Proc. of IEEE Int'l Conf. on Automation
Science and Engineering, pp. 1264-1269, 2014.
[2] C. Wu, S. Jiang, and K. Song, "CAD-based
pose estimation for random bin-picking of
multiple objects using an RGB-D camera,"
2015 15th International Conference on
Control, Automation, and Systems (ICCAS),
2015, pp. 1645-1649.
[3] L. Pinto and A. Gupta, "Supersizing self-
supervision: Learning to grasp from 50K tries
and 700 robot hours," 2016 IEEE International
Conference on Robotics and Automation
(ICRA), 2016, pp. 3406-3413.
[4] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R.
Doan, X. Liu, J. Aparicio, and K. Goldberg.
2017. Dex-Net 2.0: Deep Learning to Plan
Robust Grasps with Synthetic Point Clouds and
Analytic Grasp Metrics,
https://doi.org/10.48550/arXiv.1703.09312.
[5] H. Wang, H. Situ, and C. Zhuang, "6D Pose
Estimation for Bin-Picking based on Improved
Mask R-CNN and DenseFusion," 2021 26th
IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA),
2021, pp. 1-7.
[6] D. Morrison, P. Corke, and J. Leitner. Closing
the loop for robotic grasping: a real-time,
generative grasp synthesis approach. 2018,
arXiv: 1804.05172,
https://doi.org/10.48550/arXiv.1804.05172.
[7] D. Guo, F. Sun, H. Liu, T. Kong, B. Fang, and
N. Xi, “A hybrid deep architecture for robotic
grasp detection,” IEEE International
Conference on Robotics and Automation
(ICRA). Singapore: IEEE, 2017: 1609-1614.
[8] J. Redmon and A. Angelova. Real-time grasp
detection using convolutional neural networks.
2014, arXiv: 1412.3128,
https://doi.org/10.48550/arXiv.1412.3128.
[9] S. Kumra and C. Kanan. Robotic grasp
detection using deep convolutional neural
networks. 2016, arXiv: 1611.08036,
https://doi.org/10.48550/arXiv.1611.08036.
[10] J. Jiao, L. Yuan, W. Tang, Z. Deng, and Q. Wu.
“A Post-Rectification Approach of Depth
Images of Kinect v2 for 3D Reconstruction of
Indoor Scenes,” ISPRS International Journal of
Geo-Information, 2017; 6(11):349.
[11] Z. Zhang, “Flexible camera calibration by
viewing a plane from unknown orientations,”
Proceedings of the Seventh IEEE International
Conference on Computer Vision, 1999, pp. 666-
673.
[12] R. Y. Tsai and R. K. Lenz, "A new technique
for fully autonomous and efficient 3D robotics
hand/eye calibration," in IEEE Transactions on
Robotics and Automation, vol. 5, no. 3, pp.
345-358.
[13] F. C. Park and B. J. Martin, "Robot sensor
calibration: solving AX=XB on the Euclidean
group," in IEEE Transactions on Robotics and
Automation, vol. 10, no. 5, pp. 717-721, Oct.
1994.
[14] R. Horaud and F. Dornaika. Hand-eye
Calibration. The International Journal of
Robotics Research, SAGE Publications, 1995,
14 (3), pp.195–210.
[15] N. Andreff, R. Horaud, and B. Espiau, “On-line
hand-eye calibration,” Second International
Conference on 3-D Digital Imaging and
Modeling(Cat.No.PR00062),1999, pp.430-436.
[16] H.Y. Kuo, H.R. Su, S.H. Lai, and C.C. Wu,
“3D Object Detection and Pose Estimation
from Depth Image for Robotic Bin Picking,”
Proc. of IEEE Int'l Conf. on Automation
Science and Engineering, pp.1264-1269, 2014.
[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick,
“Mask R-CNN,” 2017 IEEE International
Conference on Computer Vision (ICCV), 2017,
pp. 2980-2988.
[18] Cocodataset. COCO, [Online].
https://cocodataset.org/#home (Accessed Date:
February 27, 2024).
[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Robinovich, “Going deeper with
convolutions,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 07–12-
June, pp. 1–9
[20] I. Lenz, H. Lee, and A. Saxena, “Deep learning
for detecting robotic grasps,” International
Journal of Robotics Research, 2015, 34(4/5):
705-724.
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.13
Bo-Rui Zhu, Jin-Siang Shaw, Shih-Hao Lee