Ultradense IoT Networks," in IEEE Internet
of Things Journal, vol. 5, no. 6, pp. 4977-
4988, Dec. 2018, doi:
10.1109/JIOT.2018.2838584.
[8] J. Zhang et al., "Energy-Latency Tradeoff for
Energy-Aware Offloading in Mobile Edge
Computing Networks," in IEEE Internet of
Things Journal, vol. 5, no. 4, pp. 2633-2645,
Aug. 2018, doi: 10.1109/JIOT.2017.2786343.
[9] S. Bi and Y. J. Zhang, "Computation Rate
Maximization for Wireless Powered Mobile-
Edge Computing With Binary Computation
Offloading," in IEEE Transactions on
Wireless Communications, vol. 17, no. 6, pp.
4177-4190, June 2018, doi:
10.1109/TWC.201 8.2821664.
[10] J. Kwak, Y. Kim, J. Lee and S. Chong,
"DREAM: Dynamic Resource and Task
Allocation for Energy Minimization in Mobile
Cloud Systems," in IEEE Journal on Selected
Areas in Communications, vol. 33, no. 12, pp.
2510-2523, Dec. 2015, doi:
10.1109/JSAC.2015.2478718.
[11] N. Janatian, I. Stupia and L. Vandendorpe,
"Optimal resource allocation in ultra-low
power fog-computing SWIPT-based
networks," 2018 IEEE Wireless
Communications and Networking Conference
(WCNC), Barcelona, Spain, 2018, pp. 1-6, doi:
10.1109/WCNC.2018.8376974.
[12] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu
and G. Wei, "Power-Constrained Edge
Computing With Maximum Processing
Capacity for IoT Networks," in IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 4330-
4343, June 2019, doi:
10.1109/JIOT.2018.2875218.
[13] J. Liu, Y. Mao, J. Zhang and K. B. Letaief,
"Delay-optimal computation task scheduling
for mobile-edge computing systems," 2016
IEEE International Symposium on
Information Theory (ISIT), Barcelona, Spain,
2016, pp. 1451-1455, doi: 10.1109/ISIT.201
6.7541539.
[14] T. Q. Dinh, Q. D. La, T. Q. S. Quek and H.
Shin, "Learning for Computation Offloading
in Mobile Edge Computing," in IEEE
Transactions on Communications, vol. 66, no.
12, pp. 6353-6367, Dec. 2018, doi:
10.1109/TCOMM.201 8 .2866572.
[15] Sutton R S, Barto A G. Reinforcement
learning: An introduction. MIT press, 2018.
[16] Mnih, V., Kavukcuoglu, K., Silver, D. et al.
Human-level control through deep
reinforcement learning. Nature, 518, 529–533
(2015), https://doi.org/10.1038/nature14236.
[17] L. Huang, S. Bi and Y. -J. A. Zhang, "Deep
Reinforcement Learning for Online
Computation Offloading in Wireless Powered
Mobile-Edge Computing Networks," in IEEE
Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581-2593, 1 Nov. 2020, doi:
10.1109/TMC.2019.2928811.
[18] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu
and W. Zhuang, "Learning-Based
Computation Offloading for IoT Devices
With Energy Harvesting," in IEEE
Transactions on Vehicular Technology, vol.
68, no. 2, pp. 1930-1941, Feb. 2019, doi:
10.1109/TVT.2018.2890685.
[19] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji and
M. Bennis, "Optimized Computation
Offloading Performance in Virtual Edge
Computing Systems Via Deep Reinforcement
Learning," in IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005-4018, June 2019, doi:
10.1109/JIOT.2018.2876279.
[20] Chen, Z., Wang, X. Decentralized
computation offloading for multi-user mobile
edge computing: a deep reinforcement
learning approach. J. Wireless Com Network,
2020, 188 (2020),
https://doi.org/10.1186/s13638-020-01801-6.
[21] H. Lu, C. Gu, F. Luo, W. Ding, S. Zheng and
Y. Shen, "Optimization of Task Offloading
Strategy for Mobile Edge Computing Based
on Multi-Agent Deep Reinforcement
Learning," in IEEE Access, vol. 8, pp.
202573-202584, 2020, doi:
10.1109/ACCESS.2020.3036416.
[22] Y. Yang, K. Wang, G. Zhang, X. Chen, X.
Luo and M. -T. Zhou, "MEETS: Maximal
Energy Efficient Task Scheduling in
Homogeneous Fog Networks," in IEEE
Internet of Things Journal, vol. 5, no. 5, pp.
4076-4087, Oct. 2018, doi:
10.1109/JIOT.2018.2846644.
[23] Asghari, A., Sohrabi, M.K. Combined use of
coral reefs optimization and multi-agent deep
Q-network for energy-aware resource
provisioning in cloud data centers using
DVFS technique. Cluster Comput., 25, 119–
140 (2022), https://doi.org/10.1007/s10586-
021-03368-3.
[24] Shortle JF, Thompson JM, Gross D, et al.
Fundamentals of queueing theory. New York:
John Wiley & Sons, 2018:1-576.
[25] Xu, Yi-Han, et al. “Deep Deterministic Policy
Gradient (DDPG)-Based Resource Allocation
Scheme for NOMA Vehicular
Communications.” IEEE Access, Jan. 2020,
pp. 18797–807, https://doi.org/10.1109/ac
cess.2020.2968595.
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30
Cao Ning, He Yang, Hu Can