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1 Introduction
As the flourish development of network communica-
tions and processing power of computer hardware, in-
formation security theory and technology have grad-
ually been enriched and improved. Confidentiality
and authentication are two important aspects of infor-
mation security. Traditional two-user authentication
codes are no longer suitable for network communi-
cation requirements, authentication codes with arbi-
tration, multisender and multireceiver authentication
systems come into being. This paper focuses on mul-
tireceiver authentication codes, two constructions of
multireceiver authentication codes from singular sym-
plectic geometry over finite fields are given. The pa-
rameters and the probabilities of success for different
types of deceptions are computed.

Multireceiver authentication codes (MRA-codes)
are introduced by Desmedt, Frankel, and Yung (DFY)
[1] as an extension of Simmons’ model of uncondi-
tionally secure authentication [2]. In an MRA-code, a
sender wants to authenticate a message for a group of
receivers such that each receiver can verify authentic-
ity of the received message. There are three phases in
an MRA-code:

1. Key distribution. The KDC (key distribution
centre) privately transmits the key information to the
sender and each receiver (the sender can also be the
KDC).

2. Broadcast. For a source state, the sender gen-
erates an authenticated message using his/her key and
broadcasts the authenticated message.

3. Verification. Each receiver can verify the au-

thenticity of the received message.
Denote byX1×· · ·×Xn the direct product of sets

X1, X2, · · · , Xn, and by pi the projection mapping of
X1×· · ·×Xn onXi. That is, pi : X1×· · ·×Xn → Xi

defined by pi(x1, x2, · · · , xn) = xi. Let g1 : X1 →
Y1 and g2 : X2 → Y2 be two mappings, we denote the
direct product of g1 and g2 by g1×g2, where g1×g2 :
X1×X2 → Y1×Y2 is defined by (g1×g2)(x1, x2) =
(g1(x1), g2(x2)). The identity mapping on a set X is
denoted by 1X .

Let C = (S,M,E, f) and Ci = (S,Mi, Ei, fi),
i = 1, 2, ..., n, be authentication codes. We cal-
l (C;C1, C2, · · · , Cn) a multireceiver authentication
code (MRA-code) [3] if there exist two mappings
τ : E → E1×· · ·×En and π :M →M1×· · ·×Mn
such that for any (s, e) ∈ S × E and any 1 ≤ i ≤ n,
the following identity holds

pi(πf(s, e)) = fi((1S × piτ(s, e)).

Let τi = piτ and πi = piπ. Then we have for each
(s, e) ∈ S × E

πif(s, e) = fi(1S × τi)(s, e).

We adopt Kerckhoff’s principle that everything
in the system is public except the actual keys of the
sender and receivers. This includes the probability
distribution of the source states and the sender’s keys.

Attackers could be outsiders who do not have ac-
cess to any key information, or insiders who have
some key information. We only need to consider the
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latter group since it is at least as powerful as the for-
mer. We consider systems that work against the coali-
tion of groups of up to a maximal size of receivers,
and we study impersonation and substitution attacks.

Assume that there are n receivers R1, · · · , Rn.
Let L = {i1, · · · , il} ⊆ {1, · · · , n}, RL =
{Ri1 , · · · , Ril} and EL = ERi1

× · · · × ERil
. We

consider the attack from RL on a receiver Ri, where
i /∈ L.

Impersonation attack: RL, after receiving its se-
cret keys, sends a message m to Ri. The attack is
successful if m is accepted by Ri as authentic. We
denote by PI [i, L] the success probability of RL in
performing an impersonation attack on Ri. This can
be expressed as

PI [i, L] = max
eL∈EL

max
m∈M

P (m is accepted by Ri|eL)

where i /∈ L.
Substitution attack: RL, after observing a mes-

sage m that is transmitted by the sender, replaces m
with another message m′. The attack is successful
if m′ is accepted by Ri as authentic. We denote by
PS [i, L] the success probability of RL in performing
a substitution attack on Ri . This can be expressed as

PS [i, L] = max
eL∈EL

max
m∈M

max
m′ ̸=m∈M

P (Ri acceptsm
′|m, eL)

where i /∈ L.
In [1] , Desmedt, Frankel and Yung gave two

constructions of MRA-codes based on polynomial-
s and finite geometries, respectively. In the case
both of the sender and the receiver are not honest,
Gao You [4], Chen Shangdi [5] constructed a series
of authentication codes with arbitration. R. Safavi-
Naini, Wang Huaxiong gave some results on authen-
tication codes with one sender and multiple receivers
[3] [6].R. Safavi-Naini also described the dynamics of
authentication codes with one sender and multiple re-
ceivers. Ma Wenping, Wang Xinmei made great con-
tributions on multisender authentication codes [7]. In
this paper we construct two multireceiver authentica-
tion codes from singular symplectic geometry over fi-
nite fields. The parameters and the probabilities of
deceptions of the codes are also computed.

2 Singular Symplectic Geometry
Let Fq be a finite field with q elements and

Kl =

 0 I(ν)

−I(ν) 0

0(l)

 ,

M(m, s ) =

 0 I(s)

−I(s) 0

0(m−2s)

 .

The singular symplectic group of degree (2ν+ l) over
Fq is defined to be the set of matrices

Sp2ν+l,ν(Fq) = {T
∣∣ TKl

tT = Kl}

denoted by Sp2ν+l,ν(Fq).
Let F (2ν+l)

q be the (2ν+ l)-dimensional row vec-
tor space over Fq. Sp2ν+l,ν(Fq) has an action on
F

(2ν+l)
q defined as follows

F (2ν+l)
q × Sp2ν+l,ν(Fq) → F (2ν+l)

q ,

((x1, x2, . . . , x2ν+l), T ) 7→ (x1, x2, . . . , x2ν+l)T.

The vector space F (2ν+l)
q together with this ac-

tion of Sp2ν+l,ν(Fq) is called the singular symplectic
space over Fq.

Let ei(1 ≤ i ≤ 2ν + l) be the row vec-
tor in F

(2ν+l)
q whose i-th coordinate is 1 and al-

l other coordinates are 0. Denote by E the
l-dimensional subspace of F

(2ν+l)
q generated by

e2ν+1, e2ν+2, · · · , e2ν+l. An m-dimensional sub-
space P of F (2ν+l)

q is called a subspace of type
(m, s, k), if

(i) PKl
tP is cogredient to M(m, s);

(ii) dim(P ∩ E) = k.
Let k ≤ l and 2s ≤ m − k ≤ ν + s. Denote the

number of subspaces of type (m, s, k) in the (2ν +
l)-dimensional singular symplectic space over Fq by
N(m, s, k; 2ν + l, ν).

Denote by P⊥ the set of vectors which are orthog-
onal to every vector of P , i.e.,

P⊥ = {y ∈ F (2ν+l)
q |yKl

tx = 0 for all x ∈ P}.

Obviously, P⊥ is a (2ν+l−m)-dimensional subspace
of F (2ν+l)

q .
More properties and undefined symbols of singu-

lar symplectic geometry over finite fields can be found
in [8].

3 Constructions
3.1 Construction 1
Let Fq be a finite field with q elements and ei(1 ≤
i ≤ 2ν + l) be the row vector in F

(2ν+l)
q whose

i-th coordinate is 1 and all other coordinates are
0. Assume that ν ≥ 3, 2 ≤ n < t ≤ ν.
U = ⟨e1, e2, · · · , en, e2ν+1, e2ν+2⟩, i.e., U is a
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(n + 2)-dimensional subspace of F (2ν+l)
q generated

by e1, e2, · · · , en, e2ν+1, e2ν+2, then U⊥ = ⟨e1,
· · · , eν , eν+n+1, · · · , e2ν , e2ν+1, e2ν+2, · · · , e2ν+l⟩.

The set of source states S={s|s is a subspace of
type (2t − n + k, t − n, k), 1 ≤ k < l and U ⊂ s ⊂
U⊥}.

The set of the transmitter’s encoding rules
ET ={eT |eT is a subspace of type (2n+ 2, n, 2), U ⊂
eT }.

The set of the i-th receiver’s decoding rules
ERi={eRi |eRi is a subspace of type (n + 3, 1, 2)
which is orthogonal to ⟨e1, · · · , ei−1, ei+1, · · · , en⟩,
U ⊂ eRi}, (1 ≤ i ≤ n).

The set of messages M = {m|m is a subspace of
type (2t+ k, t, k), U ⊂ m}.

1. Key Distribution. The KDC randomly chooses
a subspace eT ∈ ET , then privately sends eT to the
sender T . KDC randomly chooses a subspace eRi ∈
ERi and eRi ⊂ eT , then privately sends eRi to the i-th
receiver, where 1 ≤ i ≤ n.

2. Broadcast. For a source state s ∈ S, the sender
calculates m = s+ eT and broadcasts m.

3. Verification. Since the receiver Ri holds the
decoding rule eRi , Ri accepts m as authentic if eRi ⊂
m. Ri can get s from s = m ∩ U⊥.

Lemma 1 The above construction of multireceiver
authentication codes is reasonable, that is

(1) s+eT = m ∈M , for all s ∈ S and eT ∈ ET ;
(2) for any m ∈ M , s = m ∩ U⊥ is the unique

source state contained in m and there is eT ∈ ET ,
such that m = s+ eT .

Proof: (1) For s ∈ S, eT ∈ ET , we can assume that

s =


I(n) 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 0 Q8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 I(k−2) 0


n

2(t−n)

1

1

k−2

n ν−n n ν−n 1 1 k−2 l−k

,

then

sKl
ts =

 0 0 0
0 −Q4

tQ2+Q2
tQ4 0

0 0 0

 n

2(t−n)

k

n 2(t−n) k

.

Since rank(sKl
ts) = 2(t − n), rank(−Q4

tQ2 +
Q2

tQ4) = 2(t− n). Then we can assume that

eT =


I(n) 0 0 0 0 0 0 0

0 R2 I(n) R4 0 0 R7 R8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


n

n

1

1

n ν−n n ν−n 1 1 k−2 l−k

,

and

eTKl
teT =

 0 I(n) 0

−I(n) −R4
tR2+R2

tR4 0
0 0 0

 n

n

2

∼

 0 I(n) 0

−I(n) 0 0
0 0 0

 n

n

2

n n 2

We have
m = s+ eT =

I(n) 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 0 Q8

0 R2 I(n) R4 0 0 0 R8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 I(k−2) 0



n

2(t−n)

n

1

1

k−2

n ν−n n ν−n 1 1 k−2 l−k

.

Thus m is a 2t + k dimensional subspace, and
mKl

tm =
0 0 I(n) 0
0 −Q4

tQ2+Q2
tQ4−Q4

tR2+Q2
tR40

−I(n)−R4
tQ2+R2

tQ4−R4
tR2+R2

tR40
0 0 0 0

 ∼


0 0 I(n) 0
0 −Q4

tQ2+Q2
tQ4 0 0

−I(n) 0 0 0

0 0 0 0(k)


n

2(t−n)

n

k

where rank(−Q4
tQ2 +Q2

tQ4) = 2(t− n). There-
fore, rank(mKl

tm) = 2t, dim(m ∩ E) = k. So m
is a subspace of type (2t + k, t, k) containing U , i.e.,
m ∈M .

(2) For m ∈ M , m is a subspace of type (2t +
k, t, k) containing U . So there is a subspace V ⊂ m,
satisfying(

U
V

)
Kl

t(
U
V

)
∼

 0 I(n) 0

−I(n) 0 0
0 0 0

 n

n

2

n n 2

.

Then we can assume that m =

 U
V
P

 , satisfying

 U

V

P

Kl

t
U

V

P

∼



0 I(n) 0 0 0
−I(n) 0 0 0 0
0 0 0 I(t−n) 0
0 0 −I(t−n) 0 0
0 0 0 0 0(k)


.
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Let s =
(
U
P

)
, since U ⊥ U and U ⊥ P , we have

s ⊥ U . Therefore, s is a subspace of type (2t − n +
k, t − n, k) and U ⊂ s ⊂ U⊥, i.e., s ∈ S is a source
state. For any v ∈ V and v ̸= 0, v /∈ s is obvious, i.e.,

V ∩U⊥ = {0}. Therefore, m ∩ U⊥ =

(
U
P

)
= s .

Let eT =

(
U
V

)
, then eT is a transmitter’s encod-

ing rule and satisfying m = s+ eT .
If s′ is another source state contained in m, then

U ⊂ s′ ⊂ U⊥. Therefore, s′ ⊂ m ∩ U⊥ = s, while
dims′=dims, so s′=s, i.e., s is the unique source state
contained in m.

From Lemma 1, we know that such construction
of multireceiver authentication codes is well defined
and there are n receivers in this system. Next we com-
pute the parameters of the codes.

Lemma 2 The number of the source states is | S |=
q2(t−n)(l−k)N(2(t−n), t−n; 2(ν−n))N(k−2, l−2).

Proof: SinceU ⊂ s ⊂ U⊥ , s has the form as follows

s =


I(n) 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 0 Q8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 I(k−2) 0


n

2(t−n)

1

1

k−2

n ν−n n ν−n 1 1 k−2 l−k

,

where (Q2, Q4) is a subspace of type (2(t − n), t −
n) in the symplectic space F

2(ν−n)
q , Q8 arbitrary.

Therefore, the number of the source states is |S| =

q2(t−n)(l−k)N(2(t−n), t−n; 2(ν−n))N(k−2, l−2).

Lemma 3 The number of the encoding rules of the
transmitter is |ET | = qn(2ν−2n+l−2).

Proof: Since eT is a subspace of type (2n + 2, n, 2)
containing U , eT has the form as follows

eT =


I(n) 0 0 0 0 0 0 0

0 R2 I(n) R4 0 0 R7 R8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


n

n

1

1

n ν−n n ν−n 1 1 k−2 l−k

,

where R2, R4, R7, R8 are arbitrary. Therefore,
|ET | = q2(ν−n)n+(k−2)n+(l−k)n = qn(2ν−2n+l−2).

Lemma 4 The number of the decoding rules of the
i-th receiver is |ERi | = q2ν+l−2n−2.

Proof: Since the i-th receiver’s decoding rule eRi is a
subspace of type (n+3, 1, 2) containing U and eRi is
orthogonal to ⟨e1, · · · , ei−1, ei+1, · · · , en⟩. So we can
assume that eRi =

t(e1 · · · en e2ν+1 e2ν+2 u), where
u = (x1 x2 · · · x2ν+1 x2ν+2 · · · x2ν+l). Obviously,
x1 = · · · = xn = xν+1 = · · · = xν+i−1 = xν+i+1 =
· · · = xν+n = x2ν+1 = x2ν+2 = 0, xν+i = 1, and
xn+1, · · · , xν , xν+n+1, · · · , x2ν , x2ν+3, · · · , x2ν+l

are arbitrary. Therefore, |ERi | = q2ν+l−2n−2.

Lemma 5 (1)The number of encoding rules eT con-
tained in m is qn(2t−2n+k−2);

(2)The number of the messages is |M | =

q2(t−n)(l−k)+n(2ν−2t+l−k)N(2(t − n), t − n; 2(ν −
n))N(k − 2, l − 2).

Proof: (1)Let m be a message. From the definition
of m, we may take m as follows m =

I(n) 0 0 0 0 0 0 0
0 I(t−n) 0 0 0 0 0 0
0 0 0 I(n) 0 0 0 0
0 0 0 0 I(t−n) 0 0 0
0 0 0 0 0 0 I(k) 0


n

t−n

n

t−n

k

n t−n ν−t n t−n ν−t k l−k

.

If eT ⊂ m, then we can assume that eT =
I(n) 0 0 0 0 0 0 0 0 0

0 R2 0 I(n) R5 0 0 0 R9 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0


n

n

1

1

n t−n ν−t n t−n ν−t 1 1 k−2 l−k

where R2, R5, R9 are arbitrary. Therefore, the num-
ber of eT contained in m is qn(t−n+t−n+k−2) =
qn(2t−2n+k−2).

(2) We know that a message contains only one
source state and the number of the transmitter’s en-
coding rules contained in a message is qn(2t−2n+k−1).
Therefore we have |M | = |S||ET |/qn(2t−2n+k−2) =

q2(t−n)(l−k)+n(2ν−2t+l−k)N(2(t − n), t − n; 2(ν −
n))N(k − 2, l − 2).

Theorem 6 The parameters of constructed multire-
ceiver authentication codes are

|S| = q2(t−n)(l−k)N(2(t − n), t − n; 2(ν −
n))N(k − 2, l − 2);

|ET | = qn(2ν−2n+l−2);
|ERi | = q2ν+l−2n−2;

|M | = q2(t−n)(l−k)+n(2ν−2t+l−k)N(2(t−n), t−
n; 2(ν − n))N(k − 2, l − 2).

Assume there are n receivers R1, · · · , Rn.
Let L = {i1, · · · , il} ⊆ {1, · · · , n}, RL =
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{Ri1 , · · · , Ril} and EL = ERi1
× · · · × ERil

. We
consider the impersonation attack and substitution at-
tack from RL on a receiver Ri, where i /∈ L.

Without loss of generality, we can assume that
RL = {R1, · · · , Rl}, EL = ER1 × · · · ×ERl

, where
1 ≤ l ≤ n − 1. First, we will prove the following
results:

Lemma 7 For any eL = (eR1 , · · · , eRl
) ∈

EL, the number of eT containing eL is
q2(n−l)(ν−n)+(l−2)(n−l).

Proof: For any eL = (eR1 , · · · , eRl
) ∈ EL, since the

transitivity property of singular symplectic group, we
can assume that

eL =


I(l) 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0

0 0 R3 I
(l) 0 R6 0 0 R9

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


l

n−l

l

1

1

l n−l ν−n l n−l ν−n 1 1 l−2

.

Therefore, eT containing eL has the form as follows

eT =



I(l) 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0

0 0 R3 I
(l) 0 R6 0 0R9

0 0 R′
3 0 I(n−l) R′

6 0 0R
′
9

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



l

n−l

l

n−l

1

1

l n−l ν−n l n−l ν−n 1 1 l−2

,

where R′
3, R

′
6, R

′
9, are arbitrary. Therefore, the num-

ber of eT containing eL is q2(n−l)(ν−n)+(l−2)(n−l).

Lemma 8 For any m ∈M and eL, eRi ⊂ m,
(1) the number of eT contained inm and contain-

ing eL is q2(t−n)(n−l)+(l−2)(n−l);
(2) the number of eT contained inm and contain-

ing eL, eRi is q2(t−n)(n−l−1)+(l−2)(n−l−1).

Proof: (1) The matrix of m is the same as that in
lemma 5, then for any eL ⊂ m, assume that

eL =
I(l) 0 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0 0

0 0 R3 0 I(l) 0 R7 0 0 0 R11

0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0


l

n−l

l

1

1

l n−l t−n ν−t l n−l t−n ν−t 1 1 l−2

.

If eT ⊂ m and eT ⊃ eL, then
eT =



I(l) 0 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0 0

0 0 R3 0 I(l) 0 R7 0 0 0 R11

0 0 R′
3 0 0 I(n−l) R′

7 0 0 0 R′
11

0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0



l

n−l

l

n−l

1

1

l n−l t−n ν−t l n−l t−n ν−t 1 1 l−2

where R′
3, R

′
7, R

′
11 are arbitrary. Therefore, the num-

ber of eT contained in m and containing eL is
q2(t−n)(n−l)+(l−2)(n−l).

(2) Similarly, we can show that the number
of eT contained in m and containing eL, eRi is
q2(t−n)(n−l−1)+(l−2)(n−l−1).

Lemma 9 Assume that m1 and m2 are two distinc-
t messages which commonly contain a transmitter’s
encoding rule eT . s1 and s2 contained in m1 and
m2 are two source states, respectively. Assume that
s0 = s1 ∩ s2, dim s0 = k1, then n + 2 ≤ k1 ≤
2t − n + k − 1. For any eL, eRi ⊂ m1 ∩ m2, the
number of eT contained in m1 ∩ m2 and containing
eL, eRi is q(n−l−1)(k1−n−2).

Proof: Sincem1 = s1+eT ,m2 = s2+eT andm1 ̸=
m2, s1 ̸= s2. And for any s ∈ S, s ⊃ U , n+2 ≤ k1 ≤
2t− n+ k − 1. Assume that s′i is the complementary
subspace of s0 in the si, then si = s0 + s′i (i = 1, 2).
Frommi = si+eT = s0+s

′
i+eT and si = mi∩U⊥,

we have s0 =
(
m1 ∩ U⊥)∩ (m2 ∩ U⊥) = m1 ∩

m2 ∩ U⊥ = s1 ∩ m2 = s2 ∩ m1 and m1 ∩ m2 =
(s1 + eT ) ∩ m2 = (s0 + s′1 + eT ) ∩ m2 = ((s0 +
eT )+ s

′
1)∩m2 . Because s0+ eT ⊂ m2 ,m1∩m2 =

(s0+eT )+(s′1∩m2) .While s′1∩m2 ⊆ s1∩m2 = s0 ,
m1 ∩m2 = s0 + eT .

From the definition of the message, we may take
mi(i = 1, 2) as follows
mi =



I(n) 0 0 0 0 0 0
0 pi1 0 pi2 0 0 0

0 0 I(n) 0 0 0 0
0 pi3 0 pi4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 pi5



n

t−n

n

t−n

1

1

k−2

n ν−n n ν−n 1 1 l−2

.
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Let

m1 ∩m2 =



I(n) 0 0 0 0 0 0
0 p1 0 p2 0 0 0

0 0 I(n) 0 0 0 0
0 p3 0 p4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 p5



n

t−n

n

t−n

1

1

k−2

n ν−n n ν−n 1 1 l−2

,

from above we know that m1 ∩ m2 = s0 + eT ,
then dim (m1 ∩m2) = k1 + n, therefore,

dim

 0 P1 0 P2 0 0 0
0 P3 0 P4 0 0 0
0 0 0 0 0 0 P5


= k1 + n− (2n+ 2)
= k1 − n− 2.

For any eL, eRi ⊂ m1 ∩m2, we can assume that

eL =


I(l) 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0

0 0 R3 I
(l) 0 R6 0 0 R9

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


l

n−l

l

1

1

l n−l ν−n l n−l ν−n 1 1 l−2

,

eRi =


I(l) 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0
0 0 R′

3 0 1 0 R′
6 0 0 R′

9

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


l

n−l

l

1

1

l n−l ν−n i−1 1 n−i ν−n 1 1 l−2

.

If eT ⊂ m1 ∩m2 and eL, eRi ⊂ eT , then eT has the
form as follows
eT =

I(l) 0 0 0 0 0 0 0 00 0

0 I(n−l) 0 0 0 0 0 0 00 0

0 0 R3I
(l) 0 0 0 R600R9

0 0 C3 0 I(i−l−1)0 0 C600C9

0 0 R′
3 0 0 1 0 R′

600R
′
9

0 0 C ′
3 0 0 0I(n−i))C ′

600C
′
9

0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 01 0



l

n−l

l

i−l−1

1

n−i

1

1

l n−l ν−n l i−l−1 1 n−i ν−n 11 l−2

.

So it is easy to know that the number of eT
contained in m1 ∩ m2 and containing eL, eRi is
q(n−l−1)(k1−n−2).

Theorem 10 In the constructed multireceiver au-
thentication codes, the largest probabilities of success
for impersonation attack and substitution attack from
RL on a receiver Ri are

PI [i, L] =
1

q(n−l−1)(2ν−2t)+2(ν−n)+(l−2)
,

PS [i, L] =
1

q(n−l)(l−k+2)+2t−2n+k−4
.

respectively, where i /∈ L.

Proof: Impersonation attack: RL, after receiving its
secret keys, sends a message m to Ri. The attack is
successful if m is accepted by Ri as authentic. There-
fore

PI [i, L] = max
eL∈ELmax

m∈M
| {eT ∈ ET |eT ⊂ m and eT ⊃ eL, eRi} |

| {eT ∈ ET |eT ⊃ eL} |


=
q2(t−n)(n−l−1)+(l−2)(n−l−1)

q2(n−l)(ν−n)+2(ν−n)(n−l)

=
1

q(n−l−1)(2ν−2t)+2(ν−n)+(l−2)
.

Substitution attack: RL, after observing a mes-
sage m that is transmitted by the sender, replaces m
with another message m′. The attack is successful if
m′ is accepted by Ri as authentic. Therefore,

PS [i, L] = max
eL∈EL

max
m∈M

max
m′∈M

| {eT ∈ ET |eT ⊂ m,m′ and eT ⊃ eL, eRi} |
| {eT ∈ ET |eT ⊂ m and eT ⊃ eL} |

= max
n+2≤k1≤2t−n+k−2

q(n−l−1)(k1−n−2)

q2(t−n)(n−l)+(l−2)(n−l)

=
1

q(n−l)(l−k+2)+2t−2n+k−4
.

3.2 Construction 2
Suppose that Fq is a finite field with q elements and
vi(1 ≤ 2i ≤ 2ν + l, l ≥ 2) are the row vectors in
F

(2ν+l)
q . Let 2 ≤ 2n < ν, 1 < k ≤ l,

U = ⟨v1, v2, · · · , v2n, e2ν+1, e2ν+2⟩,

i.e. U is a (2n+ 2)-dimensional subspace of F (2ν+l)
q

generated by ν1, ν2, · · · , ν2n, e2ν+1, e2ν+2, i.e. U is a
subspace of type(2n+ 2, 0, 2), then U⊥ is a subspace
of type (2ν − n+ l, ν − n, l).

The set of source states

S =

s ∣∣
s is a subspace of type
(2ν − 2n+ k, ν − 2n, k)
and U ⊂ s ⊂ U⊥

 .
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The set of the transmitter’s encoding rules
ET ={eT |eT is a 2n dimensional subspace and U + eT
is a subspace of type (4n+ 2, 2n, 2)}.

The set of the i-th receiver’s decoding rules
ERi={eRi |eRi is a 2 dimensional subspace and U +
eRi is a subspace of type (2n + 4, 2, 2) which is or-
thogonal to ⟨v1, · · · , v2i−3, v2i+1, · · · , v2n⟩}.

The set of messages M={m|m is a subspace of
type (2ν + k, ν, k), U ⊂ m and m ∩ U⊥=s }.

1. Key Distribution. The KDC randomly chooses
a subspace eT ∈ ET , then privately sends eT to the
sender T . Then KDC randomly chooses a subspace
eRi ∈ ERi and eRi ⊂ eT , then privately sends eRi to
the ith receiver, where 1 ≤ i ≤ n.

2. Broadcast. For a source state s ∈ S, the sender
calculates m = s+ eT and broadcasts m.

3. Verification. Since the receiver Ri holds the
decoding rule eRi , Ri accepts m as authentic if eRi ⊂
m. Ri can get s from s = m ∩ U⊥.

Lemma 11 The above construction of Multireceiver
authentication codes is reasonable, that is

(1) s+eT = m ∈M , for all s ∈ S and eT ∈ ET ;
(2) for any m ∈ M , s = m ∩ U⊥ is the unique

source state contained in m and there is eT ∈ ET ,
such that m = s+ eT .

Proof: (1) For s ∈ S, eT ∈ ET , from the definition
of s and eT , we can assume that

s =


I(2n) 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 0 Q8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 I(k−2) 0


2n

2ν−4n

1

1

k−2

2n ν−2n 2n ν−2n 1 1 k−2 l−k

,

then

sKl
ts =

 0 0 0
0 −Q4

tQ2+Q2
tQ4 0

0 0 0

 2n

2(ν−2n)

k

2n 2(ν−2n) k

.

Since rank(sKl
ts) = 2(ν − 2n), rank(−Q4

tQ2 +
Q2

tQ4) = 2(ν − 2n). Then we can assume that

eT =
(
X1 X2 I

(2n) X4 X5 X6 X7 X8

)
2n ν−2n 2n ν−2n 1 1 k−2 l−k

,

and(
U
eT

)
Kl

t(
U
eT

)
∼

 0 I(2n) 0

−I(2n) 0 0
0 0 0

 2n

2n

2

2n 2n 2

.

We have
m = s+ eT =

I(2n) 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 0 Q8

X1 X2 I(2n) X4 X5X6 X7 X8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 I(k−2) 0



2n

2(ν−2n)

2n

1

1

k−2

2n ν−2n 2n ν−2n 1 1 k−2 l−k

.

Thus m is a 2ν + k dimensional subspace, and
mKl

tm =
0 0 I(2n) 0
0 −Q4

tQ2+Q2
tQ4−Q4

tR2+Q2
tR40

−I(2n)−R4
tQ2+R2

tQ4−R4
tR2+R2

tR40
0 0 0 0

 ∼


0 0 I(2n) 0
0 −Q4

tQ2+Q2
tQ4 0 0

−I(2n) 0 0 0

0 0 0 0(k)


2n

2(ν−2n)

2n

k

where rank(−Q4
tQ2+Q2

tQ4) = 2(ν−2n). There-
fore, rank(mKl

tm) = 2ν, dim(m ∩ E) = k. From
above, m is a subspace of type (2ν + k, ν, k) contain-
ing U , i.e., m ∈M .

(2) For m ∈ M , m is a subspace of type (2ν +
k, ν, k) containing U . So there is subspace V ⊂ m,
satisfying

(
U
V

)
Kl

t(
U
V

)
∼

 0 0 I(2n)

0 0 0

−I(2n) 0 0

 2n

2

2n

2n 2 2n

then we can assume that m =

 U

V

P

 , satisfying

U

V

P

Kl

t
U

V

P

∼



0 0I(2n) 0 0 0
0 0 0 0 0 0

−I(2n)0 0 0 0 0
0 0 0 0 I(ν−2n) 0
0 0 0 −I(ν−2n) 0 0
0 0 0 0 0 0(k−2)


.

Let s =
(
U
P

)
, since U ⊥ U and U ⊥ P , we have

s ⊥ U . Therefore, s is a subspace of type (2ν − 2n+
k, t − n, k) and U ⊂ s ⊂ U⊥, i.e., s ∈ S is a source
state. For any v ∈ V and v ̸= 0, v /∈ s is obvious, i.e.,
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V ∩ U⊥ = ∅. Therefore, m ∩ U⊥ =

(
U
P

)
= s .

Let eT =

(
U
V

)
, then eT is a transmitter’s encod-

ing rule and satisfying m = s+ eT .
If s′ is another source state contained in m, then

U ⊂ s′ ⊂ U⊥. Therefore, s′ ⊂ m ∩ U⊥ = s, while
dims′=dims, so s′=s, i.e., s is the unique source state
contained in m.

From Lemma11, we know that such construction
of multireceiver authentication codes is well defined
and there are n receivers in this system. Next we com-
pute the parameters of this codes.

Lemma 12 The number of the source states is | S |=
q2(ν−2n)(l−k)N(2(ν− 2n), ν− 2n; 2(ν− 2n))N(k−
2, l − 2).

Proof: SinceU ⊂ s ⊂ U⊥ , s has the form as follows

s =


I(2n) 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 0 Q8

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 I(k−2) 0


2n

2ν−4n

1

1

k−2

2n ν−2n 2n ν−2n 1 1 k−2 l−k

,

where (Q2, Q4) is a subspace of type (2(ν − 2n), ν −
2n) in the symplectic space F (2(ν−2n))

q , Q8 arbitrary.
Therefore, the number of the source states is| S |=
q2(ν−2n)(l−k)N(2(ν− 2n), ν− 2n; 2(ν− 2n))N(k−
2, l − 2).

Lemma 13 The number of the encoding rules of the
transmitter is |ET | = q2n(2ν−2n+l).

Proof: Since U + eT is a subspace of type (4n +
2, 2n, 2), then we can suppose that

eT =
(
X1 X2 I

(2n) X4 X5 X6 X7 X8

)
2n ν−2n 2n ν−2n 1 1 k−2 l−k

,

where X1, X2, X4, X5, X6, X7, X8 is arbitrary.
Therefore the number of eT is q2n(2ν−2n+l).

Lemma 14 The number of the decoding rules of the
i-th receiver is |ERi | = q2(2ν−2n+l).

Proof: Since the i-th receiver’s decoding rule U+eRi

is a subspace of type (2n+ 4, 2, 2) which is orthogo-
nal to ⟨v1, · · · , v2i−2, v2i+1, · · · , v2n⟩ and by the tran-
sitivity property of singular symplectic group, we can
assume that eRi =(
X1 X2 0 I(2) 0 X6 X7 X8 X9 X10

)
2n ν−2n 2(i−1) 2 2(n−i) ν−2n 1 1 k−2 l−k

,

where X1, X2, X6, X7, X8, X9, X10 are arbitrary.
Therefore the number of |ERi | is q2(2ν−2n+l).

Lemma 15 (1)The number of encoding rules eT con-
tained in m is q2n(2ν−2n+k);

(2)The number of the messages is |M | =

q2(ν−n)(l−k)N(2(ν − 2n), ν − 2n; 2(ν − 2n))N(k −
2, l − 2).

Proof: (1) Let m be a message, since U ⊂ m and
from the definition of m, we may take m as follows

m =



I(2n) 0 0 0 0 0 0 0

0 I(ν−2n) 0 0 0 0 0 0

0 0 I(2n) 0 0 0 0 0

0 0 0 I(ν−2n) 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 I(k−2) 0


2n ν−2n 2n ν−2n 1 1 k−2 l−k

,

if eT ⊂ m, then we can assume that

eT =
(
R1 R2 I(2n) R4 R5 R6 R7 0

)
2n ν−2n 2n ν−2n 1 1 k−2 l−k

where R1, R2, R4, R5, R6, R7 are arbitrary. There-
fore, the number of eT contained in m is
q2n(2ν−2n+k).

(2) We know that a message contains only one
source state and the number of the transmitter’s en-
coding rules contained in a message is q2n(2ν−2n+k).
Therefore we have |M | = |S||ET |/q2n(2ν−2n+k) =

q2(ν−n)(l−k)N(2(ν − 2n), ν − 2n; 2(ν − 2n))N(k −
2, l − 2).

Theorem 16 The parameters of constructed multire-
ceiver authentication codes are

|S| = q2(ν−2n)(l−k)N(2(ν − 2n), ν − 2n; 2(ν −
2n))N(k − 2, l − 2).

|ET | = q2n(2ν−2n+l);
|ERi | = q2(2ν−2n+l);
|M | = q2(ν−n)(l−k)N(2(ν − 2n), ν − 2n; 2(ν −

2n))N(k − 2, l − 2).

Assume that there are n receivers R1, · · · , Rn.
Let L = {i1, · · · , il} ⊆ {1, · · · , n}, RL =
{Ri1 , · · · , Ril} and EL = ERi1

× · · · × ERil
. We

consider the impersonation attack and substitution at-
tack from RL on a receiver Ri, where i /∈ L.

Without loss of generality, we can assume that
RL = {R1, · · · , Rl}, EL = ER1 × · · · ×ERl

, where
1 ≤ l ≤ n − 1. First, we will prove the following
results:

Lemma 17 For any eL = (eR1 , · · · , eRl
) ∈ EL, the

number of eT containing eL is q(2n−2l)(2ν−2n+l).
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Proof: For any eL = (eR1 , · · · , eRl
) ∈ EL, we can

assume that

eL =
(
R1 R2 I(2l) 0 R5 R6 R7 R8 R9

)
2n ν−2n 2l 2n−2l ν−2n 1 1 k−2 l−k

.

Therefore, eT containing eL has the form as follows

eT =

(
R1 R2 I

(2l) 0 R5 R6 R7 R8 R9

R′
1 R

′
2 0 I(2n−2l) R′

5 R
′
6 R

′
7 R

′
8 R

′
9

)
2n ν−2n 2l 2n−2l ν−2n 1 1 k−2 l−k

,

where R′
1, R

′
2, R

′
5, R

′
6, R

′
7, R

′
8, R

′
9 are arbitrary.

Therefore, the number of eT containing eL is
q(2n−2l)(2ν−2n+l).

Lemma 18 For any m ∈M and eL, eRi ⊂ m,
(1) the number of eT contained inm and contain-

ing eL is q(2n−2l)(2ν−2n+k);
(2) the number of eT contained inm and contain-

ing eL, eRi is q(2n−2l−2)(2ν−2n+k).

Proof: (1) The matrix of m is the same as that in
lemma 15, then for any eL ⊂ m, assume that

eL =
(
R1 R2 I(2l) 0 R5 R6 R7 R8 0

)
2n ν−2n 2l 2n−2l ν−2n 1 1 k−2 l−k

.

If eT ⊂ m and eT ⊃ eL, then

eT =

(
R1 R2 I

(2l) 0 R5 R6 R7 R8 0

R′
1 R

′
2 0 I(2n−2l) R′

5 R
′
6 R

′
7 R

′
8 0

)
2n ν−2n 2l 2n−2l ν−2n 1 1 k−2 l−k

,

where R′
1, R

′
2, R

′
5, R

′
6, R

′
7, R

′
8 are arbitrary. There-

fore, the number of eT contained in m and containing
eL is q(2n−2l)(2ν−2n+k).

(2) Similarly, we can prove that the number
of eT contained in m and containing eL, eRi is
q(2n−2l−2)(2ν−2n+k).

Lemma 19 Assume that m1 and m2 are two distinc-
t messages which commonly contain a transmitter’s
encoding rule eT . s1 and s2 contained in m1 and
m2 are two source states, respectively. Assume that
s0 = s1 ∩ s2, dim s0 = k1, then 2n + 2 ≤ k1 ≤
2ν − 2n + k − 1. For any eL, eRi ⊂ m1 ∩ m2, the
number of eT contained in m1 ∩ m2 and containing
eL, eRi is q2(n−l−1)(k1−2n−2).

Proof: Sincem1 = s1+eT ,m2 = s2+eT andm1 ̸=
m2, s1 ̸= s2, for any s ∈ S, s ⊃ U , 2n + 2 ≤ k1 ≤
2ν−2n+k−1. Assume that s′i is the complementary
subspace of s0 in the si, then si = s0 + s′i (i = 1, 2).
Frommi = si+eT = s0+s

′
i+eT and si = mi∩U⊥,

we have s0 =
(
m1 ∩ U⊥)∩ (m2 ∩ U⊥) = m1 ∩

m2 ∩ U⊥ = s1 ∩ m2 = s2 ∩ m1 and m1 ∩ m2 =
(s1 + eT ) ∩ m2 = (s0 + s′1 + eT ) ∩ m2 = ((s0 +
eT )+ s

′
1)∩m2 . Because s0+ eT ⊂ m2 ,m1∩m2 =

(s0+eT )+(s′1∩m2) .While s′1∩m2 ⊆ s1∩m2 = s0 ,
m1 ∩m2 = s0 + eT .

From the definition of the message, we may take
mi(i = 1, 2) as follows mi =

I(2n) 0 0 0 0 0 0 0
0 hi2 0 hi4 0 0 hi7 0

X1 X2 I(2n) X4 X5 X6 X7 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 h′i7 0



2n

2(ν−2n)

2n

1

1

k−2

2n ν−2n 2n ν−2n 1 1 k−2 l−k

.

Let m1 ∩m2 =

I(2n) 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 Q7 0

X1 X2 I
(2n) X4 X5 X6 X7 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 Q′

7 0



2n

2(ν−2n)

2n

1

1

k−2

2n ν−2n 2n ν−2n 1 1 k−2 l−k

,

from above we know that m1 ∩m2 = s0 + eT , then
dim (m1 ∩m2) = k1 + 2n, therefore,

dim =

(
0 Q2 0 Q4 0 0 Q7 0
0 0 0 0 0 0 Q′

7 0

)
= k1 − 2n− 2.

For any eL, eRi ⊂ m1 ∩m2, we can assume that
eL =(
R1 R2 I(2l) 0 0 0 R7 R8 R9 R10 0

)
2n ν−2n 2l 2(i−1−l) 2 2(n−i) ν−2n 1 1 k−2 l−k

,

and
eRi =(

X1 X2 0 0 I(2) 0 X7 X8 X9 X10 0
)

2n ν−2n 2l 2(i−1−l) 2 2(n−i) ν−2n 1 1 k−2 l−k

.

If eT ⊂ m1 ∩m2 and eL, eRi ⊂ eT , then eT has the
form as follows eT=
R1 R2 I

(2l) 0 0 0 R7R8R9R100

H1 H2 0 I(2(i−l−1)) 0 0 H7H8H9H100

X1 X2 0 0 I(2) 0 X7X8X9X100

N1 N2 0 0 0 I(2(n−i))N7N8N9N100


2n ν−2n 2l 2(i−1−l) 2 2(n−i) ν−2n 1 1 k−2 l−k

So it is easy to know that the number of eT
contained in m1 ∩ m2 and containing eL, eRi is
q2(n−l−1)(k1−2n−2).
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Theorem 20 In the constructed multireceiver au-
thentication codes, the largest probabilities of success
for impersonation attack and substitution attack from
RL on a receiver Ri are,respectively,

PI [i, L] =
1

q2(n−l)(l−k)+2(2ν−2n+k)
,

PS [i, L] =
1

q2(n−l)(2n+3)+2(2ν−4n+k−3)
.

where i /∈ L.

Proof: Impersonation attack: RL, after receiving its
secret keys, send a message m to Ri. The attack is
successful if m is accepted by Ri as authentic. There-
fore,

PI [i, L] = max
eL∈ELmax

m∈M
| {eT ∈ ET |eT ⊂ m and eT ⊃ eL, eRi} |

| {eT ∈ ET |eT ⊃ eL} |


=
q(2n−2l−2)(2ν−2n+k)

q(2n−2l)(2ν−2n+l)

=
1

q2(n−l)(l−k)+2(2ν−2n+k)
.

Substitution attack: RL, after observing a mes-
sage m that is transmitted by the sender, replace m
with another message m′. The attack is successful if
m′ is accepted by Ri as authentic. Therefore,

PS [i, L] = max
eL∈EL

max
m∈M

max
m′∈M

| {eT ∈ ET |eT ⊂ m,m′ and eT ⊃ eL, eRi} |
| {eT ∈ ET |eT ⊂ m and eT ⊃ eL} |

= max
2n+2≤k1≤2ν−2n+k−1

q2(n−l−1)(k1−2n−2)

q(2n−2l)(2ν−2n+k)

= 1
q2(n−l)(2n+3)+2(2ν−4n+k−3) .
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