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Abstract: This paper regards initial value problem for second order impulsive integro-differential equations as
some nonlinear vector system. By means of the Monch's fixed point theorem, some existence theorems of solu-
tions of the initial value problem are established. The results are newer than all of the previous ones because of the
more general form compactness-type condition and the weaker restriction of its coefficients. An example is given
to demonstrate our results. Annotation shows that our method can be used to solve the impulsive boundary value

problems.
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1 Introduction

Around the last fifteen years, a lot of works [1-
10,13,14] have been done for the following initial
value problem for nonlinear second order impulsive
integro-differential equations of mixed type in a real
Banach space E

u' = f(t,u,u, Tu, Su),Vt € J =[0,a],t # t)

Aulpy, = I(u(t), v (t)),

Au/|t=7fk :jk(U(tk),U/(tk)), k= 172>"' , T

u(0) = o, v’ (0) = 21

(1

where Tu = f q(t, s)u(s) Su =
Jo h( s)ds, h(t,s) € C’(J x J,R),
q(t, )EC(DR),D:{(t,S)EJXJ:tZs}.
Au|t:tk =u(ty) —u(ty;), (k =1,2,--- ,m) denote

the jump of u(t) at t = ¢, u(t; ) and u(t;") represent
the left and right limits of w(¢ ) att =ty respectively,
and Au'|;—, has a similar meaning for v/ (t).

In many investigations, for examples [1-4,9,
10, 15], non-compactness type conditions, combined
with fixed point theorem, play an important role in
the proof of those results. In 1996, Guo[4] studied
the unique solution of system IVP(1) employing Ba-
nach’s fixed point theorem. Zhang [15] studied IVP(1)
for the case in which f does not include derivative
2’ and obtained a global solution by Schauder’s fixed
point theorem. Zhang et al.[10] improved the result-
s of Zhang[15] by Monch’s fixed point theorem with
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a new established comparison result. Recently, Liu
et al.[9] and Zhang et al.[2] generalized the results of
Guo[4] by using Banach’s fixed point theorem. Al-
most at the same time, Guo et al.[3] established the
existence of global solutions of IVP(1) by Schauder’s
fixed point theorem. And then Zhang et al.[1], based
on the generalization of Darbo’s fixed point theorem,
extended the the results of Guo et al.[3] step by step
through extending integro-differential equation with-
out impulses on subinterval .J; to one with impulses
on global interval J. Zhang et al. used the following
compactness-type condition:

(HO). For any r > 0, f is bounded and uniformly
continuous on J X B, x B, x B, x B,, and there ex-
ist non-negative Lebesgue integrable functions Ly €
L(J,R")(k = 1,2, 3) such that for any bounded sets
B, e E(i=1,2,3,4)and t € J,

Oé(f(t, Bl) 327 B37 B4))

<Is (t)Oz(Bl) + Lg(t)a(BQ) + Lg(t)a(Bg).

2
Apparently, the effect of operator Su in f of IVP (1)
is overlooked.

Compactness type condition with both u’ and Su
is very difficult to deal with in proof. By introduc-
ing an operator and transforming IVP(1) into first or-
der IVP without u/, Wang et al.[8] obtained some re-
sults by using the monotone iterative technique. In
this paper, the novelty of our approach is to intro-
duce a vector with components being u(t) defined on
each subinterval [tg,tx+1] (Where tg = 0,t,41 =
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a, u(ty) = u(t{) at the left point of subinterval
and £ = 0,1,--- ,m), then a corresponding integro-
differential equation is derived for such an unknown
vector system. Further, by means of the Monch fixed
point theorem, we establish the existence of solution-
s of IVP(1). Under more general form with the item
L4(t)a(By) than the condition (2), we obtain some
new results.

2 Some Lemmas

Let PC[J,E] = {u|u : J — FE is continuous at ¢ #

t;, left continuous at ¢t = ¢;, and its right limit u(¢;")

at t; exists, i = 1,2, --- ;m}. Evidently, PC[J, E] is

a Banach space with the norm ||u|| pc = sup ||u(?)].
teJ

Let PC'[J, E] = {u € PC|J, E]|u/(t) is continuous
att # t;, and o/(¢; ),/ (t]) exist, i = 1,2, ,m}.
We can obtain that «/(¢) is continuous at the left of ¢;
by the mean value theorem, and then PC![J, E] is a
Banach space with the norm

lull per = max{|jull po, [/l pc}

Let J = J\{tl,t2,~- ,tm} , Jo = [O,tl],Jl =
(tlth]s oy Il = (tm—lytm]l Im = (tm7a]s to =
0, timy1 = a, d; = t;+1 — 4, J; is the closure of J;
and B, = {z € E : ||z|| < r} for any » > 0. For
H C PC'[J,E),let H = {2/ :x € H} C PC[J, E]
and

H; ={z|; :x € H} C C'J;, E],
H]={a'|; :x € H} C C[J;, E],
AH = {(Az)|; 1@ € H} C C'[J;, E],
(AiH) = {(Az)'|; : 2 € H} C C[J;, E],

where z(t;) = (), 2'(t;)
(Aiw)(t:) = (Az)(t]), (Az)'(t;) = (Az)'(t]), (i =
1,2,---,m). Forany t € J, set

[

&\
=
Gy

H(t)={z(t):z€ H} CE,
H(t)={2'(t):x € H} CE,
(TH)(t) ={(Tx)(t):z € H} C E,
(SH)(t) ={(Sx)(t) :z € H} C E.
Forany t € J; (i =0,1,--- ,m), set

Hi(t)={z(t):z € H,te J;} CE,
H!(t)={2'(t):x € H,t € J;} CE,
(A;H)(t) ={(Az)(t):x € H,t € J;} C E,
(A;H) (t) = {(Az)'(t) :x € H,t € J;} C E.

Let «.),a1(.) and asg(.) denote the Kuratowski
measure of non-compactness in F, C'(I,FE) and
PC(J, E) respectively. For the details please to refer
the references [11][12].
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Lemma 1 [3]. If H C PCY(J,E) is bounded and
the elements of H are equicontinuous on each Ji(k =
0,1,...,m), then co(H) Cc PC'(J,E) is bounded
and equicontinuous an each Ji(k = 0,1,...,m).
(Here co(H) denotes the closed convex hull of H.

Lemma 2 [3]. If for any r > 0, f is bounded and
uniformly continuous on J X B, X B, X B, x B, and
H C PCY(J,E) is bounded and equicontinuous on
each Jy(k =0,1,...,m), then

{£(t,2(t), (1), (Tz)(t), (Sx)(t)) : v € H}
C PC(J,E)

is bounded and equicontinuous on each Ji(k =

0,1,...,m).

Lemma3 [/1] If H C PC![J, E] is bounded
and the elements of H' are equicontinuous on each

Ji(k=0,1,...,m), then

as(H) = max{sup a(H (t)),sup a(H'(t))}.
teJ teJ

Lemmad [15]If H C PC'[J, E] is bounded and e-
quicontinuous on each J (k = 0,1,2,...,m), then
a({u(t)lu € H}) is continuous on t € Jy (k =
0,1,2,...,m)and

a({/o u(t)dtlu € H}) < /0 a({u(t)lu € H})dt.

Lemma 5 [12] Let E be a Banach space, 2 C E
be a bounded open set, and 0 € Q, A . E — E be
continuous such that, (i) x # MAx for VA € [0,1]
and © € 0 (ii) that H C Q is countable and
H C @({0} U (AH)) imply that H is relative com-
pact. Then A has at least one fixed point in ().

Lemma 6 [15] The problem IVP(1) is equivalent to
the first-order nonlinear impulsive integro-differential
equation

u(t) = (Au)(t) (3)
where

(Au)(t) = zo + to1+
fg(t —8)f(s,u(s),u'(s), Tu(s), (Su)(s))ds

* 0<tz<t T (u(ty), ' (t)) “)
+O<tZ<t(t — ) I (u(tr), o/ (t))-

Lemma7 Let Vi,Vo C PC'[J, E] be two countable
subset satisfying Vi C ¢o(ug U Va) for some ug €
PC![J, E]. Then

Vii Ceo({ugi} U Va),i=0,1,2,--
WZCE({U6Z}U‘/2/Z)7ZZ0717277
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and foranyt € J; (i =0,1,2,--- ,m),

C co({uoi(t)} U Vai(t)),
C co({ug; (1)} U V(1))

Vii (t)
Vii(t)

Proof: V;,Va C PCUYJ, E] are countable imply
that V{,Vj C PC|J, E] are countable and uy €
PC1[J, E] imply that v, € PC[J, E].

For any z € V/,, there exists u € V; such that
u'|j, = 2. Fromu € Vi C @o(ug U V3), there exist

Uy = )\((J")uo + Zn )\,(cn)v,(cn) € co({up} U Vo),
k=1
n=1,2--

such that ||u, — u||pc1 — 0(n — o0), where

U/E:n) €V27k21725”' > Mn,
Al(cn) 207k20717 > M

5\ =
k=0

Hence ||uy,| 7, —v'| 7 lc = 0(n — oo) and

) | 7,

soz = |, € co({ug;} U Vy,, which imply V{, C
co{ufy} U'VZ,) and V() © col{ub(t)} U VA (1))
forany t € J;(i =0,1,2,--- ,m

For the same reasons, we have Vy; C co({ug;} U
Vai) and Vi;(t) C co({uoi(t)} U Vai(t)) for any ¢t €
Ji(i=0,1,2,--- ,m).

Lemma 8 Let X € R" " be a matrix with following
form

tiu O 0
Y — t1o  too 0
tln th tnn

Then for any € > 0 there exists a norm || - ||mon on
R™™ which is reduced by monotone vector norm,
such that

[ X1lmon < p(X) + €.
Proof: It is from the proof of theorem 3.7 of [16].
For any § > 0, let

D; = diag(1,6,0%, - ,6" ),
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then
D;'XDs =
t11 0 . 0 0
5t12 too . 0 0
5n71t1n 5n72t2n 5tn—1n tnn

For any € > 0, let § > 0 such that

j—1

Z 67" ty| < e, j

i=1

and define

:2>37"' y 10y

|G llmon = HD(;_lGDaHoo, VG e C™1

then we can prove the function || - ||;0n, is an operator
norm reduced by following vector norm

||l ps = ID5 ']lce; z € C" )
and
| X | mon = HDa_lXDz?Hoo < p(X) +e.

It is easily to see that || -
norm. Lemma 8 holds.

In what follows, set ug(t) = u(t) as t € Jy
foru € PC[J, E], ie. up = ulj (Where ug(ty) =
u(t}}) at the left point of interval .J; and u] 7, denote

the section of w restricted on .J;,), then (3) can be recast
into the following form

u(t) =

where

||ps is a monotone vector

(Apu)(t), t € Jp, k=1,2,...,m (6)

(Agu)(t) £ zg + tog+

ﬁﬁii*l(t—s JD(i, 5, u(s))ds
+ff t — $)T(k,s,u(s))ds
+ZI(uz 1(t:), ui_y (i)

+Z(t—t) i(wia(t), wjy (83)

and
(i, s,u(s)) =
f(s, Uz(S) ’( ); (Tiu)(s), (Su)(s)),
(Thu)(t Z ft”rl (t, r)u;(r)dr+
ft truk Ydr, t € Ji,

(Su)(s) = Z ft_”l h(s,r)u;(r)dr.
i=0
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3 Main Results

For convenience, we give the assumptions as follows.

(H1) For any r > 0, f is bounded and uniformly
continuous on J X B, x B, X B, x B,, I; and I, are
bounded on B, x B,.

(H2) For any r > 0, there exist non-negative
Lebesgue integrable functions Ly € L(J,R")(k =
1,2, 3) such that for any bounded sets B; C E(i =
1,2,3,4)and t € J,

4
a(f(t, B1, B2, B3, By)) < 2 Li(t)a(B;),
a(ly(Bi1, B2)) < ax(t)a(B 1) + bra(Ba), (1)
a(lx(Bi, B2)) < ak( )a(Bl) + bra(B2),
k= -, m.
(H3) 3 = limsup (sup M) is fi-
fellHlyltoo e 17
nite.
Let q = max{]q(t,s)\ : (t,S) € D}7h0 =
max{|h(t,s)|: (t,s) € J x J}.

Theorem 9 If the assumptions (HI1)-(H3) are sat-
isfied and the spectral radius p(Mg My) of matrix
MT My satisfies

p(MI M) < 1 ®)
where
Ag  dipo dimfio
A A dm
O . e
AOlm A02m Am
and
Ajjk = 0; + dioig + Nji,
A = O + dogy
0i = max{ti 1,1} [/ [L1(s) + La(s)]ds,
pur = homax{tgi1, 1} fg’“*l Ly(s)ds,
Oik = pk + go max{lg41, 1} ftikﬂ_L?,(S)C{&
it = max{(a;+b;)+ (tx —t;)(ai4b;), ai4b; },
d; =141 — ;1 =0,1,...,k,
G=id1,i42, e m k=it 1,042, ,m.
(10)

Then IVP(1) has at least one solution u €
PCY(J,E)NC?(J', E).

Proof: We divide the proof into two steps.
(1) Firstly, let

<A<
QOZ {xepcl(J,E): ElO_)\_lsuchthat }

z = Mz
(11)
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We will prove that §)g is bounded set in PC(J, E).
From the hypothesis (H3), there exists the con-
stant 3’ > /3 and d > 0 such that

1Ft s 0, T, (Sw))lF < B([full + [Jo]]),
t e J,[lull + o] > d.

Since f is bounded and continuous, we get

1 (w0, Tu, (Su))[| < B/(ull + [[v]]) + G,
te Ju,vekE,
(12)
where G = sup{||f(t, u,v, Tu, Su)|| : t € J, [|ul| +
o]l < d} < oo
On the other hand, Yu € g, from (11) there
exists 0 < A\ < 1 such that

u(t) = Nu(t), t e J. (13)

Ift € Jy, from (4), (12) and (13), we have
@I < flzoll + 1]l ]|+
Bt1 Jy(luls)l + v/ ()] + G)ds

(lu@)] + llw' ()] + G)ds

Let mo(t) = max{||u(t)||, ||«'(¢)||}, then we have
¢
mo(t) < Co +70/ mo(s)ds
0
where Cy = max{||zo| + t1]|z1]| + B 3G, ||z1| +

B't1G} and vy = 28’ max{t1, 1}. From the Gronwall
lemma, we get

mac{Ju(t) |, [ (9)]} = mo(t) < Coe™ = Ko,
0
te Jy.

And then ||ul|cn < K for any ¢ € Jy. From the
hypothesis (H1) there exists the constant 5y > 0

1f (¢, w, u!, Tu, (Su))[| < Bo,

12 ()| < Bo, D) < Bo. P
If t € J; = (t1, 2], then (13) change into
u(t) = Mxo + tz1)+
A fy(t = ) f(s,u(s),u/(s), Tu(s), (Su)(s))ds+
Al (u(th), u/ (1)) + (¢ — t) I (ulty), o/ (t))- s

(12)(14)(15) imply that

to — t1)2
u = [|T0 2|71 10 s e—
la@)l < llzoll + tallar]| + 260 + 2= gy
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Bo + (t2 — t1)B0 + Bt / (lu(s)]) + [l (s))ds

1 (O < llzall +#260 + (b2 = 01)5'G + fo+
B foy (lu(s)l| + [/ (s))ds.
LetCq = maX{onH+t2Hx1||+(t2—t1+t%+1),30+
LG |+ 160 + (t2 = 1)B'G + o} =
28" max{ts, 1}, and therefore

t
mq(s)ds

t1

mi(t) < Ci+m

where mq (t) = max{||u(t)||, ||/ (¢)||}. And then
teJy

ml(t) < 01671(152—751) =K, teJ.

Analogously, there exist K; > 0 such that
ml(t)SK“ tGJi,(i:2,3,---,m)
where m;(t) = max{[lu(?)]],[[v'(t)||}. Let m(t) =

ted;
t "(t dK = K;, th
max{[[u(®)]], llw'(t)][} an onax K, then

m(t) < max m;(t)) < K,t e J, ie. ||ul|lpct < K
0<i<m
So € is a bounded set on PC![J, E] .

i) Let Ry > K and Q = {u € PC'(J,E) :
|lu|]| < Ro}, then €2 is open bounded set which satisfy
that z # MAx for VA € [0,1] and z € 002 . As
follows, we prove that H C () is relative compact for
any countable set H C co({0} | J(AH)).

From (4) and (H1), we have that the operator
A : PCl[J,E] — PC'[J, E] is bounded and con-
tinuous. And then (AH) C PC'[J, E] is bound-
ed and (AH), (AH)  are equicontinuous on Ji (k =
0,1,-,m).

Since H C Qs countable, H C co({0}U (AH))
and (AH),(AH)' are bounded and equicontinuous
on Jy, then H, H' are bounded and equicontinu-
ous. Thus all of H;, H!, A;H and (A;H) (i =
0,1,---,m) are countable, bounded and equicontin-
uous on J; and H; C co({0;} U(A;H)) from lem-
ma 7. From lemma 1, lemma 2 and (H1), we have
f(t,H H (TH),(SH)) C PC|[J, E] is bounded
and equicontinuous on each Ji(k = 0,1,---,m).
Hence from Lemma 7, Lemma 4 and (H2), we have

a(Ho(t)) < a((AoH)(1))

<t [{[Li(s)a(Ho(s)) + La(s)a(H{(s))]ds+

t [S[Ls(s)a(ToH (s)) + La(s)a(SH(s))]ds

<t [I([L1(s) + La(s ) + t1Ls(s)qo]on (Ho )] ds+
tfg[L4(s ho [y c(H (r))dr]ds

< tfg{[Ll(S)nj Lo(s )+t1L3( )aolen (Ho)lds+
t folhoLa(s) 3 (tix1 — t:)aa (Hy)}ds,

=0

E-ISSN: 2224-2880 107

Wang Xinfeng, Liu Dalian, Li Chong

and

a(Hy(t)) < a((AoH)'(t))
<y Ll(s)a( o(s)) + La(s)a(H{(s))lds+
JolLs(s)a(ThH (s)) + La(s)a(SH(s))]ds
< Jo{[L1(s) + La(s) + t1 Ls(s)qo)a (Ho)]ds+
JaThoLa(s) 3 (ti1 — ti)an (H;) }ds.

=0

So from lemma 3 and (10),

a1(Ho) = max{sup a(H(t)), sup a(H'(t))}
teo teo

< (0o + doooo) o (Ho) + D diproar (Hy).

i=1
] (16)
For t € J;, we have

Oé(Hlt(t)) < a((A1H)( )

<t [ylLi(s)a(H(s)) + La(s
t [y [La(s)a(TLH(s)) + La(s
+a1a(H0(t1)) + bla(HQ(tl)
(a — tl)[dla(Ho(tl)) + bloz(

Ja(H'(s))]ds
;a(SH(s))]ds

+
Hy(t1)))

<t [ La(s) +L2( ) + t1L3(s)qo]on (Ho)ds+

th h0L4 S) z(tH_l ti)al(Hi)]ds
+tft L1 —|—L2( )]Oél(Hl)d8+
tft to — tl)Lg(S)q()Ozl(Hl)dS+
t J;, [t1g0Ls(s)ar (Ho)]ds+
tfttl hoL4(8) ;)(ti—i-l — ti)ozl(Hi)dS-l-
(a1 +by) + (t — t1)(@1 + b))ou (Ho)
and
a(Hi(t)) < a((A1H)'(t))
JL1(s) + La(s) + t1 Ly(s)qolens (Ho)ds+
[h0L4 8) > (tiv1 — ti)aa (H;)|ds+

(
ft L1 ) + E/Z 8) (tg — tﬁLg(S)(]o)Oq(Hl)}dS-l-

(
J;, [t1go L () (Ho)]ds+
t

(
Ji hoLa(s) fﬁo( i1 — ti)o (H;)ds+

(@1 + b1)ai (Ho).

.

then from lemma 3 and (10), we get

o (Hy) = maX{tSélf a(H(t)), sup a(H'(t)}
< i(&' + dion)an (Hy)+
=0
Arza (Ho) + i diprar (Hy).

i=2
(17)
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In general, for t € J;(k = 2,3,...,m), we have

a(Hi(t)) < a((ApH)(t))

Stfg[Ll Ja(H(s)) + La(s)a(H'(s))]ds+
L)L) + Li(s)a(SH()ds+
;[(wb) (t — t:) (@ + Bo)Joa ()
< Zf;“ [(La(s) + La(s))on (H)ds +

‘ ;0 [ ko ;) (41— ) La(s)on (H) ) ds
+ h()t fgk+1 L4(S) injo(tj"'l — tj)Oél(Hj)dS

P2
(a4 b) + ()@ + B (Himy).

=1
and
(H’( ) < a((AkH)’(t))
< Z f’”“ s) + Lo(s)|dsoq (H;)+

;) Ji ko ;0 S (i1 — ti) La(s)on (H;)ds+

m

ho [y La(s) Z:()(tj+1 —tj)aq(Hj)ds+
j:

M?r‘

(CL'L +b )051( i— 1)

=1

Thus for k =2,3,--- ,m,

o1 (Hy) = max{feujp a(H(t)), sup a(H'(t)}

(6; + dioix)an (H;)+

Mw

0

> dipa (H, )+Z)\041( i-1),

i=k+1 =1

=y

(18)
where §;, o1, 145, A; and d; are defined by (10). Hence
from (16) (17) (18), we obtain

a7 (HO) aq (Ho)
(05} (Hm) a7 (Hm)
where M is defined by (9). Let
Yo a1 (Ho)
o 2y | U (20)
Ym aq (Hm)
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From (19) and (20), we have

[a1 (Ho)]? + [a1 (H1))? + -+ - + [a1 (Hi))?
2,2 2 (21)
Sy Ty T Y
From the definition and the properties of the 2-norm
Il - [|2, we have
a1(Ho) Yo a1(Ho)
a1 (H a1 (H
1( 1) < n < ||M0H2 1( 1)
al(Hm) 2 ym 2 Oél(Hm) 2
a1 (Ho)
a1 (H
g ) | )
Oél(Hm) 9
(22)

where || Mpl|2 denote 2-norm of the matrix M. (8)
and (22) imply a1 (H) =0 (k=0,1,2,...,m), and
then from lemma 3,

as(H) = max{sup a(H (t)),sup «(H'(t))}

teJ teJ

< max{oggxmfgf a(H;(t)), o, sup a(H(t))}

= 0,

i.e. H is relative compact. So the operator A defined
by (3) has at least one fixed point in {2 from lem-
ma 5. Thus IVP(1) has at least one solution u(t) €
PCY(J,E) N C?(J', E) from lemma 6.

If we replace the norm in (22) into anyone of the
others, which is reduced by monotone vector norm,
we obtain the following conclusions.

Theorem 10 Let the matrix My be defined by (9) and
the matrix norm || - || mon be an operator norm reduced
by some monotone vector norm. If the assumptions
(H1)-(H3) hold and

”MOHTnon < 17 (23)

then IVP(1) has at least one solution uw €
PCYJ,E)NC?(J', E).

Proof: For the proof of theorem 9, we replace the
(21) into that

a(Ho) Yo

0 < a(Hh) <l »n

a(Hpy,) Ym

imply
[((Ho), ae(H), - .., a(Hn )" [lmon
< H(yﬂvyla oo 7ym) Hmonv
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then we get the conclusion of theorem 10.

Remark 1. Since O, fiks Oiks Nik, A (1 =
0,1,...,kk = 0,1,...,m) are nonnegative and
ke < a, oig < OimsAik < Aim (0 < Rk =
1,2,...,m), then

So-+614- - 46 < max{a, 1} / (L1(5)+Lo(s))ds,
0

dooom + d101m + -+ + d10mm
< amax{a,1} [;[qLs3(s) + hoLa(s)]ds.

Thus

dS + Z)\zmv

where L(s) = Li(s)+ La(s)+aqoLs(s) +ahoL4(s).
We can see that our conclusions imply those of [4]
since the vector norm || - || reducing the matrix norm
|| - || is monotone.
Remark 2. Most of those conclusions in theorem 10
are new, since the compactness-type conditions (H2)
involve both the derivative z’ and the linear integral
operator Swu. Usually, it will be convenient that we
verify (23) by using the operator norms || - ||1, || - ||2
and || - || oo. Only if one of the three norms satisfy (23),
we can obtain the conclusion of theorem 10.
Specially, let L4(t) = 0, then we get the follow-
ing conclusion.

|Alloo < max{a, 1} /

Theorem 11 Let Ly(t) = 0. If the assumptions (HI )-
(H3) are satisfied and

max {5k + drogr} < 1.

0<k< (24)

Then IVP(1) has at least one solution u €
PCYJ, E)NC?(J', E).

Proof: L,(t) = 0, then we get pup = 0(k =

0,1,2,...,m). then the matrix M, defined by (9)
changes into
Ag 0 .. 0
My = Ap12 JAN T 0 25)
Aoim Al Ap

where A;;, and Ay, are defined by (10) and oy, (¢ =
0,1,2,---,m, k > t)change into
ok = gomax{ty1,1} [ Ly(s)ds.  (26)

Apparently, the eigenvalues of M are §+dox,(k =
0,1,2,...,m), and then

p(Mo) = nggn{ék + dko'kk} < 1. 27
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Lete < 1 — p(Mp), then from Lemma 8, there exist
a operator norm || -
vector norm, such that

| Mol < p(Mo) +¢ < 1.

(28)

Thus theorem 11 is valid from the theorem 10.
Remark 3. In some sense, theorem 11 indicate that
the result with impulses ¢; is equivalent to one with-
out impulse defined in every subinterval [¢;, t;+1](1 =
0,1,...,m) only if we ignore the influence of the op-
erator S. This is fair and reasonable. Thus our results
improve and generalize ones of the paper [1].

4 An Example

Consider the IVP of infinity systems for nonlinear im-
pulsive integro-differential equation

ull (t+un)+3t ’+t2ft —tsy, ()ds+
1 up
3 ; 1+t(+)sds te[0,1),t# 3
A l,_1 = 15 cosQun( )+ 1L su n(l)
Uplim1 = Jun(3) + 1 (3)

un(0) = 0,ul(0) =2, n=1,23, -

8 sin

N= N
||

(29)
Then IVP(29) has at least one solution u*(f) =
(uj(t),ub(t), -+ ,un(t),---) which is continuously
differentiable twice on [0, 1] U (3, 1] and u}(t) —
0(n — oo) for any t € [0, 1].

Proof. By all appearances, u,(t) = 0 is not a
| = sup |uy| is a norm
n

of £ = {u = (up,ug, - ,Up, - )|u, — 0},
then we know that IVP(29) can be regard as a form
of IVP(1) in E. In this situation, k(t,s) = e,
h(t,s):(1+t+8)_1,$:(Il,I‘Q,"',In,"')’
y:(yhva'”ayna”')’Z:(217227'”72’/717”')’
w = (w17w27"'7wn7'”)’ f =
(7f17f277 'lfnal")i? Il = (1-117[127"'711717.")5
I = (I, lia, -+, Iin, - -+ ) and

t 3t 3
fn(t,x,y,z,w) = 7(t+l'n)+*yn+t2zn+751n3 Wnp,

2 5 18

1 1 1 1

Iin(z,y) = — c08” Tnt—yn, Iin(,y) = <Tnt-yn

10 5 4 4

wherem = 1,11 = L the assumption (H1) holds and

2
1 fu(t, 2y, T, Sx)|| < 3zl + 2yl + | T] + §
< Sl + 2yl + §-

i.e. the assumption (H3) holds too. On the other hand,

for any bounded set B; (i = 1,2, 3,4), since

a(f(t, B1, B2, B3, By)
< La(B1) + 2a(Bs) + t2a(Bs) + £a(By)
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a(I1(B1, Ba)) = ta(Bi) + ta(B2)
a(l1(B1, B2)) = ja(B1) + ja(Bs)

the assumption (H2) hold and L (t) = §,La(t) =
3 20 2R

3L Ls(t) = 12, Ly(t) = 67611 =by=1,a1=b =

%750 60 80’51 = 80’ Ko :13ﬁ5//41 = 2*14, goo =

384> oog1 = 12,0'11 )\1 = 30" Thus

613 1
1 (61134 22524):(3189490 Ig)
3840 \ 318 LA

Calculating the row norm of the matrix M, we have

My =

o

{3797 743 b <
3840’ 1280

So the formula (23) holds. Thus the conclusions of
our example hold from theorem 10.

Remark 4. Farther calculating two rest common
norms in the example, we have

HM0H1 = Imax

169
p(Md My) > 1.04 > 1 and || Moo = o0 > -

In addition, set

t N
5(thra:nern)Jr—szr—sm Wy,

ntvaaa =

1 1
—Tn+—=Yn,

1 1 7
= 7COS2 Tn+=Yn, Iln(xay) = 4 4

we have

3139

MT M, ) 1 ettt
p(My Mp) < 0.98 < 1, 3072 >

| Mol|1 =

and 195

As well as we set

t N
g(t“‘-rn)"i'*yn‘*'izn“‘*sul Wn,

fn(t7$7 y’ z7w) = 4 3 3

1 1
STntsUn

1 1
— cos® xp+= Yn, Iln(x y) = 3 3

16 8

and t; = %, then

Iln(x y)

1694431
[Moll1 = —oee > 1

MT M, 1.1>1
p(My Mp) > 1.1 > 1, 1179648

and
4597

4608 <

So each norm of the matrix M in theorem 10 is cor-
responding to one of the conclusions. Thus theorem
10 include many different results.

[ Mol|oo =
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5 An Annotation

This idea, that differential equations with impulses are
transferred into differential system and are studied,
can be used to the following boundary value problem
(BVP) for second order impulsive integro-differential
equations of mixed type in a real Banach space £

u' = f(t,u,u, Tu,Su) ViteJ=][0,1],t #tg
Auli=y, = Ix(u(ty), u'(tx))
At |y, = Tx(ulty), /(tk))
u(0) = Zo,u(l) =21 (k= e ,m),
(30)

where the symbols is identical with that of IVP(1). In
this section, we use the following assumption:

(H4). There exist non-negative Lebesgue inte-
grable functions L; € L[J,RT](i = 1,2,3,4) such
that

Hf(t,m,y,u,v) - f(ti.vgv u, @)HE

< Li(t)||z -z g + La(t)lly — gl e+

L3(t)[lu — ull g + La(t) v — ||,
te J,x,z,y,y,u,u,v,0 € E,

k(2 y) — Le(Z,9) || e < arllz — 2| & + bklly — 9l &,
z,Z,y,y € E (k=1,2,...,m)
and
1 Ix(z,y) — Ik(Z,9)|| e < allz — 2|5 + blly — ¥l &,

z,Z,y,y€ E (k=1,2,...,m).

Theorem 12 [If the assumption (H4) holds and the
spectral radius of matrix Mi M satisfy

p(MIMy) < 1, (31)
where
M, =
do + 1 01 + po Om
So + p1 + M\ 01 + p2 Om
do+p1+A1 di+pe+A - O
(32)
and
pu = (ag + br) + (1 — tg) (ag + by),
A = max{ g, (ax + bi)},
k=1,2,...,m,
0; = (ti+1 — ti) fti(L;g S)K + L4( ) i)ds—i—
(ti+1 — ti) fgl L4 )H ds+
S LA (s) + La(s))ds
1=0,1,2,...,m,
(33)
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then BVP(30) has an unique solution uw €
PCYJ, E) N C*[J',E). Moreover, for any zy €
PCY[J, E), the iterative sequence defined by

" = o(t) + [ G(t,5)F (s, zn-1(5))ds+
th::l[Qk(zn_1(tk)) + (1 — t) Qr(zn—1(tr))]+
> [Qr(za—1(tr)) + (¢ — th) Qi (2n—1(tr))],

0<tp<t
n=1,23,...
(34)
converges to u(t) uniformly on t € J, and the se-
quence

%®:¢@+£GWJW@%4@MH
3 [Qk(zn-1(tr)) + (1 = 1) Qr(2n-1(tk))]+

k=1 B
> Qu(zn-1(tx)), n=1,2,3,...
O<tp<t
(35)
converges to u’ (t) uniformly ont € J. Here

Proof: At first, (30) is equivalent to the following
first-order nonlinear impulsive integro-differential e-
quation

t) + fol G(t, s)F(s,u(s))ds—

tkil[Qk(U(tk)) + (1 — te) Qr(ultr))]+ (36)
0<;<t[Qk(u(tk)) + (t — 1) Qr(u(ty))]
where

G(t,s) = st—1) 0<s<t
st t<s<1

and

o(t) = To + t(Z1 — Zo).

For any z,y € PC[J, E], let zx(t) = z(t), yx(t) =

y(t) as t € Jp (k = 0,1,.. m) where
zip(ty) = (), ye(ts) = y(t) at the left point
of each subinterval J, (k = 1,2,...,m). Since

{“?}{'G(t s, IG' (¢t 9)|} < 1, from (Hl) and (36),

E-ISSN: 2224-2880

Wang Xinfeng, Liu Dalian, Li Chong

we have

(Ao () — (Aow) (1)1
S [ G0 lEas) () - w1
i=0 7t

HLa(s)ll(s) (o)l

*La) Y / Kl =y ()

+L4(s Z

IN

(s, )| (r)=y; (r) | zdrlds

+ tZ[aini,l(tl)—yi,l(ti)HE
+b ||$z () —yia ()l e
+(1 = ti)(@illwia(t:) — yia (o)l e
il (t:) — yi1 (t:) || B)]
m tir1
<3 / {1L4(9) + Ln(s)las — wiloy
+Z (b1 = 1)L () K12 = illey
=0
+Z tivr = 1) La(s)Hjllw; — yjlley Ys
Jj=
+ Z;[ai‘i‘bi‘i‘(l_ti)(ai‘i'bi)wxi—l_yi—l‘C}]i1
and
||7SLA0$)’( ) - (Aoy)’(t)HE
= Zﬂftm{ 8) + La(s)lllzi = ill ey +
ZD( 1~ ) La(s)Kjlle; = yjlley +
]:
ZO( i1~ t) La(s) Hjllwj = ysllos hs+
]:
;[az +0i + (1= ) (@ + b)lllwi-1 = yialley,
So we have
1(Aoz) — (Aoy)ller < 22 dillzs — willes +
0 =0 i
> willwior = yiillen
i=1 i—1
(37
Let Qzy) = 2 [ (La(s) + La(s) s —

7
yillor + Zo(tj+1 = t)La(s)Kjllzj — willes +
7 j= b
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m
(i1 = t)La(s) Hyllz; = yilley Jds + Zl[az‘ +
J B 1=
b; (1 - tz‘)(@i + bl)] Hxi_l — Yi—-1 ”C}I;1 . We obtain

s

1(Ar2)(t) — (Ary) (D) & < Q(z,y)+

[(a1 +b1) + (1 = t1)(@1 + b)]llzo = wollcs, ,

[(A12)'(t) — (Ary) (D < Q(=,y)+
(@1 +b1)|lzo — y0||c},0-

and then

1(A12) = (Arp)lley. < Qa,9) + Mllzo — wolles,
(38)
In general, we obtain that

(k) — (A ey, < @, y)+

k
> Aillwicr —yiclles 39)
=1 i—1

k=2,3,...,m.
So from (37),(38) and (39), we get

I Aozo — Aoyollcy,
[Ar1z1 = Awylles

20 — wollcs,

< M, 1 —y1||c},1

lm — mllcs

where M is defined by (32)(Here and in what fol-
lows the vector inequality x < y denotes that al-
1 of the corresponding components of vectors satisfy
x; <y; (i=0,1,...,m)). Then we have

| Aozo — Ao@/o“c},o
lArzr = Awyilles,

HAml'm _AmymHC}m 1)
2o — yollcn
)

< ot | 17 0l

lm = mlles, |,
From (31),(41) and the Banach fixed point theorem,
the operator A = (Ap, A1, ..., Ay,) has an unique
fixed point. Thus BVP(30) has an unique solution
u(t) € PCY[J,E|NC?[J', E).
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Moreover, if wu(t) is the unique solution of
BVP(30) and z,(t) is defined by (34), let ug(t) =
w(t),t € Jp and z,,(t) = 2n(t),t € Jp (K =
0,1,...,m). Similar to the reduction process of (40),
we can get

I 4oz0,0 = Aouoll
41201 — Arusllcy

||Am20,m - Amumuc;
m
1200 = wollcr,
0

< lz0.0 = willen,

l20.m — mllc
m

Considering that the components of A are nonnega-
tive, from mathematical induction, it is easy to obtain
that

[ A02n,0 = Aouollct
[A12n,1 = Arunfles

| Am2n,m — Amum”c}m

1200 = wolcs

< 1200 = wiflen,
R

Iz0.m = umllcs

So z,(t), 2}, (t) uniformly converge to u(t),u'(t) re-
spectively for any ¢t € J. In other words, the conclu-
sion of Theorem 12 holds.

If we replace the norm in (40) by p-norm of ma-
trix, we can obtain following conclusion easily.

Theorem 13 If the assumption (H4) holds and the
matrix M defined by (32) satisfies
[Milp <1, 42)

where 1 < p < 400, then we have the conclusions of
theorem 12.

Remark 5. Let M = max |[K(t,s)and N =
(t,s)eJxJ
max |H(t,s)|. Since
(t,s)eIxJ

i 5 < [ML1(s) + La(s)]ds + N [ La(s)ds+

M Y (tisr —t) fyy

7

Ls(s)ds

< folz[_Ll(S) + LQ(S) + MLg(S) + NL4(S)]dS,
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then we have

1M [|oo = ;)51 + ;(Hi + )

< fol LO(S)dS + ;(Ml + Al)?

where Lo(s) = L1(s) + La(s) + M L3(s) + N L4(s).

The

condition (42) is more general than one obtained

directly by (36). So the conclusion of Theorem 13 is
an extension of those in [4] for initial value problems.
Remark 6. Most of those conclusions of theorem 12

and

13 are new, since the conditions (H4) involve both

the derivative =’ and the linear integral operator Su.
Usually, for convenience, we can use || - ||1, || - [|2 or

oo as the operator norm in (42).
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