
mapping, Catena, vol. 191, 2020, pp. 104580.
https://doi.org/10.1016/j.catena.2020.104580.
[11] M. Alloghani, D. Al-Jumeily, J. Mustafina, A.
Hussain, A. J. Aljaaf, A systematic review on
supervised and unsupervised machine learning
algorithms for data science, Supervised and
unsupervised learning for data science, 2020,
pp. 3-21. https://doi.org/10.1007/978-3-030-
22475-2_1.
[12] D. K. Choubey, M. Kumar, V. Shukla, S.
Tripathi, V. K. Dhandhania, Comparative
analysis of classification methods with PCA
and LDA for diabetes, Current diabetes
reviews, vol. 16, no 8, 2020, pp. 833-850.
https://doi.org/10.2174/157339981666620012
3124008.
[13] B. E. Boser, I. M. Guyon and V. N. Vapnik, A
training algorithm for optimal margin
classifiers, Proceedings of the fifth annual
workshop on Computational learning theory -
COLT 92, 1992.
[14] C. Cortes and V. Vapnik, Support-vector
networks, Machine Learning, vol. 20, 1995,
pp. 273-297.
[15] L. Breiman, J. Friedman, C. J. Stone and R.
A. Olshen, Classification and Regression
Trees, Taylor & Francis, 1984.
[16] L. Breiman, Random forests, Machine
learning, vol. 45, 2001, pp. 5-32.
[17] T. Cover and P. Hart, Nearest neighbor
pattern classification, IEEE Transactions on
Information Theory, vol. 13, 1967, pp. 21-27.
[18] D. E. Rumelhart, G. E. Hinton and R. J.
Williams, Learning internal representations
by error propagation, 1985.
[19] B. Widrow and M. A. Lehr, 30 years of
adaptive neural networks: perceptron,
madaline, and backpropagation, Proceedings
of the IEEE, vol. 78, 1990, pp. 1415-1442.
[20] R. O. Duda, P. E. Hart and D. G. Stork,
Pattern Classification, Wiley John & Sons,
2000.
[21] P. Langley, W. Iba, and K. Thompson, An
analysis of Bayesian classifiers, Proceedings
of the Tenth National Conference on Artificial
Intelligence, 1992, pp. 223–228.
[22] D. Maulud, A. M. Abdulazeez, A review on
linear regression comprehensive in machine
learning, Journal of Applied Science and
Technology Trends, vol. 1, no 4, 2020, pp.
140-147. https://doi.org/10.38094/jastt1457.
[23] D. W. Hosmer Jr, S. Lemeshow and R. X.
Sturdivant, Applied logistic regression, John
Wiley & Sons, 2013.
[24] C. El-Hajj, P. A. Kyriacou, A review of
machine learning techniques in
photoplethysmography for the non-invasive
cuff-less measurement of blood pressure,
Biomedical Signal Processing and Control,
vol. 58, 2020, pp. 101870.
[25] M. Elbadawi, S. Gaisford, A. W. Basit,
Advanced machine-learning techniques in
drug discovery, Drug Discovery Today, vol.
26, no 3, 2021, pp. 769-777.
https://doi.org/10.1016/j.drudis.2020.12.003
[26] Y. Ju, L. Yang, X. Yue, Y. Li, R. He, S.
Deng, X. Yang, Y. Fang, Anthocyanin
profiles and color properties of red wines
made from Vitis davidii and Vitis vinifera
grapes, Food Science and Human Wellness,
vol. 10, no 3, 2021, pp. 335-344.
https://doi.org/10.1016/j.fshw.2021.02.025.
[27] A. B. Bautista-Ortín, J. I. Fernández-
Fernández, J. M. López-Roca, E. Gómez-
Plaza, The effects of enological practices in
anthocyanins, phenolic compounds and wine
colour and their dependence on grape
characteristics, Journal of Food Composition
and Analysis, vol. 20, no 7, 2007, pp. 546-
552.
[28] I. Bilbao, J. Bilbao, C. Feniser, A. Borsa,
Practical data mining applied in steel coils
manufacturing, Acta Technica Napocensis-
Series: Applied Mathematics, Mechanics, and
Engineering, vol. 63, no 3, 2020.
[29] Y. M. Sebzalli, X. Z. Wang, Knowledge
discovery from process operational data using
PCA and fuzzy clustering, Engineering
Applications of Artificial Intelligence, 14,
2001. https://doi.org/10.1016/S0952-
1976(01)00032-X.
[30] I. Revilla, S. Pérez-Magariño, M. L.
González-SanJosé and S. Beltrán,
Identification of anthocyanin derivatives in
grape skin extracts and red wines by liquid
chromatography with diode array and mass
spectrometric detection, Journal of
Chromatography A, vol. 847, 1999, pp. 83-90.
https://doi.org/10.1016/S0021-
9673(99)00256-3.
[31] N. Katanić, K. Fertalj, Improving Physical
Security with Machine Learning and Sensor-
Based Human Activity Recognition, WSEAS
Transactions on Information Science and
Applications, vol. 14, pp. 1-9, 2017.
[32] Z. Qin, A. T. Wang, C. Zhang, S. Zhang, S.,
Cost-Sensitive Classification with k-Nearest
Neighbors, Knowledge Science, Engineering
and Management, Springer, Berlin,
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.16
Javier Bilbao, Imanol Bilbao