
_ 1 243y 3 ) (9)
0 Ay
So ¥ is nonsingular if and only if A; — AQAZlAg is

nonsingular. Since A1, As, A3, A4 are all level-k FLS
(r1,...,rg)-circulant matrices, then the A; commutes
with the A; if 7 # j. Thus

Ag(A — AA T Ap)

— AJAy — AsAs. (10)

By the equation (10), we conclude that > is non-
singular if and only if A;Ay — AsAs is non-

singular.  Since fi(x1,...,zk) fa(z1, ..., 2) —
fo(x1,...,xk) f3(x1,...,x) is the representer of
A1 Ay — Ay As, then ¥ is nonsingular if and only if

1e <f1(.7}1, R ,$k)f4(1‘1, - ,xk)

—fox1, ..., xk) f3(z1, ..., 2k),

1‘?1 — X1 —Tl,...,ZL‘Zk — Tk —Tk>.

In addition, if X is nonsingular, by the equation
(9), we have

nl=
I 0
—AMAs T

( (Al — A2A4_1A3)_1 0

)

0 At
Ty T
_(%TJ’
where
Ty = (A1Ay — A2A3)71A4,
Ty = —(A1As — AxA3z)~ A2>
T3 = (A1A4 — A2A3) Ag,

Ty = A + (A1A4 — AQA:),) AQAgAZl.

We have the following algorithm for determining
the nonsingularity and computing the inverse of X if
it is nonsingular.
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Step 1 Calculate the Grobner bases G, G4 for the
ideals

(fi(xr,. ..
<f4(331, ce

respectively. If G1 # {1}, G4 # {1}, Stop. Other-
wise, go to step 2.

ni nk
&), 1t — a1 STy —Tp — T,
n n
JTR), TP = XL =T, X — T — T,

—T1,..

Step 2. If Gl = {1}, find ULy vy Uk,
hl(.%'l,. . .,xk) S IF[acl,... ,ka] such that
hi(zi, ... ze) fi(ze, ... o) +w (2 — 21 — 1)

.o Fug(at —xp — ) =1

Then hy(z1,...,x) is the representer of A7, go to
step 4. Otherwise, go to step 3.

Step 3. If G4 = {1}, find u}, ..., uj,
h4(1‘1,. . .,l'k) € IF[acl, R ,l‘k] such that

ﬂfk)f4(x1, ey

+ g, (2

h4(.’L‘1,..., xk) —l—u/l(a:’fl

—xl—'rl)—l—... —xk—?”k)zl.

Then h4($1, ey T
step 4.

) is the representer of Agl, go to

Step 4. Calculate the Grobner bases G for the ideals

(fi(xy, ... xp) falzr, ... xk)
_f2(x17- . .,l’k)fg,(l‘h cee 7xk)7

ni Ng
R S & PR e T I

If G # {1}, then A1 Ay — AAs is singular, Stop.
Otherwise, go to step 5.

Step 5. Find vq,...,vk, h(x1,...,25) €
Flxy,...,zk] such that

h(xl, ey ack)[fl(xl, ey ack)f4(a:1, ce. ,J}k)

—fax1, .oy wp) f3(@1, o 2]

top(aft —xy —r) + . A op(apt —ap — ) = 1
Then h(xi,...,xzy) is the representer of (A; Ay —

A3 A3)~L. Then we obtain
If A is nonsingular, then

T
-1 _ 2 .
=2 1)

if A4 is nonsingular, then

T:
-1 _ 2
(55 )

Th
13

15
13

where
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T = hl(Hlv cee 7Hk)[l + h(Hla <o 7Hk)A2A3]7
Ty = —h(Il, ..., ;) As,

T35 = —h(I1y,. .., 1Ix) As,

Ty = h(Hlv <o 7Hk’)A17

Ty = h(IL,, ..., TI) Ay,

T = hya(Iy, . .. ,Hk)[f + h(I, ... ,Hk)AQAg].
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