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Abstract: The behaviour of circular plates with internal rigid ring supports is investigated. The material of plates is
assumed to be an ideal elastic material obeying the Hooke’s law. The case of an elastic circular plate supported at
the edge and resting on an absolutely rigid ring support is studied in a greater detail. Various optimization problems
with unknown positions of extra supports are discussed and the problem of optimal location of the internal support
is solved under the condition that the cost of the support is proportional to its length. Making use of the variational
methods of the optimal control theory necessary conditions of optimality are deduced analytically. Numerical
results are presented for the case of uniformly distributed transverse pressure.
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1 Introduction

The reduction of the compliance of thin walled struc-
tures like beams, plates and shells is often the pri-
mary concern in the engineering mechanics. The need
for reduction of the compliance and the increase of
the structural stiffness is related to the use of light-
weight structures which are less material consuming
than the traditional structures. One of the ways of in-
creasing the stiffness of beams, plates and shells is to
furnish these structural elements with additional sup-
ports. Evidently, it is reasonable to settle these sup-
ports at the optimal positions.

The problem of minimization of the compliance
of elastic beams and the determination of the optimal
location of the additional support was first formulated
by Mroz and Rozvany [22]. In the paper [22] designs
of minimum compliance of beams are established in
the case of quasistatic loading. Later Szelag and Mroz
[27], Akesson and Olhoff [1] treated the problems of
maximal eigenfrequency for given stiffness with re-
spect to the location of the additional support. Bo-
jczuk and Mroz [3] developed a new method for si-
multaneous optimization of topology, configuration
and cross-sectional dimensions of elastic beams and
beam structures extending earlier results by Garstecki
and Mroz [6], Mroz and Lekszycki [21], also by
Lepik [20]. In the subsequent papers by Bojczuk and
Mroz [4] this concept was applied for optimal de-
sign of active supports with force actuators. Olhoff
and Akesson [23] treated the stability of columns and
Wang et al [31] studied the buckling of axisymmetric

plates.

A lot of attention has been paid in the literature
to the optimization of internal supports to beam, plate
and shell structures in the case of inelastic materials.
Probably the first paper in this area is due to Prager
and Rozvany [24]. Systematic reviews of results ob-
tained in earlier papers are presented by Rozvany [26],
also by Lellep and Lepik [12]. Optimal designs of
circular cylindrical shells with additional supports are
established by Lellep [8, 11] in the case of dynamic
loading and an ideal plastic material. The behaviour
of geometrically non-linear cylindrical shells with in-
ternal supports is studied in [9, 10, 11, 13].

Optimal designs of axisymmetric plates and
shells of various shape made of elastic and inelastic
materials are established in [16, 17, 18, 19]. Inelastic
spherical and conical shells are studied in [17, 18, 19]
whereas a stress strain analysis of an annular plate
made of an elastic plastic material is presented in [15].

A design sensitivity analysis for the deflection of
beam or plate structures was undertaken by Wang [31]
in the case of simple supports located at given mesh
nodes. Stiffened sector plates are studied in [28].

In the present paper an analytical method of deter-
mination of positions of rigid ring supports for circu-
lar plates is developed. The analysis is confied to the
axisymmetric response of elastic plates to subjected
loads.

WSEAS TRANSACTIONS on MATHEMATICS Jaan Lellep, Julia Polikarpus

E-ISSN: 2224-2880 222 Issue 3, Volume 11, March 2012



2 Formulation of the problem
Let us consider axisymmetric deformations of a cir-
cular plate subjected to the axisymmetric transverse
loading of intensity P = P (r) (Fig. 1). Here r is the
current radius e. g. the distance from the center of the
plate. As we are studying the axisymmetric response
of the plate all points lying at the circle with radius r
have common displacements W (r) in the transverse
direction as well as common deformations and curva-
tures κ1, κ2 in the radial and circumferential direc-
tions, respectively. Note that the radial displacement,
also radial and circumferential membrane forces will
be neglected in the present study whereas classical
equations of the bending theory of thin plates will be
used.

The plate under consideration is simply supported
at the edge and it is resting on an absolutely rigid ring
support of unknown radius r = s. From practical con-
siderations it is evident that the desirable position of
the additional support is such that the maximal deflec-
tion of the plate is as small as possible. Thus the op-
timal location of the internal support should minimize
the functional

I1 = max
r∈[0,R)

W (r, P, s) (1)

for given loading P = P (r) and thickness h = h(r).
However, the cost function presented in the form
(1) has several drawbacks. First of all, it is a non-
differentiable and non-additive functional. The use of
non-differentiable functionals in the solution of prob-
lems of optimization is quite complicated. On the
other hand, the functional (1) ignores the expenditures
necessary for manufacturing of the additional support.

It can be shown that an approximation of the func-
tional (1) can be presented as [2, 12]

I2 =

(∫ R

0
W krdr

) 1
k

(2)

where k is an integer. If k →∞ then I2 → ‖W‖.
Due to the circumstancies mentioned above in the

present paper the cost function

J =

∫ R

0
W krdr + µ02πs (3)

will be employed. In (3) µ0 stands for the specific cost
(cost per unique length) of the additional support. We
assume herein that the material cost of the additional
support is proportional to its length.

The aim of the paper is to determine the design of
the plate with an additional support which minimizes
the cost function (3) so that at each value of P govern-
ing equations of the theory of thin axisymmetric plates
with appropriate boundary conditions are satisfied.

���

���

���

���

���

���

���

���

s s RRO O

P

Figure 1: Circular plate with additional support.

3 Equilibrium equations
The linear theory of thin plates with small strains and
small deflections will be employed(see Reddy [25],
Vinson [30]). According to this approach one can
treat the equilibrium of internal and external forces
and couples on the basis of an undeformed element
of the plate. Let M1, M2 be the generalized couples
called bending moments in the radial and circumfer-
ential directions, respectively. Bending moments M1,
M2 are the only generalized stress components con-
tributing to the internal energy. Note that the mem-
brane forces are assumed to be small so that one can
neglect the membrane action of internal forces. Al-
though the shear forceQmay be finite it does not con-
tribute to the internal energy in the classical plate the-
ory. The reason is that the corresponding strain com-
ponent vanishes.

In the frameworks of the classical plate theory
couples M1, M2 with forces Q and P form a system
of forces and moments which keep the element of the
plate in equilibrium. The equilibrium conditions of a
plate element can be written as (see Vinson [30])

d

dr
(rM1)−M2−rQ = 0,

d

dr
(rQ)+P (r)r = 0. (4)

4 Constitutive equations
It is assumed that the material of the plate is an ideal
elastic material obeying the Hooke’s law. In its origi-
nal form Hooke’s law holds good for principal stresses
as

σ1 =
E

1− ν2
(ε1 +νε2), σ2 =

E

1− ν2
(ε2 +νε1) (5)

where E and ν are the moduli of elasticity and ε1,
ε2 stand for corresponding strain components. In the
case of pure bending

ε1 = zκ1, ε2 = zκ2 (6)

where z is the distance between a current point and
the middle surface of the plate. Principal curvatures
κ1, κ2 can be expressed as

κ1 = −d
2W

dr2
, κ2 = −1

r

dW

dr
. (7)
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Substituting strain components (6) in (5) and inte-
grating over the plate thickness yields the generalized
Hooke’s law

M1 = D(κ1 + νκ2),M2 = D(κ2 + νκ1) (8)

where the flexural stiffness

D =
Eh3

12(1− ν2)
. (9)

Taking a look at the equilibrium and constitutive
equations (4) – (9) it appears that one can eliminate
from the set of basic equations variables σ1, ε1, σ2, ε2,
κ1, κ2 and also M2. Introducing another new variable
Z one can present the system of governing equations
as

dW

dr
= Z,

dZ

dr
= −M1

D
− νZ

r
,

dM1

dr
=
D(ν2 − 1)Z

r2
− M1(1− ν)

r
+Q,

dQ

dr
= −Q

r
− P (r).

(10)

Variables W , Z, M1, Q will be treated as state
variables which satisfy the state equations (10) with
appropriate boundary and intermediate conditions. At
the outer edge of the plate , e. g. at r = R bending
moment M1 and the deflection W must vanish. Thus

M1(R) = 0, W (R) = 0. (11)

Due to the symmetry at the center of the plate

dW

dr
(0) = 0, Q(0) = 0. (12)

At r = s where the rigid ring support is located must
be

W (s) = 0. (13)

Note that state variables W , Z, M1 are continu-
ous whereas Q can be discontinuous at r = s.

5 Necessary optimality conditions
Evidently, the posed problem can be considered as a
particular problem of the optimal control. It consists
in the minimization of the cost function (3) among the
trajectories of the system (10) with boundary condi-
tions (11) – (13). In order to establish the require-
ments to be satisfied by the optimal solution let us

introduce the augmented functional (see Bryson [5],
Hall [7]; Lellep, Polikarpus [14, 16])

J∗ = µs+

∫ s

0
F∗dr +

∫ R

s
F∗dr (14)

where according to (3), (10)

F∗ = W k + ψ1

(
dW

dr
− Z

)
+

+ψ2

(
dZ

dr
+
M1

D
+
νZ

r

)
+

+ψ3

(
dM1

dr
− D(ν2 − 1)Z

r2
+

+
M1(1− ν)

r
−Q

)
+

+ψ4

(
dQ

dr
+
Q

r
+ P (r)

)
(15)

and µ = 2πµ0, the quantities ψ1 – ψ4 being adjoint
variables.

Evidently the problem posed above belongs to the
class of optimal control problems with moving bound-
aries. Therefore, one has to employ total variations
when deriving necessary conditions of minimum of
the functional (14). The total variation of a state vari-
able y at r = s+ 0 or at r = s− 0 must be calculated
by the following sample

∆y(s± 0) = δy(s± 0) +
dy(s± 0)

dr
·∆s (16)

where ∆y is the total variation and δy stands for the
ordinary variation of the variable y. If the state vari-
able is continuous at r = s then, ofcourse, ∆y(s −
0) = ∆y(s+0) = ∆y(s). However, in the case of dis-
continuous variables one has to distinguish the quan-
tities ∆y(s− 0) and ∆y(s+ 0). Note that even in the
case of continuous variables the quantities δy(s − 0)
and δy(s+ 0) must not be equal to each other.

The total variation of a Lagrange’ functional is
calculated by the rule (see Bryson [5]),

∆

∫ s

0
Fdr = δ

∫ s

0
Fdr + F |s ·∆s (17)

where ∆s stands for an arbitrary increment of s. Ac-
cording to (17) one can write

∆J∗ = µ∆s+ δ
∫ s
0 F∗dr + δ

∫ R
s F∗dr+

+F∗|s−∆s− F∗|s+∆s.
(18)
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Figure 2: Transverse deflections.

Taking (15) into account one can easily determine
the following weak variation

δ
∫ b
a F∗dr =

∫ b
a {kW

k−1rδW − dψ1

dr
δW−

−ψ1δZ −
dψ2

dr
δZ +

ψ2

D
δM1 +

νψ2

r
δZ−

−dψ3

dr
δM1 −

D(ν2 − 1)ψ3

r2
δZ+

+
ψ3(1− ν)

r
δM1 − ψ3δQ−

dψ4

dr
δQ+

+
ψ4

r
δQ}dr + (ψ1δW + ψ2δZ+

+ψ3δM1 + ψ4δQ) |ba

(19)

where a and b are arbitrary boundaries of integration.
Substituting the both integrals in (18) by (19) with ap-
propriate choise of boundaries a and b leads to the re-
lation

∆J∗ = µ∆s+
∫ R
0 {kW

k−1rδW−

−dψ1

dr
δW − ψ1δZ −

dψ2

dr
δZ +

ψ2

D
δM1+

+
νψ2

r
δZ − dψ3

dr
δM1 −

D(ν2 − 1)ψ3

r2
δZ+

+
ψ3(1− ν)

r
δM1 − ψ3δQ−

dψ4

dr
δQ+

+
ψ4

r
δQ}dr + (ψ1δW + ψ2δZ + ψ3δM1+

+ψ4δQ) |s0 + (ψ1δW + ψ2δZ+

+ψ3δM1 + ψ4δQ) |Rs

(20)

where the matter that F∗(s) = 0 has taken into ac-
count.
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Figure 3: Transverse deflections.

Making use of (20) one easily obtains from the
equation ∆J∗ = 0 the system of adjoint equations

dψ1

dr
= rkW k−1,

dψ2

dr
= −ψ1 +

νψ2

r
− D(ν2 − 1)ψ3

r2
,

dψ3

dr
=
ψ2

D
+
ψ3(1− ν)

r
,

dψ4

dr
= −ψ3 +

ψ4

r
.

(21)

Note that although the adjoint set (21) holds good for
each r ∈ [0, r] it must be integrated separately in re-
gions (0, s) and (s,R), respectively. The reason is
that some of adjoint variables can be discontinuous at
r = s.

Boundary conditions (11), (12) admit to present
the transversality conditions as

ψ1(0) = 0, ψ3(0) = 0 (22)

and

ψ2(R) = 0, ψ4(R) = 0. (23)

Substituting (21) – (23) in (20) admits to rewrite the
equation ∆J∗ = 0 as

µ∆s− (ψ1δW + ψ2δZ+

+ψ3δM1 + ψ4δQ)|s+0
s−0 = 0.

(24)

From the physical considerations it is evident that
W , Z and M1 are continuous at r = s. Thus follow-
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Figure 4: Transverse deflections.

ing (16) one can write

δW (s± 0) = ∆W (s)− dW

dr
(s) ·∆s,

δZ(s± 0) = ∆Z(s)− dZ

dr
(s) ·∆s,

δM1(s± 0) = ∆M1(s)−

−dM1(s± 0)

dr
·∆s,

δQ(s± 0) = ∆Q(s± 0)−

−dQ(s± 0)

dr
·∆s.

(25)

Substituting the weak variations of state vari-
ables from (25) to (24) and taking into account that
∆W (s) = 0 and ∆Z(s), ∆M1(s), ∆Q(s ± 0) are
independent leads to the requirements

ψ2(s− 0)− ψ2(s+ 0) = 0,

ψ3(s− 0)− ψ3(s+ 0) = 0
(26)

and
ψ4(s− 0) = ψ4(s+ 0) = 0. (27)

It was assumed above that Z and M1 are contin-
uous everywhere; thus in particular at r = s. Bearing
in mind the continuity of M1 it infers from (7) and (8)

that κ1 = −dZ
dr

is also continuous at r = s.
Substituting (25) – (27) in (24) and taking into

account the continuity of Z, κ1, κ2 and ψ2, ψ3, also
the arbitrariness of the increment ∆s one can present
(24) as

µ+ [ψ1(s)]
dW (s)

dr
+ ψ3(s)

[
dM1(s)

dr

]
= 0. (28)
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Figure 5: Radial bending moments.

In (28) the quadratic brackets denote the finite jumps
of corresponding variables at r = s, e. g.

[y(s)] = y(s+ 0)− y(s− 0)

where y(s± 0) stands for right and left hand limits of
the discontinuous variable y(r) at r = s.

6 Solution of governing equations
In order to solve the problem up to the end one has to
integrate the system of equations (10). Let us study
the state equations (10) in greater detail in the case
when the plate thickness h is constant. In this case it
follows from (9) that D = const, as well. Integrating
the last equation in the system (10) one obtains

Q = −1

r

(∫
P (r)dr + C±

)
(29)

where C+ and C− stand for constants of integration
in the regions [0, s] and [s,R], respectively.

For the subsequent integration of (10) it is reason-
able to substitute Q and M1 making use of (29) and
(7), (8) in (10). This results in a fourth order equa-
tion with respect to the deflection W known from the
theory of elatic plates (see Reddy [25], Vinson [30];
Ventsel, Krauthammer [29]). The general solution of
this equation can be presented in the case P = const
as

W =
Pr4

64D
+A1jr

2 ln r +A2jr
2+

+A3j ln r +A4j

(30)

for r ∈ [rj , rj+1] and j = 0, 1. Here the following no-
tation is used: r0 = 0, r1 = s and r2 = R. Evidently,

Z =
Pr3

16D
+A1jr(2 ln r + 1) + 2A2jr +

A3j

r
(31)
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Figure 6: Radial bending moments.

and

M1 = −Pr
2(3 + ν)

16
−

−A1jD[3 + ν + 2(1 + ν) ln r]−

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j ,

M2 = −Pr
2(1 + 3ν)

16
−

−A1jD[1 + 3ν + 2(1 + ν) ln r]−

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j .

(32)

The integration constants A1j – A4j will be deter-
mined from the boundary and continuity conditions.
Let us consider first the solution in the internal region
for r ∈ [0, s]. Here j = 0 in (30) – (32). Since at the
center of the plate the quantitiesW (0),M1(0),M2(0)
must be finite whereas according to (12)Z(0) = 0 one
has

A10 = 0, A30 = 0. (33)

Boundary conditions (11) with (13) and the con-
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Figure 7: Radial bending moments.

tinuity requirements for Z and M1 result in

A20s
2 +A40 +

Ps4

64D
= 0,

A11s
2 ln s+A21s

2 +A31 ln s+

+A41 +
Ps4

64D
= 0,

−2sA20 +A11s(1 + 2 ln s)+

+2A21s−
A31

s
= 0,

−2A20 +A11(3 + 2 ln s)+

+2A21 −
A31

s2
= 0,

A11R
2 lnR+A21R

2 +A31 lnR+

+A41 +
PR4

64D
= 0,

A11[2(1 + ν) lnR+ 3 + ν]+

+2(1 + ν)A21 −
A31(1− ν)

R2
+

+
PR2(3 + ν)

16D
= 0.

(34)

The system (34) can be easily solved with respect to
unknowns A20, A40, A11, A21, A31, A41 and pre-
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sented as

A20 =
p

K
·
[
R6 [2(ν + 5)(ln s− lnR)+

+ 3ν + 13] + s2R4 [4(ν + 3)·

·(ln s− lnR) −3ν − 13] +

+s4R2 [2(ν + 1)(ln s− lnR)+

+ ν − 1] + s6(1− ν)
]
,

A40 =
−ps2R2

K
·
[
R4 [2(ν + 5)·

·(ln s− lnR) +3ν + 13] +

+4s2R2 [(ν + 3)(ln s− lnR)−

− ν − 4] + s4 [−2(ν + 1)·

·(ln s− lnR) +ν + 3]] ,

A11 =
2pR2

K
·
[
(ν + 5)R4−

−2(ν + 3)s2R2 + +(ν + 1)s4
]
,

A21 =
−p
K

[
R6[2(ν + 5) lnR− ν − 3]+

+s2R4[4(ν + 3)(lnR− 2 ln s)− ν + 1]+

+s4R2[2(ν + 1) lnR+ ν + 3]+

+s6(ν − 1)
]
,

A31 = s2 ·A11,

A41 =
−ps2R2

K

[
R4 [2(ν + 5)·

·(2 ln s− lnR) +ν + 3]−

−4s2R2[(ν + 3) lnR+ 1]+

+s4[2(ν + 1) lnR− ν + 1]
]
,

(35)

where

K = 64D
[
(ν − 1)s4 − (ν + 3)R4+

+4s2R2[(ν + 1)(lnR− ln s) + 1]
]
.

7 Solution of the adjoint system
The adjoint system (21) can be integrated after the
substitution of (30) in (21). For the sake of simplicity
let us consider the case when k = 1 in greater detail.
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Figure 8: Hoop moments.

It is easy to recheck that the general solution of
(21) corresponding to the case k = 1 can be presented
as

ψ1 =
r2

2
+ C1j ,

ψ2 = C2j +
C3j

r
− (3 + ν)r3

16
−

−C1j(1 + ν)r ln r

2
,

ψ3 =
C2jr

2

D(ν + 1)
+

C3j

D(ν − 1)
− r4

16D
−

− C1jr
2

D(ν2 − 1)
+
C1jr

2[(1− ν) ln r + 1]

2D(ν − 1)
,

ψ4 = − C2jr
3

2D(ν + 1)
− C3jr ln r

D(ν − 1)
+ C4jr+

+
r5

64D
+
C1jr

3 ln r

4D
+

+
C1j(3− 2ν − ν2)r3

8D(ν2 − 1)

(36)

for r ∈ [rj , rj+1] where j = 0, 1.
For determination of 8 unknown constants C1j ,

C2j , C3j , C4j where j = 0, 1 one has 8 boundary and
intermediate conditions presented by (22), (23), (26)
and (27).

It immediately follows from boundary conditions
(22) that

C10 = 0, C30 = 0. (37)

The boundary and intermediate conditions (23),
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(26), (27) lead to the linear algebraic system

C21R+
C31

R
− C11(1− ν)R lnR

2
−

−(3− ν)R3

16
= 0,

−C21R
3(ν − 1)

2
− C31(ν + 1)R lnR+

+C41(ν
2 − 1)RD +

R5(ν2 − 1)

64
+

+
C11(ν

2 − 1)R3 lnR

4
+

+
C11(3− 2ν − ν2)R3

8
= 0,

−C21s
3(ν − 1)

2
− C31(ν + 1)s ln s+

+C41(ν
2 − 1)sD +

s5(ν2 − 1)

64
+

+
C11(ν

2 − 1)s3 ln s

4
+

+
C11(3− 2ν − ν2)s3

8
= 0,

−C20s
3(ν − 1)

2
+ C40s(ν

2 − 1)D+

+
s5(ν2 − 1)

64
= 0,

(C21 − C20)s+
C31

s
−

−C11(1 + ν)s ln s

2
= 0,

(C21 − C20)(ν − 1)s2+

+C31(ν + 1)− C11s
2+

+
C11s

2(ν + 1)[(1− ν) ln s+ 1]

2
= 0.

(38)

From (38) one can easily determine the unknown con-
stants C20, C40, C11, C21, C31, C41 and present these

as

C20 =
(3 + ν)R2

16
+
R2(R2 − s2)

8L
·

·
[
2R2(3 + ν)− (1 + ν)(R2 + s2)

]
·

·
[

(ν − 1)(s2 −R2)

4R2
+ (1 + ν) ln

R

s

]
,

C40 =
2s2(3 + ν)R2 − (ν + 1)s4

64D(ν + 1)
+

+
s2R2(R2 − s2)
16DL(ν + 1)

·

·
[
2R2(3 + ν)− (1 + ν)(R2 + s2)

]
·

·
[

(ν − 1)(s2 −R2)

4R2
+ (1 + ν) ln

R

s

]
,

C11 =
R2(R2 − s2)

8L
·

·[2R2(3 + ν)− (ν + 1)(R2 + s2)],

C21 =
(3 + ν)R2

16
+
R2(R2 − s2)

8L
·

·
[
2R2(3 + ν)− (1 + ν)(R2 + s2)

]
·

·
[

(ν − 1)s2

4R2
+

1

2
(1 + ν) lnR

]
,

C31 =
R2s2(1− ν)(R2 − s2)

32L
·

·
[
2R2(3 + ν)− (1 + ν)(R2 + s2)

]
,

C41 =
s2[2(3 + ν)R2 − (ν + 1)s2]

64D(ν + 1)
+

+
s2R2(R2 − s2)

32DL
·

·
[
2R2(3 + ν)− (1 + ν)(R2 + s2)

]
·

·
[
−2 ln s+

(ν − 1)s2

2R2D(ν + 1)
+

+
2(ν + 1)R2 lnR+ (ν + 3)R2

2R2D(ν + 1)

]

(39)

where for the conciness sake the notation

L = s2(ν − 1)(s2 −R2)+

+2R2(ν + 1)(s2 −R2) lnR−

−2R2s2(ν + 1)(ln s− lnR)+

+2R2(ν + 1)(R2 lnR− s2 ln s)−

−R2(ν + 3)(R2 − s2)
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Figure 9: Circumferential bending moments.
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Figure 10: Hoop moments.

is introduced.

8 Discussion of results
Results of calculations are presented in Fig. 2 – 10 and
Table 1. The calculations are implemented for k = 1
and µ = 0 in (3), (21), (28).

In Fig. 2 – 4 the distributions of deflections of the
plate are presented for various values of the transverse
load intensity. Fig. 2 and Fig. 4 correspond to the
positions of the support at s = 0.2R and s = 0.7R
whereas Fig. 3 is associated with the optimal location
of the intermediate support. The optimal solution cor-
responds to s = 0.526R. It can be seen from Fig. 2
that in the case of smaller values of the radius of the
intermediate support deflections at the central part of
the plate for r < 0.2R are directed upward despite
the pressure is directed downward. Similarily in the
case when s = 0.7R one can see negative deflections
in the outward region for r > 0.7R (Fig. 4). How-
ever, in the case of optimal position of the additional
support the deflections are non-negative everywhere

Table 1: Efficiency of the design.

s/R 0.2 0.4 0.526 0.6 0.8

10−4J0/R
6 1.996 1.055 1.027 1.031 1.849

102e1 1.562 0.826 0.803 0.807 1.447

102e2 43.80 23.15 22.54 22.62 40.58

(Fig. 3). It is somewhat surprising that the maximal
deflections in the central and outward regions of the
plate, respectively, are quite different in the optimal
case. However, one has to take into account that the
cost function (3) with µ0 = 0, k = 1 corresponds to
the volume of the axisymmetric body.

In Fig. 5 – 7 bending moments M1 are presented
for the cases when s = 0.2R, s = 0.7R and for the
optimal case. It can be seen from Fig. 5 – 7 that the
slope of the radial bending moment has finite jumps at
the support position, as might be expected. It is some
what surprising that the radial bending moment van-
ishes at an internal point for any values of the trans-
verse pressure loading. It reveals from Fig. 5 that in
the case of smaller values of the radius of the internal
support the radial bending moment remains negative
in the central part of the plate. It is negative in the
vicinity of the support in the optimal case, as well.

Distributions of the circumferential bending mo-
ment M2 are presented in Fig. 8 – 10 for different val-
ues of the pressure loading. Figures 8 and 10 corre-
spond to the cases when s = 0.2R and s = 0.7R,
respectively. Fig. 9 reflects the distribution of the
bending moment M2 in the case of optimal location
of the additional support. It reveals from Fig. 8 that
the bending moment M2 is unexpectedly continuous
at r = s.

The efficiency of the design established can be as-
sessed by the ratios

e1,2 =
J0
J1,2

where J0 stands for the value of the cost function (3)
corresponding to the optimal position of the internal
support. However,

J1 =

∫ R

0
Wrdr

in the case of the plate without additional supports and
J2 stands for the value of J in the case when internal
support is located at the center of the plate. Calcu-
lations carried out showed that the value of the cost
function is very sensitive with respect to the location
of the internal support (Table 1). It can be seen from

WSEAS TRANSACTIONS on MATHEMATICS Jaan Lellep, Julia Polikarpus

E-ISSN: 2224-2880 230 Issue 3, Volume 11, March 2012



Table 1 that in the case of the optimal location of the
internal support the value of J is almost five times less
than that corresponding to the plate with a support at
its center.

9 Concluding remarks
Variational methods of the theory of optimal control
are used for solving the problem of optimal location
of an additional rigid ring support in the case of a
circular plate. The plate is made of an elastic mate-
rial and subjected to a distributed transverse pressure.
Necessary optimality conditions have derived under
the assumption that the cost of the additional support
is proportioned to its length. Numerical results have
presented for the plate simply supported at the edge
and subjected to the uniformly distributed transverse
pressure.

The results of calculations showed that the opti-
mal position of the additional support admits to di-
minish essentially the cost function. It revealed by
calculations that the both, radial and circumferential
bending moments are continuous over the entire plate.
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