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Abstract: Let G be a graph with n nodes and e edges, where the nodes are perfectly reliable and the edges fail
independently with equal probability ρ. A failure state exists if the surviving edges induce a graph having all
components of order less than a preassigned threshold value k. The unreliability of G,Uk(G;ρ), is the probability
of a failure state and a graph G is k-uniformly most reliable (k-UMR) over a class of graphs if and only ifUk(G;ρ) ≤
Uk(H;ρ) for all 0 < ρ < 1 and all H in the same class as G. If Uk(G;ρ) ≥ Uk(H;ρ) for all 0 < ρ < 1 and all H in
the same class as G then G is k- uniformly least reliable (k- ULR). In this paper we show that K1,n−1 is the unique
tree that is k-UMR over all trees with 2 ≤ k ≤ n. We also show that the unicycle Uxs , i.e. K1,n−1 with an added
edge, is uniquely 3-UMR over all graphs having n ≥ 5 nodes and e = n edges. We extend this study for 4 ≤ k ≤ n

2
and prove that Uxs is the unique k-UMR unicycle. In the last two sections we give the necessary conditions for a
graph to be k-UMR and show that there exists a range of values of k for which a k-UMR unicycle does not exist.

Key–Words: Component Order edge reliability, uniformly most reliable, unreliability, unicycle

1 Introduction

In [1] we introduced the component order edge re-
liability model. We repeat some of the elementary
notions pertinent to this model for the sake of com-
pleteness as well as discuss other fundamentals. Un-
less otherwise noted, we follow the notation of [2].
Consider a scenario of a network which is modeled
by an undirected graph G having n nodes and e edges
in which nodes are perfectly reliable but edges fail in-
dependently of one another, all with the same prob-
ability ρ ∈ (0,1) . A threshold value 2 < k < n is
given and the surviving subgraph remaining after the
failure of edges is said to be an operating state pro-

vided it contains at least one component of order k
or more. It is a failure state provided each compo-
nent has order at most k − 1 and the subset of failing
edges that produce the failure state is referred to as
a failure set. The probability that, at a snapshot of
time, the network is in an operating state is referred
to as the k-component order edge reliability and is
denoted by Rk(G;ρ) while Uk(G;ρ) = 1−Rk(G;ρ),
the k-component order edge unreliability, is just the
probability that the network is in a failure state.

As a consequence of the underlying assumption
of independent failure of edges, all with the same
probability ρ ∈ (0,1), the probability of a failure set
for which a specific set of i edges fail is just ρi(1 −
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ρ)e−i . Thus if fi(G) denotes the number of failure
sets of size i, then Uk(G;ρ) = ∑i fi(G)ρi(1 − ρ)e−i.

Now the smallest number of edges required to fail
in order to produce a failure state is referred to as the
k-component order edge connectivity of G and is
denoted by λ(k)c (G) (see [3],[4],[5],[6] for studies of
λ
(k)
c (G)). Thus fi(G) = 0 for all i < λ(k)c (G) . Fur-

thermore, assuming e ≥ k − 2, a set of edges of size
i ≥ e − (k − 2), leaves a surviving subgraph having
at most k − 2 edges upon failure, and hence a failure
state, so

fi(G) = (e
i
)fori ≥ e − (k − 2).

Thus, λ(k)c (G) ≤ e − (k − 2) and we may write

Uk(G;ρ) =
e

∑
i=λ

(k)
c (G)

fi(G)ρi(1 − ρ)e−i,

where fi(G) = (e
i
) for all e−(k−2) ≤ i ≤ e. Of course,

if λkc(G), then Uk(G;ρ) = ∑ei=e−(k−2) (
e
i
)ρi(1−ρ)e−i.

Thus any such graph will have the minimum value
of the k-component order edge reliability among all
graphs on n nodes and e edges for all ρ ∈ (0,1).

Now it is clear that if ρ is held fixed then, as
the collection of all graphs on n nodes and e edges
is finite, there is a graph on n nodes and e edges
having minimum k-component order edge reliability
among all those in the collection. However, as has
been shown for k = n, there may be no one graph
in a collection that minimizes the unreliability for all
ρ ∈ (0,1)[7]. If a graph exists in a specified collec-
tion of graphs, that minimizes Uk(G;ρ) for all G in
the collection and all ρ ∈ (0,1), it is referred to as
a k-uniformly most reliable graph (k-UMR) in the
collection. It has been shown that if e ≥ (n

2
) − ⌊n2 ⌋,

then Kn minus a matching is n−UMR over the class
of all graphs having n nodes and e edges [8, 9]. If
e = n − 1, then all trees have the same n-component
order edge unreliability, i.e., 1 − (1 − ρ)n−1. On the
other hand it was shown that if e = n, then Cn is the
unique unicycle which is n−UMR over all unicycles
on n [10].

In this work we shall show that K1,n−1 is the
unique tree that is k − UMR over all trees and all
2 ≤ k ≤ n. We shall also show that there exists a range
of values of k for which a k − UMR unicycle exists
and a range for which no k −UMR unicycle exists.

2 Graphs with λkc = e − (k − 2)
As was noted above, any graph G in the collection
of all graphs having n nodes and e edges, where

n ≥ k ≥ 2 and e ≥ k − 2; having λ(k)c = e − (k − 2)
has k-component order edge unreliability equal to
Uk(G;ρ) = ∑ei=e−(k−2) (

e
i
)ρi(1 − ρ)e−i

Now any graph on n nodes and e edges with
λ
(k)
c ≤ e − (k − 1) has strictly larger unreliability than

G so we have the following theorem:

Theorem 1 If n ≥ k ≥ 2, e ≥ k−2 and λ(k)c ≤ e−(k−
1), then G is k-UMR over all graphs having n nodes
and e edges.

In the remainder of this section we determine
those cases for which λ(k)c = e − (k − 2). First note
that if e = k − 2, then λkc = 0 = e − (k − 2) and
Uk(G;ρ) = 1, so all such G on n nodes and e edges,
where n ≥ k ≥ 2, have the same k-component order re-
liability. Another trivial situation occurs when k = 2.
In this case λ(k)c = e = e − (k − 2) and Uk(G;ρ) = ρe
for all G on n nodes and e edges where n > k = 2.

Next suppose e = k − 1 ≥ 2. Note that if

G = Tk ∪ (n − k)K1

where Tk is a tree on k nodes, then

λ(k)c = 1 = (k − 1) − (k − 2) = e − (k − 2).

Otherwise, λ(k)c = 0 = e − (k − 1). Hence, every

G = Tk ∪ (n − k)K1

where Tk is a tree on k nodes has λ(k)c = e − (k − 2)
and no other graph on n ≥ k ≥ 3 nodes and e = k − 1
edges does. Note that when n = k this subsumes the
fact that trees on n nodes have

λ(k)c (T ) = 1 = e − (k − 2).

The next logical case is e = k ≥ 3. Suppose G
has n nodes and e edges where n ≥ k = e ≥ 3 and as-
sume λ(k)c = e − (k − 2). Then fe−(k−1) = 0 and every
subset of k − 1 edges must induce a tree on k nodes.
Choose one, say Tk, and let the remaining edge be de-
noted by x. Now at least one endpoint of x must lie
in Tk or else the removal of an edge in Tk and the ad-
dition of x yields a disconnected subgraph with k − 1
edges. Suppose the addition of x to Tk yields another
tree. If that tree has a path with three edges, the re-
moval of an internal edge of that path yields a discon-
nected subgraph having k−1 edges. Hence, if Tk with
x added is a tree, then it must be K1,k. Otherwise,
consider the possibility that the addition of x to Tk
yields a unicycle. If that unicycle contains a pendant
edge its removal yields a subgraph of order k − 1 con-
taining k − 1 edges, which contradicts fe−(k−1) = 0.
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Thus, in this case, Tk with x added is just Ck. In sum-
mary, if λ(k)c = e − (k − 2) = k − (k − 2) = 2, then
G =K1,k∪(n−k)K1 orG = Ck∪(n−1)K1. Observe
that, if n = k + 1, then in the first case G = K1,n−1,
while in the second case G = Cn.

Finally, suppose e ≥ k + 1 ≥ 4 and assume
λ
(k)
c = e− (k − 2). As in the previous case, we choose
Tk, a tree on k nodes, from the set of e edges. Suppose
Tk has two independent edges so that the addition of
an edge to Tk cannot produce K1,k.Thus each of the
remaining edges when added to must produce Ck. As
there are at least two additional edges, this is impossi-
ble. Thus, Tk =K1,k and each of the additional edges,
when added to Tk,must yield K1,k. Hence G = K1,e

follows. Observe that in this case if n = e + 1, then
G =K1,n−1. We summarize those findings in our next
theorem.

Theorem 2
Consider n ≥ k ≥ 2, and let G be a graph on n

nodes and e edges.

1. If e ≤ k − 2, then λ(k)c (G) = 0, and equals e −
(k − 2) when e = k − 2. Also, Uk(G;ρ) = 1 for
all ρ ∈ (0,1).

2. If k = 2, then λ(k)c (G) = e = e − (k − 2), and
Uk(G;ρ) = ρe for all ρ ∈ (0,1).

3. If e ≥ k − 1 ≥ 2, then λ(k)c (G) = 1 = e − (k − 2)
if and only if G = Tk ∪ (n − k)K1, where Tk
is a tree on k nodes. In the event that n = k,
then every tree on n nodes has λkc(T ) = 1 and
Uk(T ;ρ) = 1 − (1 − ρ)n−1.

4. If e = k ≥ 3,then λ
(k)
c (G) = 2 = k − (k − 2)

if and only if G = K1,k ∪ (n − (k + 1))K1 or
G = Ck ∪ (n − k)K1. Also, Uk(G;ρ) = 1 − (1 −
ρ)k − k(ρ)(1 − ρ)k. In the event that n = k,G =
Cn is the unique graph on n nodes with e = n
edges having λnc = 2 and therefore, the unique
such graph which is n-UMR. If n = k + 1 (i.e.
k = n − 1) , then K1,n−1 is the unique graph on
n nodes with e = n − 1 edges having λ(n)c = 2
and therefore, the unique such graph which is n-
UMR.

5. If e ≥ k + 1 ≥ 4,then λkc(G) = e − (k − 2) if
and only if n ≥ e + 1 and G = K1,e ∪ [(n −
(e + 1))K1]. Also as was observed previously,
Uk(G;ρ) = ∑ei=e−(k−2) (

e
i
)ρi(1 − ρ)e−i. In the

event that e = n − 1 ≥ k + 1 ≥ 4, the unique
graph having λ(k)c (G) = e − (k − 2) = n − k + 1
is K1,n−1. It is, therefore, the unique k-UMR

graph having n nodes and e = n − 1 edges, and
Uk(G;ρ) = ∑n−1i=n−k+1 (

n−1
i
)ρi(1 − ρ)e−i.

We conclude this section with three corollaries of the
last theorem.

Corollary 3

1. If e = n − 1, n ≥ k and k ≥ 2, then, K1,n−1 is k-
UMR over all graphs with n nodes and e = n − 1
edges.

2. If e = n−1 = k, thenK1,n−1 is the unique k-UMR
tree on n nodes.

3. If e = n − 1 ≥ k + 1 ≥ 4, then K1,n−1 is k-UMR
over all graphs with n nodes and e = n−1 edges.

Corollary 4 If e = n − 1 ≥ k + 1 ≥ 4, then λ(k)c (G) ≤
e − (k − 1).

Proof: By Theorem 2(5), λ(k)c (G) = e − (k − 2)
forces e ≤ n − 1. ∎

Corollary 5 If e = n = k, then Cn is the unique graph
in the class of all graphs having n nodes and e = n
edges with λ(k)c (G) = 2 = e − (k − 2) and is therefore
also the unique n-UMR graph in this class.

3 k-UMR Unicycles exist for 3 ≤ k ≤
n
2

We begin with preliminary observations. First observe
that by Corollary 4, λ(k)c (U) ≤ e−(k−1) = n−(k−1)
for each unicycle U on n nodes. With n = n0 + k,
we obtain λ(k)c (U) ≤ n0 + 1. Next, it is easy to see
that λ(k)c (Uxs ) = n0 + 1 for k ≥ 3, where Uxs denotes
the star K1,n−1 with edge x added between two leaf
nodes. Since fi(U) = (n

i
) for each i ≥ n− (k − 2), for

each U it follows that we can prove Uxs to be k-UMR
by establishing the inequality fn0+1(Uxs ) ≤ fn0+1(U)
for all unicycles U ≠ Uxs . Furthermore, if either
λ
(k)
c (U) < λ(k)c (Uxs ) and fn0+1(Uxs ) ≤ fn0+1(U) or
λ
(k)
c (U) ≤ λ(k)c (Uxs ) and fn0+1(Uxs ) < fn0+1(U) for

each unicycle U ≠ Uxs , then Uxs is seen to be uniquely
k-UMR over the class of unicycles on n nodes. The
final result of a preliminary nature is given in our first
proposition.

Proposition 6 If U ≠ Uxs is a unicycle on n nodes,
then U consists of two node disjoint trees T1 and T2
each having at least two nodes, joined by two edges x
and y (see Figure 3.1).
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Proof: Let U be a unicycle different from Uxs having
unique cycle v1, v2, ..., v`, vl so that U consists of the
cycle together with ` node disjoint trees T1, T2, ..., T`
rooted at v1, v2, ..., v`, respectively (see Figure 3.2). If
` ≥ 4, then setting x = v1v2 and y = v3v4 establishes
the claim. If ` = 3, then, as U ≠ Uxs ,at least two of the
trees, say T1 and T2, have two or more nodes each.
Then setting x = v1v2 and y = v1v3 establishes the
claim.

We proceed now to the case k = 3 and n ≥ 7. In this
case n0 + 1 = n − 2 and we shall prove that Uxs is
uniquely 3-UMR not only over all the unicycles but
also over all graphs having n nodes and e = n edges
provided n ≥ 7.

Theorem 7 The unicycle Uxs is uniquely 3-UMR over
all graphs having n ≥ 7 nodes and e = n edges.

Proof: Consider a graph G on n ≥ 5 nodes with e = n
edges and maximum degree ∆(G). If G ≠ Uxs then
∆(G) ≤ n−2. Suppose ∆(G) ≤ 2; then, since the sum
of the degrees of the nodes in G is 2n, either G = Cn
or G is a disjoint union of cycles. Note that, in each
case, for n ≥ 7,

fn−2(G) = n(n − 3)
2

> n − 3 = fn−2(Uxs ).

Thus for each n ≥ 7, U(Uxs ;ρ) < U(G;ρ) for all
ρ ∈ (0,1). Next suppose that ∆(G) ≥ 3 and let node
u have degree equal to ∆(G). Now each edge not
incident at u forms pair of independent edges with
at least ∆(G) − 2 of the edges incident at u. Hence
fn−2(G) ≥ (n − ∆(G))(∆(G) − 2). The parabola
y = (n − ∆)(∆ − 2) opens downward with axis of
symmetry ∆ = n

2 + 1. Also, the y values at ∆ = 4
and ∆ = n − 2 are equal to 2n − 8. Thus, if ∆ ≥ 4
then fn−2(G) ≥ 2n − 8 > n − 3, for n ≥ 6. Now
λ
(k)
c (G) ≤ n − 2 = λ

(k)
c (Uxs ) since the removal of

n−2 edges from G leaving an independent pair yields
a failure state. Thus when ∆ ≥ 4 it follows that
U(Uxs ;ρ) < U(G;ρ) for all ρ ∈ (0,1). Finally, we
consider the case ∆(G) = 3 . Let node u have degree
equal to ∆(G) = 3 and N(u) = v1, v2, v3. As there
are at least seven edges in G, at least one of the n - 3
edges not incident at u is incident at most one node in
N(u). Each of the remaining n - 4 edges not incident
at u forms a pair of independent edges with at least
one edge incident at u. Thus

fn−2(G) ≥ n − 2 > n − 3 = λ(3)c (Uxs ).

Since fn−2(G) ≥ n − 2 it follows that U(Uxs ;ρ) <
U(G;ρ) for all ρ ∈ (0,1) and the proof is complete.
∎

To complete the case k = 3 we examine the sit-
uations e = n = 5 and e = n = 6 in turn. First, if
n = 5 and ∆(G) = 4 then G = Uxs , and if ∆(G) = 2,
then G = C5. Now λ

(k)
c (C5) = 3 but f3(C5) = 4 >

2 = f3(Uxs ). If ∆(G) = 3, let deg(u) = 3. If
one of the two edges not incident at u is incident at
only one node in N(u) then f3(G) ≥ 3. Otherwise
G = (K4 − x) ∪K1 and has λ(3)c (G) = 3, f3(G) = 2.
Thus Uxs and (K4 − x) ∪K1 are the 3-UMR graphs
on n = 5 nodes. Next suppose n = 6. We know if
∆(G) ≥ 4 and G ≠ Uxs , then U(Uxs ;ρ) < U(G;ρ)
for all ρ ∈ (0,1). If ∆(G) = 2 then G = C6 or
G = 2K3. If G = C6, then λ(k)c (C6) = 3 but f4(C6) =
9 > 3 = f4(Uxs ). If G = 2K3, then λ(k)c (2K3) = 4
but f4(2K3) = 9 > 3 = f4(Uxs ) If ∆(G) = 3 then
let deg(u) = 3 and observe that if one of three edges
not incident at u is incident with at most one node in
N(u) then such an edge forms at least two pairs of
independent edges with edges incident at u. The other
two form at least one pair with an edge incident at u so
f4(G) ≥ 4 > 3 = f4(Uxs ). Otherwise, G = K4 ∪ 2K1,
which has λ(3)c (G) = 4,= λ

(3)
c (Uxs ) f3(G) = 2.

Thus Uxs and K4 ∪ 2K1 are the 3-UMR graphs with
e = n = 6.

The preceding analysis leads to the following
corollary.
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Corollary 8 The graph Uxs is the unique 3-UMR uni-
cycle for n ≥ 5.

Next we proceed to the general case:

4 ≤ k ≤ n0;n0 ≥ 2.

We begin by proving an important vulnerability result
in the context of unicycles. We shall show that in all
instances, save one, Uxs is the unique unicycle with
λ
(k)
c = n0 + 1. All others have λ(k)c = n0 or less,

thereby indicating that Uxs is the unique most invul-
nerable unicycle subject to system failure. Initially,
we deal with the case where the cycle of the unicycle
U ≠ Uxs has length ` ≥ 4 and in preparation for that
result we require the next lemma.

Lemma 9 If n0 ≥ 2 and k ≥ 4, then λ(k)c (Cn) ≤ n0.

Proof: We know that λ(k)c (Cn) = ⌈ n
k−1⌉ = ⌈n0+1

k−1 ⌉ + 1

[5]. But ⌈n0+1
k−1 ⌉+1 ≤ n0 if and only if k

k−2 ≤ n0, which
is the case when k ≥ 4.∎

Theorem 10 If k ≥ 4, n0 ≥ 2 and U is a unicycle with
cycle length ` ≥ 4, then λ(k)c (U) ≤ n0.

Proof: We shall employ induction on n0 beginning
with base case n0 = 2. First, if ` = n, so that U = Cn,
the result follows by Lemma 9. If 4 ≤ ` ≤ n − 1, then
referring to Proposition 6 there is a Ti, say, T1, with
order at least two. Removal of the edges v1v` and
v2v3 leaves two components, one consisting of T1 and
T2 together with edge v1v2 and the other consisting
of T3, ..., T` together with the path v3, v4, ..., v`. The
first component contains at least two edges, so if the
second does as well, each will contain at most k − 2
edges, as the number of remaining edges is k. Hence
in this event λ(k)c (U) = 2 = n0. Suppose the second
component consists of one edge v3v4, i.e. ` = 4, (see
Figure 3.3). Since n = k+n0 ≥ 6, ∣V (T1)∣+ ∣V (T2)∣ ≥
4. In the event that ∣V (T1)∣ ≥ 3 but ∣V (T2)∣ = 1,
removal of v1v2 and v1v4 yields a failure state while if
∣V (T1)∣, ∣V (T2)∣ ≥ 2 , removal of v1v2 and v3v4 yields
a failure state. Hence if n0 = 2 and k ≥ 4, λ

(k)
c (U) =

2 = n0. Our induction hypothesis is that if n0 =m−1,
where m ≥ 3, and U has cycle length l where 4 ≤
` ≤ n, then λ(k)c (U) ≤ n0 = m − 1, for k ≥ 4. Now
consider a unicycle with n0 = m and cycle length l
where 4 ≤ ` ≤ n and suppose U = Cn; then λ(k)c (U) ≤
n0 by Lemma 9. If U ≠ Cn then U has a pendant
node and edge. Remove the pendant node and edge
obtaining a unicycle Û with n − 1 = m − 1 + k nodes
and cycle length l. The induction hypothesis forces
λ
(k)
c (Û) ≤m − 1 so λ(k)c (U) ≤m = n0 for k ≥ 4.

Our next theorem deals with the case l = 3 and in-
cludes the one exceptional case previously mentioned.

Theorem 11 Consider the class of all unicycles on
n = n0+k nodes when n0 ≥ 2 and l = 3, k ≥ 4. If U6 is
the unicycle where ∣V (T1)∣ = ∣V (T2)∣ = ∣V (T3)∣ = 2

(see Figure 3.3), then λ(4)c (U6) = 3 = n0 + 1. Other-
wise, i.e., if U ≠ Uxs , U6 then λ(k)c (U) ≤ n0.

Proof: First observe that if U has six nodes but is
not equal to Uxs or U , then, without loss of general-
ity, ∣V (T1)∣ = 3, ∣V (T2)∣ = 2, ∣V (T3)∣ = 1(see Figure
3.4).

The set {v1v2, v1v3} is a failure set so λ
(4)
c (U) =

2 = n0. We complete the proof by induction on n0
starting with the base case n0 = 2. Since we have
already considered n0 = 2, k = 4, it remains to as-
sume n ≥ 7 so that by the Pigeonhole Principle, some
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∣V (Ti)∣ , say ∣V (T1)∣ ≥ 3. But U ≠ Uxs implies, with-
out loss of generality, that ∣V (T2)∣ ≥ 2 and it follows
that {v1v2, v1v3} is a failure set since each of the two
components it leaves upon removal has at most k − 2
edges. Our induction hypothesis simply states that if
U is a unicycle on n nodes, different from Uxs with cy-
cle length l = 3 and n0 =m−1 ≥ 2, then λ(k)c (U) ≤ n0
where k ≥ 4. Now consider a unicycle U on n nodes
with cycle length l = 3 and n0 = m ≥ 3. The Pigeon-
hole Principle forces one ∣V (Ti)∣ , say ∣V (T1)∣ ≥ 3
and, since U ≠ Uxs , another, say ∣V (T2)∣ ≥ 2. Again,
as n ≥ 7, either

1. ∣V (T1)∣ ≥ 3, ∣V (T2)∣ ≥ 2, and ∣V (T3)∣ ≥ 2 or

2. ∣V (T1)∣ ≥ 3, ∣V (T2)∣ ≥ 3, and ∣V (T3)∣ = 1 or

3. ∣V (T1)∣ ≥ 4, ∣V (T2)∣ ≥ 2, and ∣V (T3)∣ = 1.

In the first case remove a pendant node and its edge
from T3, in the second case from T2 and in the third
case from T1, thereby arriving at a unicycle Û on n −
1 =m−1+k nodes with cycle length l = 3 and different
from Uxs , U6. Hence λ(k)c (U) ≤ λ(k)c (Û)+1 ≤m−1+
1 =m = n0 and the proof is complete. ∎

In the remainder of this section we prove that
Uxs is the unique k-UMR unicycle for 4 ≤ k ≤ n

2 .

Since λ
(k)
c (U) ≤ λ

(k)
c (Uxs ) for all unicycles with

only one exception, i.e. n = 6, n0 = 2, k = 4, and
e − (k − 2) = n0 + 2, it is only necessary to prove
that f3(U6) > f3(Uxs ) in the exceptional case and that
fn0+1(U6) ≥ fn0+1(Uxs ) for the other cases. Let’s
consider n = 6, n0 = 2 and k = 4 to begin with.
The unicycles in this case are shown in Figure 3.3.
It is easy to see that U1, U2, U3, U4 and U5 all have
λ
(4)
c = 2 = n0 and f3 ≥ 4 while f3(Uxs ) = 4. On the

other hand, f3(U6) > 4 = f3(Uxs ).

Now, for the remaining cases, we begin with the
observation that if U ≠ Uxs then by Proposition 6 we
can represent U by two trees T1 and T2 of orders n1 ≥
2 and n2 ≥ 2, respectively, joined by two edges x and
y (See Figure 2.1). We begin the analysis of this case
under the assumption that n1 ≥ k and n2 ≥ k and
establish a lower bound on the failure sets of size n0+
1 which include x and y. Of course, the removal of
n0 + 1 edges leaves a total of k − 1 edges so that if
x and y are removed and n0 − 1 additional edges are
removed so that at least one edge from T1 and one
edge from T2 remain then a failure state is obtained.
Thus, the number of failure sets of size n0 + 1 which
include x and y, denoted by fx,yn0+1

, satisfies

fx,yn0+1
≥
k−2

∑
i=1

(n1 − 1

i
)( n2 − 1

k − 1 − i) =

(n1 + n2 − 2

k − 1
) − (n1 − 1

k − 1
) − (n2 − 1

k − 1
).

But n1, n2 ≥ k implies that (n1−1
k−1

)+(n2−1
k−1

) is max-
imized when n1 = k and n2 = n0 or vice versa. Thus

fx,yn0+1
(U) ≥ (n − 2

k − 1
) − (n0 − 1

k − 1
) − 1.

Next we prove that there exist (n−4
k−1

) additional fail-
ure sets that include at most one of the edges x and
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y. There are two scenarios to consider dependent on
deg(u2), where x = u1u2. Assume without loss of
generality that y = uv where u ∈ V (T1), v ∈ V (T2)
but v ≠ u2. Now if deg(u2) ≥ 3 let w be the edge
incident on u2 that lies on the unique path of T2 from
u2 to v and let z be any other edge incident on u2 in
T2. Now if x and w are removed together with n0 − 1
additional edges not including y and z a failure state
results, since y and z lie in separate components (see
Figure 3.6(a)). As there are ( n−4

n0−1
) of these sets the

claim is established in this case. The other scenario
involves the case where deg(u2) = 2. Let w be the
edge of T2 with endpoint u2 and consider removing
n0 − 1 edges including y and w but not x or z where
z is an arbitrary but fixed edge of T2 different from
w. Realize edge z exists since n2 ≥ k ≥ 4 (see Fig-
ure 3.6(b)). A failure state results since x and z lie in
separate components. Here too there are ( n−4

n0−1
) such

sets. Thus

fn0+1(U) ≥ (n − 4

k − 1
) + ( n − 4

n0 − 1
) − (n0 − 1

k − 1
) − 1.

Consider

D = fn0+1(U) − fn0+1(Uxs ) =

(n − 2

k − 1
)+(n0 − 1

k − 1
)+( n − 4

n0 − 1
)−( n − 3

n0 − 1
)−( n − 3

n0 + 1
)−1 =

(n − 2)!
(k − 1)!(n0 − 1)!+

(n − 4)!
(k − 3)!(n0 − 1)!−

(n − 3)!
(k − 2)!(n0 − 1)!−

(n − 3)!
(k − 4)!(n0 + 1)!−[(

n0 − 1

k − 1
)+1] = (n − 4)!

(k − 1)!(n0 + 1)!−

[(n−2)(n−3)(n0+1)(n0)+(k−1)(k−2)(n0+1)(n0)−
(n−3)(k−1)(n0+1)(n0)−(n−3)(k−1)(k−2)(k−3)]−
[(n0−1

k−1
) + 1]. Now,

(n0 − 1

k − 1
) = (n0 − 1)!

(n0 − k)!(k − 1)! =

(n − 4)!
(n0 + 1)!(k − 1)!

(n0 + 1)!(n0)⋯(n0 − k + 1)!
(n − 4)(n − 5)⋯(n0)

≤

(n − 4)!
(n0 + 1)!(k − 1)!(n0 + 1)(n0)(n0 − 1)(n0 − 2)

and it follows that

D ≥ (n − 4)!
(n0 + 1)!(k − 1)![(n0+1)(n0)(n0−2)(n0−3)+

(k−1)(k−2)(n0+1)(n0)−(k−1)(n−3)(n0+1)(n0)−
(n−3)(k−1)(k−2)(k−3)−(n0+1)(n0)(n0−1)(n0−2)]−

1 = (n − 4)!
(n0 + 1)!(k − 1)![(n − 3)(k − 1)((n0 + 1)(n0)−

(k − 2)(k − 3))] − 1 = ( n − 3

n0 − 1
) − ( n − 3

n0 + 1
) − 1 =

(n − 2

k − 2
) − (n − 3

k − 4
) − 1 > 0

because the binomial coefficients strictly increase as
the subset size increases toward the midpoint of the
set size.

Next we consider the case where 3 ≤ n1 ≤ k − 1,
n2 ≥ n1. As in the previous case, fx,yn0+1

(U) ≥
(n0+k−2
n0−1

)−(n2−1
k−1

). But here, n2 ≤ n−3 so fx,yn0+1
(U) ≥

(n0+k−2
n0−1

)−(n0+k−4
k−1

). Also, as the argument used in the
previous case applies whether y is incident at either
u1 or u2, we can show that there exists (n0+k−4

k−1
) addi-

tional failure sets so that fx,yn0+1
(U) ≥ (n0+k−2

n0−1
). Thus,

D = fx,yn0+1
(U) − fx,yn0+1

(U sx) ≥ (n0+k−2
n0−1

) − (n0+k−3
n0−1

)−
(n0+k−3
n0+1

) = (n−3
k−1

) − (n−3
k−4

) > 0 for basically the same
reason as in the previous case.

Finally, suppose that n1 = 2. In this case, n2 =
n − 2 so fx,yn0+1

(U) ≥ (n0+k−3
n0−1

). Here we claim that

there are at least 2(n0+k−4
n0−1

) additional failure sets for
all possible scenarios but one (see Figure 3.7). Indeed,
if this is the case then

fx,yn0+1
(U) − fx,yn0+1

(U sx) ≥
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(n0 + k − 3

n0 − 1
) + 2(n0 + k − 4

n0 − 1
) − (n0 + k − 3

n0 − 1
)−

(n0 + k − 3

n0 + 1
) = 2(n0 + k − 4

n0 − 1
) − (n0 + k − 3

n0 + 1
) =

(n0 + k − 4)!
(k − 3)!(n0 + 1)![2n0

2 − (k − 5)n0 − (k − 3)2] >

0 if n0 ≥ k.
To prove the claim we consider all possible sce-

narios as shown below in Figure 3.7 and show that for
(a) through (d) the claim holds. We verify fx,yn0+1

(U)−
fx,yn0+1

(U sx) ≥ 0 directly for the scenario shown in (e).
In (a) T2 must contain a path from u2 to some

node u2 of length at least two, since U ≠ U sx . Then
by choosing failure sets, including x and z but not y
and w and failure sets including y and z but not x and
w we obtain 2(n0+k−4

n0−1
) additional failure sets. In (b)

realize that either T ′2 or T ′′2 contains an edge, say T ′2.
Then failure sets containing x and z but not y and w
together with failure sets containing w and z but not x
and y yield an additional failure sets.

In (c) we may consider failure sets including x
and w but not y and z and failure sets including y
and z but not x and w to obtain the claim. As re-
gards (d), failure sets (i) including x and z but not
y and w and (ii) including y and z but not x and w
establish the claim. As for (e) observe that if either
x and y are included but z isn’t or if x and z are
included but y isn’t, then the number of failure sets
is at least 2(n0+k−4

n0−1
). Thus fx,yn0+1

(U) − fx,yn0+1
(U sx) =

( n−3
n0−1

) − ( n−3
n0+1

) = (n−3
k−2

) − (n−3
k−4

) > 0 and the proof is
complete.
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4 Necessary conditions for uniform
optimality

Throughout this section the overriding assumption is
that 4 ≤ k + 1 ≤ n ≤ e so that by Corollary 4,
λ
(k)
c (G) ≤ e − (k − 1) and we may write Uk(G;ρ) =
∑e−(k−1)
i=λ

(k)
c (G)

fi(G)ρi(1 − ρ)e−i + ∑ei=e−(k−2) (
e
i
)ρi(1 −

ρ)e−i. . Observe that e − fe−k−1 is the number of sub-
trees of G with k nodes.

The theorem of this section describes condi-
tions on the coefficients in the unreliability expres-
sion given above for determining when Uk(G1;ρ) <
Uk(G2;ρ) for all sufficiently small ρ and also when
the inequality holds for all sufficiently large ρ.

Theorem 12 Suppose G1 and G2 have n nodes and
e edges where 4 ≤ k + 1 ≤ n ≤ e. Then

1. if λ(k)c (G1) > λ
(k)
c (G2), then there exists ρ0 ∈

(0,1) such that Uk(G1;ρ) < Uk(G2;ρ) for all
ρ ∈ (0, ρ0);

2. if λ(k)c (G1) = λ(k)c (G2), and i0 is the smallest in-
dex such that fi0(G1) ≠ fi0(G2), then fi0(G1) <
fi0(G2) implies there exists ρ0 ∈ (0,1) such that
Uk(G1;ρ) < Uk(G2;ρ) for all ρ ∈ (0, ρ0);

3. if i1 is the largest index, necessarily at most
e − (k − 1), such that fi1(G1) ≠ fi1(G2), then
fi1(G1) < fi1(G2) implies there exists ρ1 ∈
(0,1) such that Uk(G1;ρ) < Uk(G2;ρ) for all
ρ ∈ (ρ1,1).

Proof:

1. Observe that

Uk(G2;ρ) −Uk(G1;ρ) =

f
λ
(k)
c (G2)

ρλ
(k)
c (G2)(1 − ρ)e−λ

(k)
c (G2)

+
e

∑
i=λ

(k)
c (G2)+1

(fi(G2) − fi(G1))ρi(1 − ρ)e−i.

Set p = ρ
1−ρ so that ρj(1 − ρ)e−j = (1 − ρ)epj for

all j. Thus

Uk(G2;ρ) −Uk(G1;ρ) =

(1 − ρ)epλ
(k)
c (G2)[f

λ
(k)
c (G2)

(G2)+
e

∑
i=λ

(k)
c (G2)+1

(fi(G2) − fi(G1))pi−λ
(k)
c (G2)].

Hence there exists a p0 such that if p ∈ (0, p0)
then the quantity in the brackets is positive. But
ρ = p

1+p0
is an increasing function of p so there

exists ρ0 such that ρ ∈ (0, ρ0) implies p ∈ (0, p0)
and the result follows.

2. In this case Uk(G2;ρ) − Uk(G1;ρ) = (1 −
ρ)epi0[fi0(G2) − fi0(G1) + ∑ei=i0+1(fi(G2) −
fi(G1))pi−i0], and the result follows as in the
previous argument.

3. Observe that Uk(G2;ρ) − Uk(G1;ρ) =
∑i1i=0(fi(G2) − fi(G1))ρi(1 − ρ)e−i = ρi1(1 −
ρ)e−i1∑i1i=0[(fi(G2)−fi(G1))ρi−i1(1−ρ)i1−i] =
ρi1(1−ρ)e−i1∑i1i=0[(fi(G2)−fi(G1))(1−ρρ )i−i1].
Set p = 1−ρ

ρ so that Uk(G2;ρ) − Uk(G1;ρ) =
ρi1(1 − ρ)e−i1∑i1i=0[(fi(G2) − fi(G1))pi1−i].
Now if i1 = 0 then f0(G2) = 1 and
f0(G1) = 0 and Uk(G2;ρ) − Uk(G1;ρ) =
ρi1(1 − ρ)e−i1((fi1(G2) − fi1(G1) +
∑i1−1i=0 [(fi(G2) − fi(G1))ρ)i−i1(1 − ρ)i−i1]).
Thus there exists p1 ≤ 1 such that if p ∈ (0, p1)
then the quantity in the brackets is positive. As
ρ = 1

1+p is decreasing on (0, p1] there exists ρ1
such that ρ ∈ (ρ1,1) implies p ∈ (0, p1) and the
result follows. ∎

The following corollary yields necessary conditions
for a graph to be UMR over all graphs in a given col-
lection (necessarily having the same numbers of nodes
and edges).

Corollary 13 If C is a collection of graphs, all with
the same number of nodes n and the same number of
edges e, where 4 ≤ k + 1 ≤ n ≤ e, and G is k-UMR
over C then

1. λ(k)c (G) is maximum over C;

2. f
λ
(k)
c (G)

is minimum over all H ∈ C having

λ
(k)
c (H) = λ(k)c (G);

3. G has the minimum value of fe−(k−1) over C (or
equivalently, has the maximum number of sub-
trees of order k).

Proof:

1. λ(k)c (H) > λ(k)c (G) where H ∈ C, then, by The-
orem 12(1), there exists ρ0 ∈ (0,1] such that
Uk(H;ρ) < Uk(G;ρ) for all ρ ∈ (0, ρ0), which
contradicts G being k-UMR over C.

2. If λ
(k)
c (H) = λ

(k)
c (G) = λ but fλ(H) <

fλ(G) then, by Theorem 12(2), there exists ρ0 ∈
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(0,1] such that ρ ∈ (0, ρ0) implies Uk(H;ρ) <
Uk(G;ρ), which contradicts G being k-UMR
over C.

3. If fe−(k−1)(H) < fe−(k−1)(G), then as i1 = e −
(k − 1), we obtain a contradiction to G being k-
UMR by Theorem 12(3). ∎

We apply this Corollary in our next section in
showing that there exists a range of values of k for
which no k-UMR graph on n nodes with e = n exists.

5 On the Existence of k-UMR Unicy-
cles for Large Values of k Relative
to n

As we have shown in Sections 2 and 3, k-UMR unicy-
cles exist whenever 3 ≤ k ≤ n

2 . In this section we note
that the cycle Cn is n-UMR and prove that (n - 1)-
UMR unicycles exist. The somewhat surprising result
that if

2n0 + 5 +
√

8n20 + 1

2
< k ≤ n − 2,

then k-UMR unicycles do not exist is also established
here.

To begin, the fact that Cn is the unique n-UMR
unicycle was established in [10] as λ(n)c = λ, the line-
connectivity. The case k = n − 1 is a bit more compli-
cated and is the subject of our next theorem.

Theorem 14 If e = n = k + 1 ≥ 5, then

1. when k is even, the unicycle Uk consisting of k
2

pendant edges all attached to a single node of the
cycleC k

2
+1 is the unique (n - 1)-UMR unicycle on

n nodes (see Figure 5.1(a));

2. when k is odd, the unicycle U ′

k consisting of k+12
pendant edges all incident on a single node of
the cycle C k+1

2
and the unicycle U ′′

k consisting of
k−1
2 pendant edges all attached to a single node

of the cycle C k+3
2

are the only two (n - 1)-UMR
unicycles on n nodes (see Figure 5.1(b)).

Proof: Suppose that U is a unicycle on n nodes with
cycle length ` and let `2 be the number of nodes
on the cycle of degree equal to two. We claim that
λ
(n−1)
c (U) ≤ 2. Indeed, if ` = 3 then there exists a

node on the cycle C3 of degree at least three, so re-
moval of the two edges of C3 adjacent to such a node
yields a failure state. If ` ≥ 4, then removal of two in-
dependent edges of C` yields a failure state. Next re-
alize that f2(U) ≥ (`

2
)−`2+(k+1−`2

) since every pair of

edges of C` except for those adjacent to a node on the
cycle of degree two and every pair of edges not on the
cycle are failure sets. Consider the parabolic function
f(x) = (x

2
)−(x−1)+(k+1−x

2
) = 2x2−(2k+4)x+k2+k+2

2 =
x2−(k−2)x+ k2+k+22 (where the binomial coefficients
have the obvious interpretation when x not an integer)
which has a unique minimum at x = k

2 + 1. Since Uk
is the only unicycle with f2(U) = f(k2 + 1) when k
is even, the result in (1) follows immediately. In the
event that k is odd consider the problem of minimiz-
ing f(x) when x is constrained to be an integer. Then
the minimum value of f(x) occurs only when x = k+1

2

or x = k+3
2 . As f2(U ′

k) = f(k+12 ) = f(k+32 ) = f2(U ′′

k ),
(2) follows and the proof is complete. ∎

The final result of this section establishes the non-
existence of k-UMR unicycles for a range of large val-
ues of k.
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Theorem 15 If e = n = n0 + k,n0 ≥ 2 and k ≥ 4, then
a k-UMR unicycle does not exist when

k >
2n0 + 5 +

√
8n20 + 1

2
.

Proof: First recall from Theorem 10 and Theorem 11
that λ(k)c (U) ≤ n0 for U ≠ Uxs with the sole excep-
tion of n = 6, k = 4 and n0 = 2, where λ(k)c (U6) = 3 =
n0+1. As λ(k)c (Uxs ) = n0+1, it follows that λ(k)c (U) <
λ
(k)
c (Uxs ) whenever n ≥ 4, k ≥ 4 andn0 ≥ 2. Hence if

a k-UMR unicycle exists it must be Uxs , by Corollary
13(1), and in this case, fn0+1(U) ≥ fn0+1(Uxs ) for all
unicycles U on n nodes, by Corollary 13(3). But we
shall see that if k satisfies the condition of the theo-
rem the unicycle U4, having n − 4 pendant edges all
incident on a single node of C4 (see Figure 5.2) has a
smaller value of fn0+1 than Uxs , thereby proving that
a k-UMR unicycle doesn’t exist. Indeed

fn0+1(Uxs ) = (n0 + k − 4

n0 + 1
) + 3(n0 + k − 4

n0 − 1
)

+2(n0 + k − 4

n0 − 2
)

so that
fn0+1(Uxs ) − fn0+1(U4) =

1

n0!
[(n0 + k − 4)(n0 + k − 5)⋯(k − 1)]

[(k − 2)(k − 3) + n0(n0 − 2k + 3) − 2n0(n0 + 1)]
(n0 + k − 4)!
n0!(k − 2)! (k2 − (2n0 + 5)k + 6 + 5n0 − n02).

Now the expression in the second set of brackets is
positive if

k >
2n0 + 5 +

√
8n20 + 1

2
.

Of course if n0 ≥ 2 then the condition requires that
k > 9+

√

33
2 > 7 which is consistent with the proviso

that n ≥ 7. This concludes the proof. ∎

Corollary 16 follows immediately from Theorem 15
after direct substitution of numerical values.

Corollary 16 If n0 = 2, then when k ≥ 8, no k-UMR
unicycle exists.
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