
pipeline with SNN and watershed algorithm,
WSEAS Transactions on Biology and
Biomedicine, Vol. 20, 2023, pp. 197–203,
https://doi.org/10.37394/23208.2023.20.20.
[11] Fauzi, M.F., & Lewis, P.H. (2003). A Fully
Unsupervised Texture Segmentation
Algorithm. British Machine Vision
Conference, Corpus ID: 1875753.
[12] P.F. Felzenszwalb, D.P. Huttenlocher,
Efficient graph-based image segmentation.
International Journal of Computer Vision,
Vol. 59, No. 2, 2004, pp. 167–181, doi:
10.1023/B:VISI.0000022288.19776.77.
[13] D.A. Clausi, H. Deng, Design-based texture
feature fusion using Gabor filters and co-
occurrence probabilities, IEEE Transactions
on Image Processing, Vol. 14, No. 7, 2005,
pp. 925–936.
[14] H. Wei, M. Bartels, Unsupervised
segmentation using Gabor wavelets and
statistical features in LIDAR data analysis,
Proceedings of the 18th International
Conference on Pattern Recognition
(ICPR'2006), Hong Kong, Vol. 1, 2006, pp.
667–670.
[15] L. Wolf, X. Huang, I. Martin, D. Metaxas,
Patch-based texture edges and segmentation,
Proceedings of the 9th European Conference
on Computer Vision, Graz, Austria, 2006, Part
II, pp. 481–493, doi: 10.1007/11744047_37.
[16] A.Y. Yang, J. Wright, Y. Ma, S.S. Sastry,
Unsupervised segmentation of natural images
via lossy data compression, Computer Vision
and Image Understanding, Vol. 110, No. 2,
2008, pp. 212–225,
http://dx.doi.org/10.1016/j.cviu.2007.07.005.
[17] S Todorovic, N. Ahuja, Texel-based texture
segmentation, Proccedings of the 12th IEEE
International Conference on Computer Vision
(ICCV), Kyoto, Japan, 2009, pp. 841–848,
http://dx.doi.org/10.1109/ICCV.2009.545930
8.
[18] J. Melendez, D. Puig, M.A. Garcia, Multi-
level pixel-based texture classification
through efficient prototype selection via
normalized cut, Pattern Recognition, Vol. 43,
No. 12. 2010, pp. 4113–4123.
[19] A. Goltsev, V. Gritsenko, Algorithm of
sequential finding the characteristic features
of homogeneous texture regions for the
problem of image segmentation. Cybernetics
and Computer Engineering, 173, 2013, pp.
25-34 (in Russian).
[20] A. Goltsev, V. Gritsenko, E. Kussul, T.
Baidyk, Finding the texture features
characterizing the most homogeneous texture
segment in the image, Lecture Notes in
Computer Science, 9094, Part I, 2015, pp.
287-300, doi: 10.1007/978-3-319-19258-
1_25.
[21] A. Goltsev, V. Gritsenko, D. Húsek,
Extraction of homogeneous fine-grained
texture segments in visual images. Neural
Network World, Vol. 27, 2017, pp. 447-477,
https://doi.org/10.14311/NNW.2017.27.024.
[22] A. Goltsev, V. Gritsenko1, D. Húsek,
Segmentation of visual images by sequential
extracting homogeneous texture areas,
Journal of Signal and Information Processing,
Vol. 11, 2020, pp. 75-102,
https://doi.org/10.4236/jsip.2020.114005.
[23] G. Ge, A novel parallel unsupervised texture
segmentation approach, SN Applied Sciences,
Vol. 5, No. 156, 2023,
https://doi.org/10.1007/s42452-023-05366-z.
[24] D.A. Rachkovskiy, S.V. Slipchenko, I.S.
Misuno, E.M. Kussul, T.N. Baidyk, Sparse
binary distributed encoding of numeric
vectors, Journal of Automation and
Information Sciences, Vol. 37, No. 11, 2005,
pp. 47-61,
https://doi.org/10.1615/J%20Automat%20Inf
%20Scien.v37.i11.60.
[25] D.A. Rachkovskiy, S.V. Slipchenko, E.M.
Kussul, T.N. Baidyk, Sparse binary
distributed encoding of scalars, Journal of
Automation and Information Sciences, Vol.
37, No. 6, 2005, pp. 12-23,
https://doi.org/10.1615/J%20Automat%20Inf
%20Scien.v37.i6.20.
[26] D. A. Rachkovskij, Shift-equivariant
similarity- preserving hypervector
representations of sequences, arXiv preprint
arXiv: 2112.154753.
[27] D.A. Rachkovskij, Representation of spatial
objects by shift-equivariant similarity-
preserving hypervectors, Neural Computing
and Applications, Vol. 34, No. 24, 2022, pp.
22387-22403,
https://doi.org/10.1007/s00521-022-
07619-1.
[28] D. Kleyko, D. A. Rachkovskij, E. Osipov,
A.Rahimi, A survey on hyperdimensional
computing aka vector symbolic architectures,
Part II: Applications, cognitive models, and
challenges. ACM Computing Surveys, Vol. 55,
No. 9, 2023, pp. 1-52,
https://dl.acm.org/doi/10.1145/3558000.
[29] M. M. Deza, E. Deza, Encyclopedia of
Distances, Springer Berlin, Heidelberg, 2016,
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.11
Alexander Goltsev, Oleksii Holtsev