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Abstract: - Gas hold-up is the volume fraction of gas in a gas-liquid mixture, the design of gas-liquid contactors 
and bioreactors. Gas hold-up prediction in stirred and sparging reactors is a problem that involves predicting 
the volume fraction of gas in a gas-liquid phase. The Reinforcement Learning problem includes an agent 
discovering an unidentified atmosphere to accomplish an objective and can be designated by the expansion of 
predictable increasing compensation. Measuring and adjusting gas hold-up in enthused and spared apparatuses 
is serious for attracting the competence and presentation of a variety of requests, such as biochemical processes, 
fermentation, and wastewater treatment. Gas hold-up that is the gas volume ratio in the liquid phase affects 
reactor productivity, mass transfer rate, and kinetics of the reaction. To generate and appliance a Deep 
Reinforcement Learning (DRL) structure. To increase the accuracy of gas hold-up predictions and permit real-
time adaptive regulator systems the development will use DRLs urbane competencies to imprisonment the 
complicated diminuendos of multiphase stream schemes. The Z-Score with IQR (Interquartile Range) method 
was used in the learning to remove after the data. A DRL negotiator that can forecast and recover 
hydrodynamic possessions is to pardon the planned learning goals to progress. The assumed precise 
associations of this DRL procedure purpose to the escalation of the exactness correctness and competence of 
gas hold-up value forecasts in flashed and stimulated devices. The DRL method's aptitude to forecast and 
enhance gas hold-up in these apparatuses will be inspected using MATLAB. The findings show that Mixture 
Velocity (m/s)" varies from 0.4 to 2.2 meters per subsequent, Liquid Holdup and goes from 0.905 to 0.955. The 
approaching probability of the investigation is the allowance of the industrialized DRL structure to a wider 
assortment of multiphase device schemes and manufacturing procedures.  
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1   Introduction 
Gas-liquid reactors are important in various 
industries, such as biochemical, pharmaceutical, 
and environmental engineering, for processes such 
as fermentation, chemical synthesis, and 
wastewater treatment, [1]. Correct prediction of gas 
hold-up needs and optimization of the quantity of 
gas in the liquid phase for these reactors to operate 
efficiently. Thermal and mass transfer charges are a 
reaction of kinetics energy and performance of the 
reactor in all wedged by gas hold-up, [2], [3]. The 
prediction and improvement of gas in sparged and 
mixed reactors stay verified because of the mind-
boggling cooperation between the gas and fluid 
stages, as well as the working circumstances 
reactor plan, [4], [5]. Conventional robotic models 
frequently mistreat to catch the dynamic and 

nonlinear mode of behaving of gas hold-up in these 
frameworks, prompting poor activity and energy 
failures, [6], [7]. To use DRL a state-of-the-art AI 
technique to enhance gas hold-up forecasting and 
streamlining in sparged and mixed reactors, [8], 
[9]. By applying DRL to gas hold-up expectations 
and streamlining, the study intends to foster a 
powerful and versatile system that can persistently 
further develop reactor execution because of 
constant information, [10], [11]. The gas hold-up 
forecast and streamlining issue is a Markov 
Decision Process (MDP), where the reactor state, 
activity, and prize are characterized because of the 
gas hold-up elements and execution targets, [12], 
[13]. Then, the study will plan a profound brain 
network engineering, for example, a deep Q-
network (DQN) or a strategy inclination technique, 
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to become familiar with the ideal strategy for 
boosting gas hold-up and limiting energy 
utilization, [14], [15]. The brain organization will 
be prepared to utilize verifiable information and 
recreation results to speed up the growing 
experience, [16], [17]. The accuracy of gas hold-up 
prediction in sparged and stirred reactors by 
leveraging the high-precision capabilities of DRL 
algorithms, [18], [19]. Operators will be able to 
make real-time, informed decisions and optimize 
reactor performance more effectively as a result. 
Secondly, the study aims to reduce energy 
consumption and enhance process efficiency 
through the continuous optimization of gas hold-up, 
leading to cost savings and environmental benefits, 
[20]. The primary aim of this study is to develop 
the AI-powered technique fundamental based on 
deep reinforcement learning for the prediction of 
gas hold-up in two reactors such as stirred and 
sparged. In the end, this research has the potential 
to improve process engineering and increase the 
sustainability and economy of industrial processes. 
The following is the arrangement of the remaining 
sections: Section 2 describes the literature review, 
Section 3 describes the suggested technique, 
Section 4 discusses the results, and Section 5 
describes the paper's conclusion. 

 

 

2   Literature Survey  
The literature review provides AI-driven methods 
for predicting gas hold-up in stirred and spared 
reactors using DRL techniques. [21] considered a 
sophisticated DRL policymaker agent to determine 
market prices and securities allocations under a 
range of objectives, and their application including 
sustainability, equity, and welfare. The 
policymaker-agent showed competitive 
performance with market equilibrium, a significant 
increase in resource sustainability considering 
resource-bound settings, and exceeded expectations 
on many metrics in a diverse dynamic market 
setting. A new AI-based patient monitoring system 
was suggested by Shaik et al. to enhance healthcare 
results. [22] which uses multi-agent DRL to track 
patients' vital signs to a high degree of precision 
with immediate alerts to Medical Emergency 
Teams (METs). Results indicated that watching 
patients' vital signs with the proposed DRL 
framework outperformed the baseline models and 
standard monitoring methods, allowing for more 
accurate patient monitoring and earlier intervention 
to improve patient-specific outcomes. Tweaking 
hyperparameters made the agents even more 
flexible to different patient situations. [23] 

examined AI Economist a machine-learning-based 
economic simulation platform designed to 
investigate the best taxation policies and address 
the shortcomings of the current economic approach. 
The AI Economist has shown impressive success in 
enhancing social welfare and finding a balance 
between equality and productivity in complex 
economies when compared to traditional models. 
This illustrates the effectiveness of DRL at two 
levels in influencing economic policy. [24] used a 
piezoelectric sensor to collect acoustic emission 
data to assess the gas-liquid mixing regime in 
agitated containers. In gas-liquid and gas-solid-
liquid combinations the technique successfully 
differentiated between three flow regimes (non-
gassed loaded and total dispersion) using machine 
learning (ML) algorithms attaining an accuracy rate 
of over 90%. Babanezhad et al. developed an 
ANFIS model using fluid properties as inputs. [25] 
in a 2D-bubble column reactor to simulate the gas-
phase volume fraction. The accuracy with which 
the ANFIS model predicts the gas-phase capacity 
fraction at different reactor locations using the x 
and y instructions and gas-phase turbulence as 
input parameters shows how well it can simulate 
complex fluid systems. [26] need to accurately 
model and control a continuous stirred-tank reactor 
(CSTR) scheme for wastewater treatment 
applications. When compared to other cutting-edge 
methods the Deep MPC combined with a growing 
deep belief network (GDBN) and an optimal 
controller gave better results in system 
identification and showed enhanced modeling 
tracking and disturbance rejection capabilities. [27] 
created a new technique for building implicit 
hybrid models with PyTorch that combines 
machine-learning models with physics-based 
equations for increased accuracy. In the instance of 
a CSTR the implicit hybrid model outperformed an 
explicit hybrid approach exhibiting reduced 
modeling error. The results were similar to those of 
direct RL training on the CSTR but it required 
fewer system interactions during development. It 
was successfully trained using noisy data. [28] 
suggested in a continuously stirred tank reactor 
with a strong acid-base reaction created and 
verified a reinforcement learning (RL) control 
system for coupled pH and liquid level control 
using a deep deterministic policy gradient (DDPG) 
algorithm. The proportional-integral controller was 
outperformed by the RL control system in a servo-
regulatory test which showed a faster setpoint 
approach better overall performance and less 
oscillation. This illustrates how well RL works in 
industrial procedures to regulate pH and liquid 
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levels. To avoid hazardous conditions brought on 
by the accumulation of feeding reagents [29] used 
reinforcement learning to develop a method for the 
best possible control of semi-batch reactors. 
Problem-specific RL-based controllers successfully 
controlled the feeding rate and maintained the 
temperature at predetermined set points in a variety 
of semi-batch reactor operation phases 
demonstrating the efficacy of the proposed 
methodology. With data acquired from 
identification tests Ahmed et al. To efficiently 
convert a complex nonlinear dynamical system into 
a higher dimensional linear system [30] increased a 
deep learning framework, [31]. 
 
 
3   Proposed Research Methodology  
The collective need for proficient and maintainable 
manufacturing procedures requires the optimization 
of multi-phase apparatuses to increase efficiency, 
security, and reserve practice, [32]. With deep 
Learning competencies, this exertion proposes to 
improve the excellence of provision in these liquid-
dispersed gas multi-phase apparatuses, [33]. The 
formation of urbane reproduction surroundings, 
real-time data from abundant manufacturing bases, 
and the creation of innovative DRL algorithms, this 
exertion seeks to transform the controller and 
process of multi-phase apparatuses, [34]. By paving 
the way for more bright and adaptable device 
schemes that contain the altering stresses of 
productions fluctuating from wastewater treatment 
to chemical manufacture. The area is to improve 
crucial recital pointers containing gas hold-up, 
competence, and protection. Optimizing the 
hydrodynamic possessions of these apparatuses to 
surge their presentation, competence, and creation 
excellence is a mutual task for exploration and 
growth in this arena. In the development of refining 
competence, sparged and enthused multiphase 
strategies hydrodynamic act must be forecast and 
measured consuming DRL techniques. The block 
diagram of the proposed work is exposed in Figure 
1. 

This receipts several phases to improve the 
excellence of service in enthused and sparged 
devices using DRL. Collecting real-time numbers 
from atomic reactor operatives, crucial limitations 
are chronicled. Outlier supervision and 
documentation safeguard data dependability. 
Emerging a DRL agent that knowingly recovers gas 
hold-up value forecast correctness, exactness, and 
effectiveness is the primary goal. Mathematical 
correlations (Eo, Fr, Ar) that describe fluid 
undercurrents are crucial to the technique's 

precision. To enhance reactor presentation in 
businesses such as chemical industrial and 
treatments, this education combines fluid 
undercurrents, chemical commerce, and machine 
erudition. 
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Fig. 1: Block Diagram of the Suggested Work 
  
3.1  Data Collection  
The approach is identifying target industries, for 
example, chemical production, pharmaceuticals, 
and food processing, where multi-phase reactors 
are widespread, to gather real-time datasets from 
businesses running sparged and stirred reactors. In 
the identification of possible businesses or research 
institutes, cooperation is started, guaranteeing 
appropriate consent for data sharing while abiding 
by privacy and data protection laws. Reactor 
diameter, gravity-induced acceleration, liquid 
density, surface tension, flow rate, and dynamic 
viscosity are among the precise characteristics that 
must be collected. Pressure, flow, and temperature 
sensors are employed for measurement. After that, 
data is gathered either directly from enterprise 
systems (such as SCADA or DCS) or through API 
interfaces, guaranteeing accurate and reliable real-
time measurements. The collected data is patterned 
for accuracy per manufacturing values before being 
prearranged for supplementary inspection. 
 
3.2  Data Pre-Processing  
To declare the accuracy and reliability of the 
analysis, the organization of data outliers is a 
crucial part of data pre-processing. There are 
frequent approaches for professionally classifying 
and treating outliers. The education used the Z-
Score in combination with the IQR method to 
remove outliers from the dataset. Each data point's 
Z-score can be determined, and a verge above 
which data opinions are deemed outliers can be 
recognized. Information points that fall outdoor of 
the allowed worth variety are recognized as outliers 
by IQR. Rendering to this technique, data opinions 
with a Z-Score developed than a prearranged 
threshold are typically confidential as outliers. 
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Contingent to the specific needs of the 
examination, this threshold may be different. In the 
culmination, this upsurges the correctness and 
rationality of the consequences by preservative data 
constancy and declines the inspiration of dangerous 
standards on the training. 
 
3.2.1 Z-Score with Inter-Quartile Range (IQR) 

Method 

The Z-Score method along with the IQR technique 
to spot and take out data that didn’t fit. This helps 
make sure the data analysis is accurate and 
trustworthy. The Z-Score tells us how far a piece of 
data is from the regular by measuring how many 
normal deviations it is away. If a data point falls 
outside a set range, usually between 3 and -3, it is 
considered an outlier. 

A support vector for the indication S includes 
N random samples that follow a Gaussian 
distribution. Each sample, 𝑋𝑖  (𝑖 =  1, 2, 3, . . . . , 𝑁) 
(where i ranges from 1 to N), has a mean of µ and a 
normal deviation of σ.  

𝑆 = [𝑋1, 𝑋2, 𝑋3, … . . , 𝑋𝑁]𝑇  (1) 
 

The occurrence of impulsive noise 
contaminates the Gaussian distribution of the signal 
𝑆 and makes it heavy-tailed. The matrix notation of 
the impulse signal 𝐼 consisting of 𝐾 samples with 
values  𝑌𝑖(𝑖 =  1, 2, 3, . . . . , 𝐾) can be given as: 

𝐼 = [𝑌1, 𝑌2, 𝑌3, … . . , 𝑌𝑁]𝑇  (2) 
 

Since 𝑁 is the window size of the signal, the 
value of 𝐾 can vary in the variety of 𝐾 ≤  𝑁. The 
ratio 𝐾/𝑁 provides the density of impulsive noise 
in the signal. Data set 𝐼 contains samples that do 
not exhibit impulsive noise, however, these 
samples contain null values, resulting in the 
impulsive noise vector having a similar 
dimensionality to the signal vector. The impulsive 
noise when added to the signal leads to the resultant 
signal (R) given as: 

𝑅 = 𝑆 + 𝐼   (3) 
 
For optimal performance of the decision-based 

technique, the magnitude of impulsive noise values 
should be significantly higher than the standard 
deviation of the signal. If𝜎𝑠Is the aberration of the 
signal, then, for effective filtering with minimum 
loss of useful signal, the magnitude of impulsive 
noise (𝑌𝐾) should be 𝑌𝐾 ≫ 3𝜎𝑠 For 3σ threshold. In 
practice, this value is decided by the dynamic range 
of the system. If 𝑆 is a data set with values 
𝑋1, 𝑋2, 𝑋3, … . . , 𝑋𝑁 , the Interquartile range can be 
clear as displayed in equation (4),  

𝐼𝑄𝑅 = 𝑘 ∗ (𝑆(0.75𝑁) − 𝑆(0.25𝑁)) (4) 
 
Where k = 0.7413 for Gaussian distribution 

with large window size N. The robustness of IQR 
towards outliers is useful in removing extreme 
values resulting from impulsive events. According 
to the definition of IQR, a significant amount of 
outliers above the threshold are the values that lie 
outside the range. [𝑆(0.75𝑁) + 1.5 ∗ 𝐼𝑄𝑅, 𝑆(0.25𝑁)  −

1.5 ∗ 𝐼𝑄𝑅]. For the median, M, the upper(75%) and 
lower(25%) filtering thresholds are calculated as 
shown in 3 and 4. 

𝑈𝑇𝐻 = 𝑀 + (𝑆(0.75𝑁) + 𝑛 ∗ 𝐼𝑄𝑅)  (5) 
 

𝐿𝑇𝐻 = 𝑀 − (𝑆(0.25𝑁) − 𝑛 ∗ 𝐼𝑄𝑅)  (6) 
 

The filter output 𝑆𝑓 for an input distribution, 𝑅 
with 𝑁 data samples can be specified as in equation 
(7),  

𝑆𝑓(𝑛) = 𝜑(𝑀, 𝐼𝑄𝑅)  𝑜𝑟  𝑀 ; 𝑖 𝑓 𝐿𝑇𝐻 ≤ 𝑆𝑓(𝑛)

≥ 𝑈𝑇𝐻 

= 𝑆𝑓(𝑛); 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (7) 
 

where 𝑛 =  1,2,3, . . . . . , 𝑁 and 𝜑(𝑀, 𝐼𝑄𝑅) is an 
example from a Gaussian distribution having mean 
and normal irregularity equal to the central and the 
IQR of the dispersal correspondingly. 

𝑆𝑓(𝑛) = 𝐿𝑇𝐻; 𝑖 𝑓 𝐿𝑇𝐻 < 𝑆𝑓(𝑛) 
= 𝑈𝑇𝐻; 𝑖 𝑓 𝑈𝑇𝐻 > 𝑆𝑓(𝑛)           (8) 
= 𝑆𝑓(𝑛); 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
These unfiltered values are false positives (𝜂) 

which can be defined as the change among the 
actual number of outliers (𝑂𝑆) to the number of 
outliers detected (𝑂𝐷) by the filter equation (9). 

 𝜂 = 𝑂𝑆 − 𝑂𝐷           (9)  
 

The approaches provide a virtuous method to 
discover and remove outliers for Z-Score and IQR, 
assisting in having our datasets consistent and 
clean, specifically while they have arbitrary sound. 
By utilizing IQR and standard deviation, it can be 
set in effect bounds to acquire rid of intense values 
even while still keeping the crucial portions of the 
data together. This effects in a cleaner signal that 
better replicates the existent distribution, permitting 
extra specific analysis and modelling. 
 
3.3 Hydrodynamic Characteristics 

 Prediction 
Combining the Z-Score and Interquartile Range 
approaches aids in ensuring that datasets affected 
by abrupt noise stay consistent and precise, which 
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is crucial for outliers to find and remove. By using 
the IQR and standard deviation to fix appropriate 
parameters, this method efficiently removes intense 
values while keeping the significant essentials of 
the data intact. As an effect, the tidied-up data 
improved reflects and varieties informal to evaluate 
the model. The key purpose is to generate a DRL 
agent that can take in data about the reactor, for 
instance, its flow rates, size, and significant 
mathematical relations (Eo, Fr, Ar). This DRL 
algorithm is intended to variety of predictions for 
gas hold-up values in sparked and stirred reactors 
further exactly and capably by integrating these 
mathematical relations. By making an allowance 
for aspects like buoyancy, surface tension, gravity, 
and fluid dynamics in the reactor, the DRL method 
works to enhance the accuracy of gas hold-up 
estimations. These dimensionless quantities play a 
key role in sympathetic exactly how multi-phase 
flow works in the reactor.  
 
3.3.1  Deep Reinforcement Learning (DRL) 

The DRL is used for hydrodynamic engineering to 
predict and increase hydrodynamic features. The 
DRL agents can generate how fluids design and 
behave in the surroundings for better performance. 
Then the engineers predict the numerous 
parameters for example flow patterns, input 
variables like geometry, and fluid properties. DRL 
agents can discover through iterative investigation 
and utilization in optimal design configurations that 
drag, efficiency, or complete other desired 
objectives. It not only streamlines the design 
process but also has the potential to transform the 
efficiency and sustainability of numerous marine 
and engineering in the meadow of fluid 
applications. 

  max ∑ ∑ 𝑦𝑖𝑘
𝑉
𝐾=1

𝑁−1
𝑖=1                      (10) 

 
Equation (10) shows exactly how to improve 

composed two indices, i and k. Here, from 𝑞 to 
𝑁 − 1 and 𝑘 ranges from 1 to V,  N frequently 
signifies the total sum of observations or data 
points, and V specifies the number of sorts or 
variables looked at when predicting hydrodynamic 
features. The variable 𝑦𝑖𝑘Likely refers to a specific 
hydrodynamic quality linked to the kth variable and 
the ith observation. By using the provided variables 
and observations, this equation finds the largest 
sum of these qualities across all the observations 
and variables, suggesting that a certain aspect of 
hydrodynamic performance might be improved. 

  ∑ 𝑦𝑖𝑘
𝑉
𝐾=1 ≤ 1, 𝑖 ∈ {1,2, … 𝑁 − 1}       (11) 

 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑖𝑘 , 𝑖 ∈ {1,2, … 𝑁 − 1}𝑘 ∈ 𝑈𝑁
𝑗=1   (12) 

 
∑ 𝑥𝑖𝑗𝑘 =  ∑ 𝑥𝑗𝑖𝑘

𝑁−1
𝑗=0  ≤ 1, 𝑖 ∈𝑁

𝑗=1

{0,1, … , 𝑁}, 𝑘 ∈ 𝑈                        (13) 
 
In a reactor system, the symbols 𝑥𝑖𝑗𝑘 and 

𝑥𝑗𝑖𝑘  could represent different traits or factors that 
affect how fluids move inside it. These might 
include things like temperature patterns, 
concentrations of different substances, flow rates, 
and other related features. By developing a model 
that reflects how these variables interact, it can 
forecast the overall movement of fluids in the 
reactor using equations and rules similar to the one 
mentioned above. 

∑ ∑ 𝑥0𝑗𝑘 = ∑ ∑ 𝑥𝑖𝑁𝑘 =𝑁−1
𝑖=1 𝑉 𝑉

𝐾=1
𝑁−1
𝑗=1

𝑉
𝐾=1  (14) 

 
∑ ∑ 𝑑𝑖𝑗. 𝑥𝑖𝑗𝑘 ≤ 𝐷, 𝑘 ∈ 𝑈𝑁

𝑗=0
𝑁
𝑖=0   (15) 

 
𝑧𝑖𝑘 − 𝑧𝑗𝑘 + 𝐷. 𝑥𝑖𝑗𝑘 ≤ 𝐷 − 𝑑𝑖𝑗 , 𝑖 ≠ 𝑗 ∈ 𝑇, 𝑘 ∈ 𝑈  

          (16) 
 

when the variables 𝑧𝑖𝑘 and 𝑧𝑗𝑘 most likely reflect 
some attribute or feature of the reactor at locations I 
and j, respectively, in a particular dimension or 
feature space. They might, for example, stand for 
velocities, concentrations, or other hydrodynamic 
factors. D can be a scalar value or a matrix, and 
depending on the situation, it is frequently 
connected to a distance metric or a diffusion 
coefficient. A binary indicator or continuous 
variable associated with the existence or severity of 
a specific process or condition at location i in the 
reactor, at time 𝑗, and in dimension k is denoted by 
the symbol. 𝑥𝑖𝑗𝑘. The distance measure 𝑑𝑖𝑗 denotes 
the separation between reactor locations 𝑖 and 𝑗. 
The equation as a whole seems to describe a 
constraint related to the optimization problem for 
predicting and optimizing hydrodynamic 
characteristics. It seems that the equation's analysis 
requires that, for all pairs of locations 𝑖 and 𝑗 where 
𝑖 is not equal to 𝑗, and for all dimensions or features 
k within the designated sets T and U, the difference 
between specific characteristics at different 
locations (𝑧𝑖𝑘 − 𝑧𝑗𝑘)  plus a term involving 𝐷 and 
𝑥𝑖𝑗𝑘 should be less than or equivalent to another 
term D-𝑑𝑖𝑗. 

0 ≤ 𝑧𝑖𝑘 ≤ 𝐷 − 𝑑𝑖𝑜 , 𝑖 ∈ {1,2, … , 𝑁}, 𝑘 ∈ 𝑈    (17) 
 

where, N represents the total count of entities or 
observations, while U is made up of indices that 
relate to certain parameters. To keep the expected 
𝑧𝑖𝑘from going negative, the condition 0 ≤
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𝑧𝑖𝑘indicates any physical limits that need to be 
careful in the prediction process. At the same time, 
there's a top limit set for 𝑧𝑖𝑘, which is  𝑧𝑖𝑘 ≤ 𝐷 −
𝑑𝑖𝑜.These rules are important for making sure that 
the predicted hydrodynamic traits stay within 
realistic and sensible ranges, aiding in accurate 
prediction and analysis in hydrodynamics. Here, D 
is the maximum value, and 𝑑𝑖𝑜serves as a reference 
point connected to entity 𝑖. Table 1 demonstrates 
the deep reinforcement learning algorithms. 
 
Table 1. Deep Reinforcement Learning Algorithm 

Algorithm 1: Deep Reinforcement Learning 
Initialize DNN parameters of the agent 
Generate a dataset of the initial state (S) from the 
environment (simulator data).; 
for DNN predicts an action (A) based on the 
state (S) 
Update N: where 𝑖 ranges from 𝑞 to 𝑁 − 1; 
Normalize 𝑧𝑖𝑘 and 𝑧𝑗𝑘 variables 
to satisfy D-𝑑𝑖𝑗  for all pairs of locations 𝑖 and 𝑗; 
end for 

while not converged do 
for all 𝑈 ∈ 𝑖 in 𝑘 do 
Update 𝑑𝑖𝑜on the sample 𝑗; 
end for 

Update N: where k ranges from 1 to 𝑉; 
Normalize 𝑧𝑖𝑘 ≤ 𝐷 − 𝑑𝑖𝑜; 
Imposes an upper bound on 𝑧𝑖𝑘 
end for 

end while 
 

The DRL emphasizes an informative structure 
that works with a DNN agent and an emulator. To 
assist, the DNN predicts initial parameters that 
define the starting conditions. The agent makes 
decisions, the national of the location variations, 
and it obtains response in the procedure of 
recompenses, which assistances improve its 
executive. The DNN is efficiently grounded on the 
recompenses it accepts. To keep the procedure 
operative efficiently, relate approximate 
restrictions, such as standardizing variables and 
situation concentrated integrity for positive 
confines ie., (𝑧𝑖𝑘). The system residues to 
recurrence till the DNN obtains the best technique 
to whole its mission through succeeding these 
boundaries to recognize the best comprehensive 
presentation. 

 
 

4 Experimentation And Result 

 Discussion 
The DRL for increasing gas hold-up prediction and 
optimization in two types of reactor for sparged and 

stirred reactors. These reactors are computationally 
expensive and limited in their adaptability. The 
results are implemented using MATLAB software, 
which will probe into the efficiency of the 
implemented DRL method in forecasting and 
optimizing gas hold-up in the reactors. The DRL 
method compared the other models such as 
accuracy, efficiency, and ability to handle different 
operating conditions. 
 

Table 2. System Configuration for Simulation 
MATLAB Version R2023a 

Operating System Windows 10 Home 
Memory Capacity 6GB DDR3 

Processor Intel Core i3 @ 
3.5GHz 

 
Table 2 illustrates how the scheme was set up 

for the simulation in the study. The research work 
was done using MATLAB of version R2023a with 
the processor of core i3@ 3.5GHz and the RAM of 
DDR3-6GB.  
 
4.1  Data Pre-processed Results  
Real-time datasets from diverse industries utilizing 
sparged and stirred reactors were collected, 
encompassing essential parameters like reactor 
diameter, gravity acceleration, liquid density, 
volumetric flow rate, dynamic viscosity, and 
surface tension. These datasets, comprising 
measurements, sensor readings, and process 
variables, were meticulously curated for analysis 
and research purposes, primarily aimed at 
enhancing the prediction and optimization of 
hydrodynamic features in multiphase reactors. 
 

 
Fig. 2: Probability Density Function of X 

 
Figure 2 illustrates the probability density 

function of X also the axis of the Figure is labeled 
"X", and the other axis is termed "Probability 
Density". The Figure shows a curve, which is a 
common shape for a probability density function. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.28 Suchita Walke, Jagdish W. Bakal

E-ISSN: 2224-3402 338 Volume 22, 2025



The highest point of the curve is at X=10, which 
means that the worth of X that has the highest 
probability density is 10. The curve is symmetrical 
around X=10, which means that the probability 
density is equal for values of X that are the same 
distance away from 10. 

 

 
Fig. 3:  Mixture at Different Velocities In A Liquid 
Holdup 
  

Figure 3 shows a relationship between the 
diameter of a mixture and the velocity of the 
mixture. It is considered as "Mixture Velocity 
(m/s)" and ranges from 0.4 to 2.2 meters per second 
along with that a "Liquid Holdup" goes from 0.905 
to 0.955. The data shows a distribution of possible 
holdup values at different velocities, suggesting a 
range of probable outcomes. The peak of the curve 
likely corresponds to the velocity at which the 
liquid is most likely to be held within the mixture. 
 
4.2 Hydrodynamic Characteristics 

 Prediction 
Predicting hydrodynamic characteristics in 
multiphase reactors is a crucial element of process 
engineering, vital for maximizing reactor 
performance and efficiency. By leveraging 
advanced computational models, empirical 
connections, and investigational data, researchers 
aim to accurately forecast key parameters such as 
gas hold-up, bubble size distribution, interfacial 
area, and mixing efficiency. These predictions 
guide reactor design, scale-up, and operation, 
enabling engineers to achieve desired process 
outcomes while minimizing energy consumption 
and maximizing productivity.  

Figure 4 compares a predicted temperature (red 
line) to the actual temperature (blue line) over 180 
minutes. The axis shows the temperature in degrees 
Celsius and time in minutes. The Figure suggests 
the prediction was fairly accurate, although there 
may have been slight deviations between the 
predicted and actual temperatures. While the red 

and blue lines mostly line up, indicating a good 
prediction, there seem to be minor temperature 
differences throughout the timeframe.  

 

 
Fig. 4: Accuracy of Temperature Prediction Over 
Time 

 

 
Fig. 5: Impact of Air Humidity On Gas Velocity 

 
Figure 5 displays the relationship between gas 

velocity and air humidity. The axis indicates gas 
velocity in meters per second (m/s) and air 
humidity. The four data series represent gas 
velocity at different concentrations (0 ppm, 1 ppm, 
3 ppm, and 6 ppm).  The figure suggests that higher 
air humidity leads to lower gas velocity. For 
instance, at 0.01 m/s, the air humidity for 0 ppm is 
around 0.2, whereas for 6 ppm it’s closer to 0.3. 
This trend appears to hold across the measured gas 
velocities. 

 
Fig. 6: Gas Flow Rate Vs. Pressure 
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The relationship between pressure in a pipe and 
gas flow rate is displayed in Figure 6. The pressure 
is represented on the axis in arbitrary units, while 
the gas flow rate in litersliters per minute (lpm) is 
indicated on the other axis. The Figure shows a 
positive correlation between pressure and gas flow 
rate. This means that as the weight in the pipe 
increases, the gas flow rate also increases. This 
relationship is consistent with principles of fluid 
dynamics where higher pressure gradients cause a 
greater flow of fluids. It appears the rate of growth 
in flow rate slows down at higher pressures, 
suggesting the flow might be approaching a 
maximum rate. 

 

 
Fig. 7: Sparge Gas Efficiency Vs. Flow Rate 
  

Figure 7 illustrates the efficiency of a sparging 
process, likely related to the gas chromate figure, at 
different gas flow rates. The gas flow rate in liters 
per minute (lpm), and the sparge gas efficiency, 
labeled as EDR (x10³ W/m³) are represented on 
both axes.  The Figure suggests that a higher gas 
flow rate results in lower sparge efficiency. This is 
because higher flow rates reduce the contact time 
between the sparge gas and the sample, which 
reduces the competence of the gas to purge the 
sample. The efficiency appears to level off at 
around 1.2 x 10³ W/m³ at a flow rate of 200 lpm, 
which may indicate an optimal flow rate for this 
process. 
 

 
Fig. 8: Model Performance Regression through 
RMSE 

Figure 8 depicts the training of a regression 
model signifying the model processes the training 
data to learn which indicates how poorly the model 
predicts on average. Lower loss signifies better 
performance. The training (smoothed) line shows 
the model's performance on the training data itself. 
Ideally, it should steadily decrease as the model 
learns patterns in the data. The validation line 
designates how well the model performs on a 
distinct validation dataset. This technique helps 
prevent overfitting by teaching the model to 
generalize designs from the training data rather 
than memorize them, allowing for better 
performance on new, unseen data. If the validation 
loss and the training loss are the same, the model 
seems to be generalizing well. RME looks at how 
far off the model's predictions are from the real 
values of what we want to measure. Simply put, it 
calculates the average gap between what the model 
thinks will happen and what happens. By looking at 
the downward trend in both sets of data, the study 
can see that the model is getting better at making 
accurate predictions on both the train and validation 
sets.  

 

 

5   Research Conclusion  
This study goals to examine the potential 
implications of using DRL devices in improving 
the prediction and optimization of gas in stirred and 
sparged reactors. The research describes through 
several experiments and analyses how DRL 
algorithms can model the complex parameters of 
multiphase flow systems leading to more accurate 
strategies and better forecasts of optimization and 
gas hold up respectively. By using real-time 
information and self-adaptive control methods, the 
DRL configuration has the propensity to enhance 
the operations of the reactor, raise mass transfer 
rates, and enhance the efficiency of the processes. 
An assessment using MATLAB is done aiming to 
determine the degree to which the introduced DRL 
strategy was successful in maximizing gas hold-up 
within these reactors. The achieved results also 
show that Liquid Holdup ranges from 0.905 to 
0.955 while Mixture velocity (m/s) varies between 
0.4 to 2.2 m/s. Speaking more broadly to a 
potentially wide final audience, the paper also 
explains how DRL may in operation be suitable for 
operating several reactor configurations of different 
kinds and in different industries apart from the kind 
of stirred reactors. These study results open new 
applications in the area of smart control and 
optimization of processes and engineering for 
complex multiphase reactors. Finally, the 
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application of DRL techniques to sparged and 
stirred reactors is bound to transform the entire 
industrial system that drives. 
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