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1 Introduction

Recently, research for oscillation of various equa-
tions including differential equations, difference
equations and dynamic equations on time scales
etc. has been a hot topic in the literature, and
much effort has been done to establish new os-
cillation criteria for these equations so far (for
example, see [1-27], and the references therein).
In these investigations, we notice that very little
attention is paid to oscillation of fractional differ-
ential equations. Recent results in this direction
only include Chen’s work [28].

In this paper, we are concerned with oscilla-
tion of solutions of the nonlinear fractional differ-
ential equation of the following form:

(a(t)[(r(t)Dαx(t))′]γ)′

−q(t)f(
∫∞
t (ξ − t)−αx(ξ)dξ) = 0,

t ∈ [t0,∞),

(1)

where a ∈ C1([t0,∞),R+), r ∈
C2([t0,∞),R+), q ∈ C([t0,∞),R+), f ∈ C(R,R)
satisfying xf(x) > 0, f(x)

xγ ≥ L > 0 for x ̸= 0,
γ is a quotient of two odd positive integers,
α ∈ (0, 1), Dαx(t) denotes the Liouville right-
sided fractional derivative of order α of x, and
Dαx(t) = − 1

Γ(1−α)
d
dt

∫∞
t (ξ − t)−αx(ξ)dξ.

A solution of Eq. (1) is said to be oscillatory
if it is neither eventually positive nor eventually
negative, otherwise it is nonoscillatory. Eq. (1) is
said to be oscillatory in case all its solutions are
oscillatory.

Motivated by the idea in [29], we will establish
some new interval oscillation criteria for Eq. (1)
by a generalized Riccati function and inequality
technique in Section 2, and present some appli-
cations for our results in Section 3. Throughout
this paper, R denotes the set of real numbers and
R+ = (0,∞). For more details about the theory
of fractional differential equations, we refer the
reader to [30-32].

2 Main Results

For the sake of convenience, in the rest of this
paper, we set

X(t) =
∫∞
t (ξ − t)−αx(ξ)dξ,

δ1(t, a) =
∫ t
a

1

a
1
γ (s)

ds, δ2(t, a) =
∫ t
a

δ1(s,a)
r(s) ds.

Lemma 1 Assume x is a solution of Eq. (1).
Then X ′(t) = −Γ(1− α)Dαx(t).
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Lemma 2 Assume x is a eventually positive so-
lution of Eq. (1), and∫∞

t0
1

a
1
γ (s)

ds = ∞, (2)∫∞
t0

1
r(s)ds = ∞, (3)∫∞

t0
1

r(ξ)

∫∞
ξ [ 1

a(τ)

∫∞
τ q(s)ds]

1
γ dτdξ = ∞, (4)

Then there exists a sufficiently large T such that

(r(t)Dαx(t))′ < 0

on [T,∞), and either Dαx(t) < 0 on [T,∞) or
lim
t→∞

X(t) = 0.

Proof. Since x is a eventually positive solution of
(1), there exists t1 such that x(t) > 0 on [t1,∞).
So X(t) > 0 on [t1,∞), and we have

(a(t)[(r(t)Dαx(t))′]γ)′ = q(t)f(X(t))
≥ Lq(t)Xγ(t) > 0.

(5)

Then a(t)[(r(t)Dαx(t))′]γ is strictly increasing on
[t1,∞), and thus (r(t)Dαx(t))′ is eventually of
one sign. We claim (r(t)Dαx(t))′ < 0 on [t2,∞),
where t2 > t1 is sufficiently large. Otherwise,
assume there exists a sufficiently large t3 > t2
such that (r(t)Dαx(t))′ > 0 on [t3,∞). Then for
t ∈ [t3,∞), we have

r(t)Dαx(t)− r(t3)D
αx(t3)

=
∫ t
t3

a
1
γ (s)(r(s)Dαx(s))′

a
1
γ (s)

ds

≥ a
1
γ (t3)(r(t3)D

αx(t3))
′ ∫ t

t3
1

a
1
γ (s)

ds.

By (2), we have

lim
t→∞

r(t)Dαx(t) = ∞,

which implies for some sufficiently large t4 > t3,
Dαx(t) > 0, t ∈ [t4,∞). By Lemma 1, we have

X(t)−X(t4) =
∫ t
t4
X ′(s)ds

= −Γ(1− α)
∫ t
t4
Dαx(s)ds

= −Γ(1− α)
∫ t
t4

r(s)Dαx(s)
r(s) ds

≤ −Γ(1− α)r(t4)D
αx(t4)

∫ t
t4

1
r(s)ds.

By (3), we obtain lim
t→∞

X(t) = −∞, which contra-

dicts X(t) > 0 on [t1,∞). So (r(t)Dαx(t))′ < 0
on [t2,∞). Thus Dαx(t) is eventually of one sign.

Now we assume Dαx(t) > 0, t ∈ [t5,∞) for some
sufficiently t5 > t4. Then by Lemma 1, X ′(t) < 0
for t ∈ [t5,∞). Since X(t) > 0, furthermore we
have lim

t→∞
X(t) = β ≥ 0. We claim β = 0. Oth-

erwise, assume β > 0. Then X(t) ≥ β on [t5,∞),
and for t ∈ [t5,∞), by (5) we have

(a(t)[(r(t)Dαx(t))′]γ)′ ≥ Lq(t)Xγ(t)

≥ Lβγq(t).
(6)

Substituting t with s in (6), an integration for (6)
with respect to s from t to ∞ yields

−a(t)[(r(t)Dαx(t))′]γ

≥ − lim
t→∞

a(t)[(r(t)Dαx(t))′]γ + Lβγ
∫∞
t q(s)ds

> Lβγ
∫ t
t5
q(s)ds,

which means

(r(t)Dαx(t))′ < −L
1
γ β[

1

a(t)

∫ ∞

t
q(s)ds]

1
γ . (7)

Substituting t with τ in (7), an integration for (7)
with respect to τ from t to ∞ yields

−r(t)Dαx(t)

< − lim
t→∞

r(t)Dαx(t)− L
1
γ β
∫∞
t [ 1

a(τ)

∫∞
τ q(s)ds]

1
γ dτ

< −L
1
γ β
∫∞
t [ 1

a(τ)

∫∞
τ q(s)ds]

1
γ dτ,

that is,

X ′(t) < −L
1
γ Γ(1−α) β

r(t)

∫∞
t [ 1

a(τ)

∫∞
τ q(s)ds]

1
γ dτ .

(8)
Substituting t with ξ in (8), an integration for (8)
with respect to ξ from t5 to t yields

X(t)−X(t5)

< −L
1
γ Γ(1−α)β

∫ t
t5

1
r(ξ)

∫∞
ξ [ 1

a(τ)

∫∞
τ q(s)ds]

1
γ dτdξ.

By (4), one can see lim
t→∞

X(t) = −∞, which is a

contradiction. So the proof is complete.

Lemma 3 Assume that x is a eventually positive
solution of Eq. (1) such that

(r(t)Dαx(t))′ < 0, Dαx(t) < 0

on [t1,∞)T,
where t1 ≥ t0 is sufficiently large. Then we have

X ′(t) ≥ −Γ(1− α)δ1(t, t1)a
1
γ (t)(r(t)Dαx(t))′

r(t)
,

and

X(t) ≥ −Γ(1− α)δ2(t, t1)a
1
γ (t)(r(t)Dαx(t))′.
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Proof. By Lemma 2, we have
a(t)[(r(t)Dαx(t))′]γ is strictly increasing on
[t1,∞). So

r(t)Dαx(t) ≤ r(t)Dαx(t)− r(t1)D
αx(t1)

=
∫ t
t1

a
1
γ (s)[r(s)Dαx(s)]′

a
1
γ (s)

ds

≤ a
1
γ (t)(r(t)Dαx(t))′

∫ t
t1

1

a
1
γ (s)

ds

= δ1(t, t1)a
1
γ (t)(r(t)Dαx(t))′.

Using Lemma 1 we obtain that

X ′(t) ≥ −Γ(1−α)δ1(t,t1)a
1
γ (t)(r(t)Dαx(t))′

r(t) .

Then

X(t) ≥ X(t)−X(t1)

≥ −
∫ t
t1

Γ(1−α)δ1(s,t1)a
1
γ (s)(r(t)Dαx(s))′

r(s) ds

≥ −Γ(1− α)a
1
γ (t)(r(t)Dαx(t))′

∫ t
t1

δ1(s,t1)
r(s) ds

= −Γ(1− α)δ2(t, t1)a
1
γ (t)(r(t)Dαx(t))′.

Lemma 4 [33, Theorem 41]. Assume that A and
B are nonnegative real numbers. Then

λABλ−1 −Aλ ≤ (λ− 1)Bλ

for all λ > 1.

Theorem 5 Assume (2)-(4) hold, and there ex-
ists two functions ϕ ∈ C1([t0,∞),R+) and φ ∈
C1([t0,∞), [0,∞)) such that∫∞

T {Lϕ(s)q(s)− ϕ(s)φ′(s)

+ ϕ(s)Γ(1−α)δ1(s,T )φ
1+ 1

γ (s)
r(s)

− [(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,T )+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,T )]γr(s)
}ds

= ∞,
(9)

for all sufficiently large T . Then every solution of
Eq. (1) is oscillatory or satisfies lim

t→∞
X(t) = 0.

Proof. Assume (1) has a nonoscillatory solution
x on [t0,∞). Without loss of generality, we may
assume x(t) > 0 on [t1,∞), where t1 is sufficiently
large. By Lemma 2 we have (r(t)Dαx(t))′ <
0, t ∈ [t2,∞), where t2 > t1 is sufficiently large,
and eitherDαx(t) < 0 on [t2,∞) or lim

t→∞
X(t) = 0.

Define the generalized Riccati function:

ω(t) = ϕ(t){−a(t)[(r(t)D
αx(t))′]γ

Xγ(t)
+ φ(t)}.

Then for t ∈ [t2,∞), we have

ω′(t) = −ϕ′(t)a(t)[(r(t)D
αx(t))′]γ

Xγ(t)

+ϕ(t){−a(t)[(r(t)Dαx(t))′]γ

Xγ(t) }′ + ϕ′(t)φ(t) + ϕ(t)φ′(t)

= −ϕ(t){ (a(t)[(r(t)Dαx(t))′]γ)′

Xγ(t) }

+γϕ(t)X′(t)a(t)[(r(t)Dαx(t))′]γ

Xγ+1(t)
+ ϕ′(t)

ϕ(t) ω(t) + ϕ(t)φ′(t)

= −ϕ(t)q(t)f(X(t))
Xγ(t) + γϕ(t)X′(t)a(t)[(r(t)Dαx(t))′]γ

Xγ+1(t)

+ϕ′(t)
ϕ(t) ω(t) + ϕ(t)φ′(t).

(10)
By Lemma 3 and the definition of f we get that

ω′(t) ≤ −Lϕ(t)q(t)− γϕ(t)Γ(1− α)δ1(t, t2)×

a
1
γ (t)(r(t)Dαx(t))′a(t)[(r(t)Dαx(t))′]γ

r(t)Xγ+1(t)

+ ϕ′(t)
ϕ(t) ω(t) + ϕ(t)φ′(t)

= −Lϕ(t)q(t)− γϕ(t)Γ(1−α)δ1(t,t2)
r(t) ×

[−(ω(t)ϕ(t) − φ(t))]
1+ 1

γ + ϕ′(t)
ϕ(t) ω(t) + ϕ(t)φ′(t)

= −Lϕ(t)q(t)− γϕ(t)Γ(1−α)δ1(t,t2)
r(t) ×

[ω(t)ϕ(t) − φ(t)]
1+ 1

γ + ϕ′(t)
ϕ(t) ω(t) + ϕ(t)φ′(t).

(11)
Using the following inequality (see [34, Eq. (18)]):

(u− v)
1+ 1

γ ≥ u
1+ 1

γ +
1

γ
v
1+ 1

γ − (1 +
1

γ
)v

1
γ u,

we obtain

[ω(t)ϕ(t) − φ(t)]
1+ 1

γ

≥ ω
1+ 1

γ (t)

ϕ
1+ 1

γ (t)
+ 1

γφ
1+ 1

γ (t)− (1 + 1
γ )

φ
1
γ (t)ω(t)
ϕ(t) .

(12)
A combination of (11) and (12) yields:

ω′(t) ≤ −Lϕ(t)q(t) + ϕ′(t)
ϕ(t) ω(t) + ϕ(t)φ′(t)

−γϕ(t)Γ(1−α)δ1(t,t2)
r(t) ×

[ω
1+ 1

γ (t)

ϕ
1+ 1

γ (t)
+ 1

γφ
1+ 1

γ (t)− (1 + 1
γ )

φ
1
γ (t)ω(t)
ϕ(t) ]

= −Lϕ(t)q(t) + ϕ(t)φ′(t)

−ϕ(t)Γ(1−α)δ1(t,t2)φ
1+ 1

γ (t)
r(t)

−γϕ(t)Γ(1−α)δ1(t,t2)
r(t)

ω
1+ 1

γ (t)

ϕ
1+ 1

γ (t)

+ (γ+1)φ
1
γ (t)ϕ(t)Γ(1−α)δ1(t,t2)+r(t)ϕ′(t)

r(t)ϕ(t) ω(t).

(13)
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Setting

λ = 1 + 1
γ , A

λ = γϕ(t)Γ(1−α)δ1(t,t2)
r(t)

ω
1+ 1

γ (t)

ϕ
1+ 1

γ (t)
,

Bλ−1 = γ
1

γ+1
(γ+1)φ

1
γ (t)ϕ(t)Γ(1−α)δ1(t,t2)+r(t)ϕ′(t)

(γ+1)[Γ(1−α)ϕ(t)δ1(t,t2)]
γ

γ+1 r
1

γ+1 (t)
,

Using Lemma 4 in (13) we get that

ω′(t) ≤ −Lϕ(t)q(t) + ϕ(t)φ′(t)

−ϕ(t)Γ(1−α)δ1(t,t2)φ
1+ 1

γ (t)
r(t)

+ [(γ+1)φ
1
γ (t)ϕ(t)Γ(1−α)δ1(t,t2)+r(t)ϕ′(t)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(t)δ1(t,t2)]γr(t)
.

(14)

Substituting t with s in (14), an integration for
(14) with respect to s from t2 to t yields

∫ t
t2
{Lϕ(s)q(s)− ϕ(s)φ′(s)

+ ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s)

− [(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
}ds

≤ ω(t2)− ω(t) ≤ ω(t2) <∞,

which contradicts (9). So the proof is complete.

Theorem 6 Assume (2)-(4) hold, and for all
sufficiently large T ,

∫∞
T {Lϕ(s)q(s)− ϕ(s)φ′(s)+

γϕ(s)[Γ(1−α)]γδ1(s,T )δγ−1
2 (s,T )φ2(s)

r(s) −
{2γϕ(s)φ(s)[Γ(1−α)]γδ1(s,T )δγ−1

2 (s,T )+r(s)ϕ′(s)}2

4γ[Γ(1−α)]γδ1(s,T )δγ−1
2 (s,T )r(s)ϕ(s)

}ds
= ∞,

(15)
where ϕ, φ are defined as in Theorem 5. Then
every solution of Eq. (1) is oscillatory or satisfies
lim
t→∞

X(t) = 0.

Proof. Assume (1) has a nonoscillatory solution
x on [t0,∞). Without loss of generality, we may
assume x(t) > 0 on [t2,∞), where t2 is sufficiently
large. By Lemma 2 we have (r(t)Dαx(t))′ <
0, t ∈ [t2,∞), where t2 > t2 is sufficiently large,
and eitherDαx(t) < 0 on [t2,∞) or lim

t→∞
X(t) = 0.

Let ω(t) be defined as in Theorem 5. Proceeding
as in Theorem 5, we obtain (10). By Lemma 3,

we have the following observation:

X′(t)
X(t) ≥ −Γ(1−α)δ1(t,t2)a

1
γ (t)(r(t)Dαx(t))′

r(t)X(t)

= −Γ(1−α)δ1(t,t2)a
1
γ (t)(r(t)Dαx(t))′

r(t)Xγ(t) Xγ−1(t)

≥ −Γ(1−α)δ1(t,t2)a
1
γ (t)(r(t)Dαx(t))′

r(t)Xγ(t) ×
{−Γ(1− α)δ2(t, t2)a

1
γ (t)(r(t)Dαx(t))′}γ−1(t)

= − [Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)

r(t) ×{a(t)[(r(t)Dαx(t))′]γ

Xγ(t) }
(16)

Using (16) in (10) we get that

ω′(t) ≤ −Lϕ(t)q(t)− γϕ(t)[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)

r(t) ×
{a(t)[(r(t)Dαx(t))′]γ

Xγ(t) }2 + ϕ′(t)
ϕ(t) ω(t) + ϕ(t)φ′(t)

= −Lϕ(t)q(t)− γϕ(t)[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)

r(t) ×

[ω(t)ϕ(t) − φ(t)]2 + ϕ′(t)
ϕ(t) ω(t) + ϕ(t)φ′(t)

= −Lϕ(t)q(t)− γϕ(t)[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)φ2(t)

r(t)

−γ[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)

r(t)ϕ(t) ω2(t) + ϕ(t)φ′(t)

+
2γϕ(t)φ(t)[Γ(1−α)]γδ1(t,t2)δ

γ−1
2 (t,t2)+r(t)ϕ′(t)

r(t)ϕ(t) ω(t)

≤ −Lϕ(t)q(t) + ϕ(t)φ′(t)

−γϕ(t)[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)φ2(t)

r(t)

+
{2γϕ(t)φ(t)[Γ(1−α)]γδ1(t,t2)δ

γ−1
2 (t,t2)+r(t)ϕ′(t)}2

4γ[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)r(t)ϕ(t)

.

(17)
Substituting t with s in (17), an integration for
(17) with respect to s from t2 to t yields

∫ t
t2
{Lϕ(s)q(s)− ϕ(s)φ′(s)+

γϕ(s)[Γ(1−α)]γδ1(s,t2)δ
γ−1
2 (s,t2)φ2(s)

r(s)

−{2γϕ(s)φ(s)[Γ(1−α)]γδ1(s,t2)δ
γ−1
2 (s,t2)+r(s)ϕ′(s)}2

4γ[Γ(1−α)]γδ1(s,t2)δ
γ−1
2 (s,t2)r(s)ϕ(s)

}ds

≤ ω(t2)− ω(t) ≤ ω(t2) <∞,

which contradicts (15). So the proof is complete.

Based on Theorems 5 and 6, next we present
two Philos-type oscillatory criteria for Eq. (1) in
the following two theorems.

Theorem 7 Define D = {(t, s)|t ≥ s ≥ t0}.
Assume (2)-(4) hold, and there exists a function
H ∈ C1(D,R) such that

H(t, t) = 0, for t ≥ t0, H(t, s) > 0, for t > s ≥ t0,

and H has a nonpositive continuous partial
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derivative H ′
s(t, s), and

lim
t→∞

sup 1
H(t,t0)

{
∫ t
t0
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)

+ϕ(s)Γ(1−α)δ1(s,T )φ
1+ 1

γ (s)
r(s)

− [(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,T )+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,T )]γr(s)
}ds}

= ∞,
(18)

for all sufficiently large T , where ϕ, φ are defined
as in Theorem 5. Then every solution of Eq. (1)
is oscillatory or satisfies lim

t→∞
X(t) = 0.

Proof. Assume (1) has a nonoscillatory solution
x on [t0,∞). Without loss of generality, we may
assume x(t) > 0 on [t1,∞), where t1 is sufficiently
large. By Lemma 2 we haveDαx(t) < 0 on [t2,∞)
for some sufficiently large t2 > t1. Let ω(t) be
defined as in Theorem 5. By (14) we have

Lϕ(t)q(t)− ϕ(t)φ′(t) + ϕ(t)Γ(1−α)δ1(t,t2)φ
1+ 1

γ (t)
r(t)

− [(γ+1)φ
1
γ (t)ϕ(t)Γ(1−α)δ1(t,t2)+r(t)ϕ′(t)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(t)δ1(t,t2)]γr(t)

≤ −ω′(t).
(19)

Substituting t with s in (19), multiplying both
sides by H(t, s) and then integrating with respect
to s from t2 to t yields∫ t

t2
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)

+ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s)

− [(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
}ds

≤ −
∫ t
t2
H(t, s)ω′(s)ds

= H(t, t2)ω(t2) +
∫ t
t2
H ′

s(t, s)ω(s)∆s

≤ H(t, t2)ω(t2) ≤ H(t, t0)ω(t2).

Then∫ t
t0
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)+

ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s) −

[(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
}ds

=
∫ t2
t0
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s+)

ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s) −

[(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
}ds

+
∫ t
t2
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)+

ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s) −

[(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
}ds

≤ H(t, t0)ω(t2) +H(t, t0)
∫ t2
t0

|Lϕ(s)q(s)− ϕ(s)φ′(s)

+ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s)

− [(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
|ds.

So

lim
t→∞

sup 1
H(t,t0)

{
∫ t
t0
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)

+ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s) −

[(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
}ds}

≤ ω(t2) +
∫ t2
t0

|Lϕ(s)q(s)− ϕ(s)φ′(s)

+ϕ(s)Γ(1−α)δ1(s,t2)φ
1+ 1

γ (s)
r(s)

− [(γ+1)φ
1
γ (s)ϕ(s)Γ(1−α)δ1(s,t2)+r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,t2)]γr(s)
|ds

<∞,

which contradicts (18). So the proof is complete.

Theorem 8 Let H, ϕ, φ be defined as in Theo-
rem 7. If (2)-(4) hold, and

lim
t→∞

sup 1
H(t,t0)

∫ t
t0
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)

+
γϕ(s)[Γ(1−α)]γδ1(s,T )δγ−1

2 (s,T )φ2(s)
r(s)

−{2γϕ(s)φ(s)[Γ(1−α)]γδ1(s,T )δγ−1
2 (s,T )+r(s)ϕ′(s)}2

4γ[Γ(1−α)]γδ1(s,T )δγ−1
2 (s,T )r(s)ϕ(s)

}ds}
= ∞,

(20)
for all sufficiently large T . Then every solution of
Eq. (1) is oscillatory or satisfies lim

t→∞
X(t) = 0.

Proof. Assume (1) has a nonoscillatory solution
x on [t0,∞). Without loss of generality, we may
assume x(t) > 0 on [t2,∞), where t2 is sufficiently
large. By Lemma 2 we haveDαx(t) < 0 on [t2,∞)
for some sufficiently large t2 > t2. Let ω(t) be
defined as in Theorem 5. By (17) we have

Lϕ(t)q(t)− ϕ(t)φ′(t)

+
γϕ(t)[Γ(1−α)]γδ1(t,t2)δ

γ−1
2 (t,t2)φ2(t)

r(t)

−{2γϕ(t)φ(t)[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)+r(t)ϕ′(t)}2

4γ[Γ(1−α)]γδ1(t,t2)δ
γ−1
2 (t,t2)r(t)ϕ(t)

≤ −ω′(t).
(21)

Substituting t with s in (21), multiplying both
sides by H(t, s) and then integrating with respect
to s from t2 to t yields∫ t

t2
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)

+
γϕ(s)[Γ(1−α)]γδ1(s,t2)δ

γ−1
2 (s,t2)φ2(s)

r(s)

−{2γϕ(s)φ(s)[Γ(1−α)]γδ1(s,t2)δ
γ−1
2 (s,t2)+r(s)ϕ′(t)}2

4γ[Γ(1−α)]γδ1(s,t2)δ
γ−1
2 (s,t2)r(s)ϕ(s)

}ds

≤ −
∫ t
t2
H(t, s)ω′(s)ds
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= H(t, t2)ω(t2) +
∫ t
t2
H ′

s(t, s)ω(s)∆s

≤ H(t, t2)ω(t2) ≤ H(t, t0)ω(t2).

Then similar to the process of Theorem 7, we get
that

lim
t→∞

sup 1
H(t,t0)

{
∫ t
t0
H(t, s){Lϕ(s)q(s)− ϕ(s)φ′(s)

+
γϕ(s)[Γ(1−α)]γδ1(s,t2)δ

γ−1
2 (s,t2)φ2(s)

r(s)

−{2γϕ(s)φ(s)[Γ(1−α)]γδ1(s,t2)δ
γ−1
2 (s,t2)+r(s)ϕ′(s)}2

4γ[Γ(1−α)]γδ1(s,t2)δ
γ−1
2 (s,t2)r(s)ϕ(s)

}ds}
<∞,

which contradicts (20). So the proof is complete.

Remark 9 In Theorems 7 and 8, if we take
H(t, s) for some special functions such as (t−s)m
or ln t

s , then we can obtain some corollaries,
which are omitted here.

Remark 10 The established oscillation criteria
for Eq. (1) above are new results so far in the
literature to our best knowledge.

3 Applications

In this section, we will present some applications
for the established results above.

Example 11 Consider equation

(t
5
3 [(Dαx(t))′]

5
3 )′ − t−

8
3 [M + e

∫∞
t (ξ−t)−αx(ξ)dξ]×

(
∫∞
t (ξ − t)−αx(ξ)dξ)

5
3 = 0, t ∈ [2,∞),

(22)
where M > 0 is a constant.

We have in (1) γ = 5
3 , a(t) = t

5
3 , q(t) =

t−
8
3 , f(x) = x

5
3 [ex +M ], r(t) = 1, t0 = 2. Then

f(x)
xγ ≥M = L. Then we have∫∞

t0
1

a
1
γ (s)

ds =
∫∞
2

1
sds = ∞,

and ∫∞
t0

1
r(s)ds = ∞.

Furthermore,∫∞
t0

1
r(ξ)

∫∞
ξ [ 1

a(τ)

∫∞
τ q(s)ds]

1
γ dτdξ

=
∫∞
2

∫∞
ξ [ 1

τ
5
3

∫∞
τ s−

8
3ds]

3
5dτdξ

= (35)
3
5

∫∞
2 [
∫∞
ξ

1
τ2
dτ ]dξ

= (35)
3
5

∫∞
2

1
ξdξ = ∞.

On the other hand, for a sufficiently large T , we
have

δ1(t, T ) =
∫ t
T

1

a
1
γ (s)

ds =
∫ t
T

1
sds→ ∞.

So we can take T ∗ > T such that δ1(t, T ) > 1 for

t ∈ [T ∗,∞). Taking ϕ(t) = t
5
3 , φ(t) = 0 in (9),

we get that∫∞
T {Lϕ(s)q(s)− [r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,T )]γr(s)
}ds

=
∫∞
T {M − (58)

8
3

1

[Γ(1−α)δ1(s,T )]
5
3
}1
sds

=
∫ T ∗

T {M − (58)
8
3

1

[Γ(1−α)δ1(s,T )]
5
3
}1
sds

+
∫∞
T ∗{M − (58)

8
3

1

[Γ(1−α)δ1(s,T )]
5
3
}1
sds

≥
∫ T ∗

T {M − (58)
8
3

1

[Γ(1−α)δ1(s,T )]
5
3
}1
sds

+
∫ t
T ∗{M − (58)

8
3

1

[Γ(1−α)]
5
3
}1
sds→ ∞,

provided that M > (58)
8
3

1

[Γ(1−α)]
5
3
. So (2)-(4) and

(9) all hold, and by Theorem 5 we deduce that
every solution of Eq. (22) is oscillatory or sat-
isfies lim

t→∞
X(t) = 0 under the condition M >

(58)
8
3

1

[Γ(1−α)]
5
3
.

Example 12 Consider equation

(t3[(Dαx(t))′]3)′ −Mt−4[
∫∞
t (ξ − t)−αx(ξ)dξ]3 = 0,

t ∈ [2,∞),
(23)

where α ∈ (0, 1), and M > 0 is a constant.

We have in (1) γ = 3, a(t) = t3, q(t) =
t−4, f(x) = Mx3, r(t) = 1, t0 = 2. Then
f(x)
xγ ≥M = L. Then we have∫∞

t0
1

a
1
γ (s)

ds =
∫∞
2

1

a
1
3 (s)

ds

=
∫∞
2

1
sds = ∞,

and ∫∞
t0

1
r(s)ds = ∞.

Furthermore,∫∞
t0

1
r(ξ)

∫∞
ξ [ 1

a(τ)

∫∞
τ q(s)ds]

1
γ dτdξ

=
∫∞
2

∫∞
ξ [ 1

τ3

∫∞
τ s−4ds]

1
3dτdξ

= 1
3√3

∫∞
2 [
∫∞
ξ

1
τ2
dτ ]dξ

= 1
3√3

∫∞
2

1
ξdξ = ∞.

On the other hand, for a sufficiently large T , we
have

δ1(t, T ) =
∫ t
T

1

a
1
γ (s)

ds =
∫ t
T

1
sds→ ∞.
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So we can take T ∗ > T such that δ1(t, T ) > 1
for t ∈ [T ∗,∞). Taking ϕ(t) = t3, φ(t) =
0, H(t, s) = t− s in (18), we get that

lim
t→∞

sup 1
t−t0

{
∫ t
t0
(t− s){Lϕ(s)q(s)

− [r(s)ϕ′(s)]γ+1

(γ+1)γ+1[Γ(1−α)ϕ(s)δ1(s,T )]γr(s)
}ds}

= lim
t→∞

sup 1
t−2{

∫ t
2 (t− s)×

{M − (34)
4 1
[Γ(1−α)δ1(s,T )]3

}1
sds}

= lim
t→∞

sup 1
t−2{

∫ T ∗

2 (t− s)×
{M − (34)

4 1
[Γ(1−α)δ1(s,T )]3

}1
sds

+
∫ t
T ∗(t− s){M − (34)

4 1
[Γ(1−α)δ1(s,T )]3

}1
sds}

≥ lim
t→∞

sup 1
t−2{

∫ T ∗

2 (t− s)×
{M − (34)

4 1
[Γ(1−α)]3

}1
sds

+
∫ t
T ∗(t− s){M − (34)

4 1
[Γ(1−α)]3

}1
sds} = ∞,

provided that M > (34)
4 1
[Γ(1−α)]3

. So (2)-(4)

and (18) all hold, and by Theorem 7 we deduce
that every solution of Eq. (23) is oscillatory
or satisfies lim

t→∞
X(t) = 0 under the condition

M > (34)
4 1
[Γ(1−α)]3

.

4 Conclusion

We have established some new interval oscillation
criteria for a class of nonlinear fractional differ-
ential equations by a generalized Riccati function
and inequality technique. The presented exam-
ples show that our results are effective in the os-
cillation analysis of some special fractional differ-
ential equations. The present method can be ap-
plied to obtain oscillation criteria for other frac-
tional differential equations such as the nonlin-
ear fractional differential equations with damping
term, which are supposed to further research.
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