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Abstract: - Earthquake prediction is a challenge at this time. This is because the characteristics of earthquakes 

are very complex and dynamic. This study aims to create a new method that integrates the Non-linear 

Autoregressive with Exogenous Inputs (NARX) model and 1-dimensional Convolutional Neural Network (1D-

CNN) to improve the accuracy of predicting the number of earthquake events in one month. We design the 

NARX architecture, based on 1D-CNN, to predict earthquake time series data from three different locations in 

Indonesia: Sunda Strait, South Java, and Bali. The training and testing process was carried out to predict the 

number of earthquake events in the coming month. The testing yielded the Mean Squared Error (MSE) metric, 

which demonstrates the good performance of the proposed model. The MSE values for each region of the 

Sunda Strait, South Java, and Bali are 2.130e-05, 6.018e-02, and 2.524e-02, respectively. The Mean Arctangent 

Absolute Percentage Error (MAAPE) metric at the prediction stage shows high accuracy in the first month, 

where the model is able to predict earthquakes in the short term. This research is expected to be able to answer 

the challenges of earthquake prediction in the field of seismology. Future developments use other deep learning 

methods for earthquake prediction. 
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1  Introduction 

The Sunda Strait, South Java, and Bali are areas that 

have very active geological conditions for 

earthquake disasters. The Eurasian Plate and the 

Indo-Australian Plate meet in one of these three 

locations; this can be indicated by significant 

geological movements that often trigger earthquakes 

and volcanic activity, [1]. 

The geological structure of this region is the 

subduction of the Indo-Australian Plate under the 

Eurasian Plate. This subduction is the main 

generator of earthquakes. The Sunda Strait, located 

between the Indonesian islands of Java and Sumatra, 

experiences significant tectonic activity due to the 

interaction of these major plates, [2].  

Southern Java and Bali, located to the east, are 

part of the Sunda Arc, which extends from Sumatra 

through Java and Bali continuing further east into 

the Banda Arc, [3]. The historical seismic record 

shows that these regions have experienced 

numerous destructive earthquakes and tsunamis, 

especially along densely populated and 

economically significant coastlines. The variability 

in earthquake occurrences underscores the dynamic 

and potentially hazardous nature of these regions. 

The study area, as shown in Figure 1, is divided into 

three namely, the Sunda Strait, Southern Java, and 

Bali. 

 

 
Fig. 1: Tectoning setting in the study regions: (1) 

Sunda Straits; (2) Southern Java; and (3) Bali, [4] 

 
Traditional methods of earthquake prediction 

have relied heavily on historical data analysis and 

the identification of precursor events through 
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various geophysical methods. However, the 

approach of neural networks has indicated a 

transformative era in the domain of predictive 

analytics, offering profound improvements in 

accuracy and efficiency across a broad spectrum of 

applications. Several neural network algorithms 

have become prominent in time series forecasting, 

due to proficiency in recognizing temporal 

correlations within datasets. The radial basis 

function neural network is proficient at forecasting 

future conditions of chaotic systems, demonstrating 

significant predictive accuracy. [5].  

The use of CNN for time series data especially 

through adaptation in the form of 1D-CNN, signals 

a significant innovation in forecasting. In contrast to 

the 2D versions more commonly used in image 

processing, 1D-CNN is designed to analyze 

sequential data, as proven by recent studies. Several 

studies use the method in predicting time series data 

such as hotspot prediction of forest fires [6], 

classification of graphic patterns of financial time 

series [7], forecasting electricity load profiles 36 

hours into the future [8], and earth orientation 

parameter predictions [9] 

The Non-linear Autoregressive with Exogenous 

Inputs (NARX) model is rooted in a dynamic neural 

network framework, with an architecture 

specifically designed to handle feedback systems. 

[10]. The model's predictive capability is 

significantly enhanced by the feedback loop 

established by the addition of previous outputs in 

the input vector. Several studies use the NARX 

architecture as a control system to control a 

hexarotor UAVs [11] and to perform system 

identification on a DC motors [12]. Then, research 

on earthquake prediction uses the NARX approach 

[13] and uses the addition of the deep learning 

ensemble method [14] to achieve significant 

accuracy. The purpose of this study is to analyze the 

performance of the proposed new prediction model 

by integrating NARX and 1D-CNN features. 

Earthquake prediction is carried out using three 

earthquake datasets from different regions to see the 

consistency by using the integration of the two 

models. 

The writing structure of this research is divided 

into several parts. Section 2 presents the research 

methodology used along with describing the stages 

of the methodology. Where this section explains the 

dataset used, the NARX model is integrated with 

1D-CNN. Furthermore, this section explains the 

procedure for data preprocessing, the proposed 

model architecture, the training process, and 

evaluation using MSE and MAAPE metrics. Section 

3 presents the training and testing results for the 

three datasets and predicts the number of earthquake 

events for the next four months in each research 

area.  Section 4 is the final part of this paper, which 

provides a summary of contributions and suggests 

potential areas for future research. 

 

 

2  Problem Formulation 
This study proposes a new architecture that 

integrates NARX and 1D-CNN models to improve 

the accuracy of a time series prediction of the 

number of earthquake events. Convolution in 1D-

CNN can be useful for capturing hidden patterns 

sequentially in a data series. While NARX is an 

architecture that can identify complex and non-

linear temporal patterns. 

Predicting earthquakes is typically difficult 

because of the non-linearity of earthquake data and 

the dynamics that underlie these events. 1D-CNNs 

have demonstrated significant efficacy in time series 

classification and forecasting tasks. The one-

dimensional convolution operation of convolutional 

neural networks finds the right internal structure to 

make deep features from earthquake time series data 

that is fed into the network. The 1D CNN 

architecture can dynamically extract features from 

temporal data. 

 

2.1 Data Preparation 
The dataset comprised seismic events that occurred 

in physically significant regions within the Sunda 

Strait, the southern part of Java, and Bali. More 

specifically, the dataset was refined to exclusively 

include seismic occurrences occurring in Indonesia, 

as reported by the Indonesia Meteorological 

Climatological and Geophysical Agency (BMKG) 

that have a magnitude exceeding 4 and a depth 

below 100 kilometers. 

 To enrich the model learning base with patterns 

of previous earthquake events, the dataset was 

augmented with historical data from the same 

regions. Furthermore, the data were preprocessed 

based on the frequency of earthquake events in each 

month. Figure 2 shows the frequency of earthquake 

occurrences in the (a) Sunda Strait, (b) Southern 

Java, and (c) Bali region. The earthquake event 

dataset, with a length of 156, was then augmented 

with a standard deviation of 5% to obtain training 

data with dimensions (156, 1000). Data testing used 

actual data, and the best model was then used to 

predict the earthquake activity for the upcoming 

months. 
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(a) 

 
(b) 

 
(c) 

Fig. 2: Frequency of earthquake occurrence data (a) 

Sunda Strait; (b) Southern Java; and (c) Bali region 

 

2.2 1D-CNN Model 
1D-CNN model is a significant adaptation of 

conventional convolutional neural networks. It is 

typically used in image processing but has been 

adapted to handle 1-D data, such as time series. In 

the field of prediction, the 1D-CNN model excels 

due to the ability to process temporal sequences by 

learning from the spatial dependencies within the 

data. Contrary to traditional time series forecasting 

methods which may explicitly model the time 

component, 1D-CNN operates by extracting features 

from time series segments. The architecture of 1D-

CNN is shown in Figure 3. 

 

 
Fig. 3: Basic Architecture 1D-CNN 

 1D-CNN applies convolution operations to time 

series data using a sliding window mechanism. This 

approach helps the model capture local 

dependencies and patterns within a fixed window or 

interval, effectively identifying local features that 

can predict larger outcomes. Each convolution layer 

applies various filters to the input, producing 

features that represent different aspects of the data. 

These features, which may correspond to certain 

signatures before the event, are then aggregated and 

averaged to form a feature vector for the final 

prediction. The basic equation for convolution 

operations in 1D-CNN is [15]: 

(𝑥 ∗ 𝑤)𝑖 = ∑ 𝑥𝑖+𝑗. 𝑤𝑗 + 𝑏𝑘−1
𝑗=0            (1) 

 

Where 𝑥 is input with length 𝑛, filter kernel 𝑤 has 

length 𝑘, and 𝑏 is bias. Furthermore, 1D pooling is 

usually carried out with operations such as max or 

average pooling. Max pooling with size p is shown 

in the equation: 

𝑦𝑖 = max(𝑥(𝑖.𝑝), 𝑥(𝑖.𝑝+1),…….,𝑥(𝑖.𝑝+𝑝−1))        (2) 

 

y is the output of the pooling layer and p is the 

pooling size. After the pooling layer, we have a 1D 

array that we will flatten into a 1D vector to feed 

into the dense layer. Suppose the output of the 

pooling layer has length 𝑚. After flattening, we get 

a vector 𝑧 has length 𝑚. The output of the dense 

layer is: 

 

𝑜 = 𝑓(𝑊. 𝑧 + 𝑏)                       (3) 

 

Where 𝑜 is the output of the dense layer, 𝑊 is the 

weight matrix, 𝑏 is bias, and f is the activation 

function. 

 

2.3 NARX Model 
NARX is a type of neural network designed for 

modeling and predicting time series data. It is 

particularly useful for cases in which future values 

are not only dependent on past values within the 

series but also on additional external inputs. In the 

dimension of time series prediction, NARX model is 

valuable because it considers past data as well as 

potentially important external factors when making 

predictions. The general architecture of the NAX 

neural network, as shown in Figure 4 follows the 

equation, [16]: 

𝑦(𝑘) = 𝑓[𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛𝑎),  
                                  𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑛𝑏)]        (4)         

 

Where y(k) is a non-linear function F related to the 

k-th Output (y) and the k-th Input (u). Meanwhile, na 

and nb represents the amount of delay at input and 
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output. NARX model describes the relationship 

between past input and output which is used to 

predict current output. The transfer function in this 

model is Non-linear and represented by the Multi-

Layer Perceptron Neural Network (MLPNN) 

structure. This structure consists of hidden layers 

and nodes, assigned weights v and w, respectively. 

The model predicted output 𝑦̂(k), is compared to the 

actual output, y(k), to calculate the resulting error. 

 

 
Fig. 4: Architecture NARX 

 

2.4 NARX-based 1D-CNN Model 
The architecture of the integrated 1D-CNN model 

was derived from the NARX framework. The input 

U(k) comprises an earthquake dataset in the form of 

a time series at time t, which is subjected to an input 

delay to capture the temporal pattern of the data. 

The 1D-CNN model then processes the delayed 

input, extracting features from the temporally 

structured data in the convolutional layer. The 1D-

CNN architecture is based on the NARX model, as 

illustrated in Figure 5.  

Filters in the convolutional layer identify patterns 

and features at various scales, transforming the input 

data into a feature-dense representation. The 1D-

CNN produces an output, denoted as 𝑦̂(k), which is 

the predicted value at time 𝑡. The delay feature and 

convolutional processing are quite important 

parameters so that the model successfully utilizes 

current and past data to predict future events. This 

improves the accuracy and reliability of earthquake 

prediction.   

The output of this model is fed back as in the 

standard NARX model, after being delayed to 

become input. We continue this step until we reach 

a specific iteration that yields the best results. The 

next step of this research involves performing a 

multi-step prediction. This process is carried out to 

test the extent to which this model can predict the 

number of earthquake events in the next few 

months.  

 

 
Fig. 5: Architecture NARX-based 1D-CNN Model  

 

Mean Squared Error (MSE) is employed to 

evaluate predictive models, particularly in time 

series forecasting, during both training and testing 

phases.   

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖
 

 

The Mean Arctangent Absolute Percentage 

Error (MAAPE) can be applied to evaluate the 

accuracy of upcoming predictons. 

𝑀𝐴𝐴𝑃𝐸 =
1

𝑛
∑ 𝑎𝑟𝑐𝑡𝑎𝑛 (|

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|)

𝑛

𝑖
 

 

The actual values are represented 𝑦𝑖  , the predicted 

value is indicated 𝑦̂𝑖  denotes, and the number of 

observations is denoted by n. MAAPE evaluates 

error within a constrained range, rendering for 

conversion to a percentage: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = (1 −
𝑀𝐴𝐴𝑃𝐸

𝜋
2⁄

) × 100% 

 

3  Problem Solution 
The preliminary training phase applied the data 

from the Sunda Strait earthquake, following the 

parameters and framework outlined in Table 1. The 

next training phase used data from Southern Java 

and Bali, including structure and architecture as 

detailed in Table 2 and Table 3.  

 

Table 1. Performance model for Sunda Straits  

Filter Kernel 
Number 

of Delays 

Training 

MSE 

Testing 

MSE 

32 

64 

2 6 3.392e-02 4.129e-02 

2 12 6.673e-04 8.810e-05 

64 

128 

2 6 2.878e-02 6.179e-02 

2 12 3.057e-04 2.130e-05 
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Table 2. Performance model for Southern Java 

Filter Kernel 
Number 

of Delays 

Training 

MSE 

Testing 

MSE 

32 

64 

2 6 4.119e-03 3.837e-01 

2 12 2.989e-05 6.985e-02 

64 

128 

2 6 3.821e-03 2.120e-02 

2 12 2.985e-05 6.018e-02 

 

Table 3. Performance model for Bali region 

Filter Kernel 
Number 

of Delays 

Training 

MSE 

Testing 

MSE 

32 

64 

2 6 6.955e-03 6.639e-01 

2 12 9.588e-04 3.001e-03 

64 

128 

2 6 4.885e-03 4.342e-01 

2 12 8.028e-06 2.524e-02 

 

Based on the data in the table, it is evident that 

across all three regions, the model with 128 filters, a 

kernel size of 2, and 12 delays consistently 

outperforms others. The consistent performance 

across diverse geologic zones indicates the 

robustness and versatility of this model 

configuration in capturing the complex patterns 

necessary for accurate earthquake prediction. 

Following the evaluation and selection of the 

optimal model configuration, the next phase of 

research involves applying this model to predict 

seismic activity for the upcoming four-month period 

spanning from January to April 2024. This period 

was specifically chosen to assess the model's 

effectiveness in real-time earthquake prediction in 

the Sunda Strait region, Southern Java, and Bali. 

Figure 6 presents a comparison between the 

predicted values for the next four months and the 

actual data. Figure 6(a) is a graph of the prediction 

results for the Sunda Strait. The graph shows the 

agreement between the actual data and the 

prediction results between January and February 

2024; there is a slight decrease between March and 

April. Figure 6(b) is a graph of the prediction results 

for South Java. The prediction results show high 

consistency with the actual data, especially during 

February and March 2024. Although there is a 

deviation in April, the model needs further 

improvement in long-term forecasting. Figure 6(c) 

is a graph of the prediction results for the Bali 

Region. The model had a high level of accuracy 

throughout the months of January and February 

2024, with a slight divergence observed in March 

and April. The overall performance demonstrates 

the model ability to accurately represent the seismic 

activity patterns in the Bali region. 

Table 4 shows the accuracy of earthquake 

predictions for each region over four consecutive 

one-month periods, covering a total forecast range 

of four months. All regions had high accuracy in the 

first month, demonstrating the model effectiveness 

in short-term earthquake prediction. The model 

achieved a faultless accuracy of 100% for the one-

month forecast in the Sunda Strait region. However, 

the accuracy was significantly reduced in the 

subsequent months, with a decrease to 70%, 

76.67%, and 64.81% for the two, three, and four-

month prediction predictions respectively. This 

trend implies that the model capacity to accurately 

forecast decreases as the forecast horizon extends, 

even though short-term predictions are highly 

reliable.  
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6: Predictions for the next four months 

consecutively (a) Sunda Strait; (b)Southern Java; 

and (c) Bali regions 
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Table 4. Accuracy of predictions for the n-months 

ahead 

Region 

Accuracy  

1-

Month 
2-Month 3-Month 

4-

Month 

Sunda Strait 100% 70% 76,67% 64,81% 

Southern 

Java 
97.88% 97.88% 98.59% 87.88% 

Bali Region 100% 87.89% 88.42% 88.17% 

 

The model maintained a high level of accuracy 

for the first three months in the Southern Java 

region. A 97.88% accuracy was obtained for both 

the one and two-month predictions as well as a 

slight improvement to 98.59% for the three-month. 

However, there was a significant decrease to 

87.88% for the four-month prediction. This suggests 

that the model is rather effective for three months 

but accuracy starts to decline after this period.  
In the Bali Region, the model demonstrated a 

flawless accuracy of 100% for the one-month 

forecast. The accuracy experienced a minor decline 

to 87.89% for the two-month forecast, followed by 

an improvement to 88.42% for the three-month. The 

precision for the fourth-month forecast remained 

consistently high at 88.17%, indicating that the 

model consistently performs well for longer 

prediction periods in this specific region compared 

to others.  
The model showed high accuracy for short-term 

predictions in the Southern Java region. This high 

level of accuracy indicates that the model 

effectively captures the underlying patterns and 

dynamics influencing short-term variability. The 

results indicate that the predictive model 

demonstrates outstanding performance in the short 

term across all locations. However, the accuracy 

tends to diminish as the forecast horizon increases. 

Many forecasting models commonly show this 

feature due to the growing uncertainty and 

variability in longer-term predictions. Further 

studies are needed to determine the regional 

elements that contribute to the relatively constant 

performance of longer forecasts in the Bali region. 

 

 

4  Conclusion 
In conclusion, the study investigated the efficacy of 

a fused model that integrated 1D-CNN and NARX 

for forecasting seismic events in a temporal 

sequence. NARX-based 1D-CNN model showed a 

robust capability to capture the temporal patterns 

necessary for precise short-term earthquake 

forecasts. Furthermore, the model showed 

exceptional accuracy within a one-month initial 

prediction interval throughout the region, with a 

perfect accuracy rate of 100% in the Sunda Strait 

and Bali, as well as approximately 98% in Southern 

Java. The results confirmed the model capacity to 

effectively manage intricate seismic data patterns 

and the potential as a dependable tool for predicting 

earthquakes in the near future. 

This study enriches the field by combining 1D-

CNN with NARX, producing a model that can 

better capture non-linear temporal relationships in 

seismic data compared to existing methods. The 

integrated model provides a more robust framework 

for short-term earthquake prediction compared to 

other studies, which often depend on either 

statistical models or simply neural network 

methods. By combining the characteristics of both 

methodologies, this model offers improved accuracy 

and reliability. 

The accuracy of predictions generally decreased 

in long-term forecasts, especially after the first 

month. These trends emphasize the difficulties in 

sustaining accurate predictions over a long time, 

which are likely caused by the changing nature of 

seismic activity and the increasing uncertainty in 

long-term projections. Future studies should 

prioritize addressing these problems by integrating 

supplementary factors, enhancing data quality, and 

using more sophisticated modeling methods. 
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