in Biology and Medicine, vol. 105, pp. 92–
101, 2019. doi:
10.1016/j.compbiomed.2018.12.012.
[5] Ch. Usha Kumari, A. Sampath Dakshina
Murthy, B. Lakshmi Prasanna, M. Pala
Prasad Reddy, and A. Kumar Panigrahy, “An
automated detection of heart arrhythmias
using machine learning technique: SVM,”
Materials Today: Proceedings, vol. 45, pp.
1393–1398, 2021. doi:
10.1016/j.matpr.2020.07.088.
[6] O. Yıldırım, P. Pławiak, R.-S. Tan, and U. R.
Acharya, “Arrhythmia de-¨ tection using
deep convolutional neural network with long
duration ECG signals,” Computers in
Biology and Medicine, vol. 102, pp. 411–
420, 2018. doi:
10.1016/j.compbiomed.2018.09.009.
[7] O. Yildirim, M. Talo, E. J. Ciaccio, R. S.
Tan, and U. R. Acharya, “Accurate deep
neural network model to detect cardiac
arrhythmia on more than 10,000 individual
subject ECG Records,” Computer Methods
and Programs in Biomedicine, vol. 197, p.
105740, 2020. doi:
10.1016/j.cmpb.2020.105740.
[8] K. Subramanian and N. K. Prakash,
”Machine Learning based Cardiac
Arrhythmia detection from ECG signal,”
2020 Third International Conference on
Smart Systems and Inventive Technology
(ICSSIT), Tirunelveli, India, 2020, pp. 1137-
1141, doi:
10.1109/ICSSIT48917.2020.9214077.
[9] P. M. Tripathi, A. Kumar, M. Kumar and R.
Komaragiri, ”Multilevel Classification and
Detection of Cardiac Arrhythmias With
High-Resolution Superlet Transform and
Deep Convolution Neural Network,” in IEEE
Transactions on Instrumentation and
Measurement, vol. 71, pp. 1-13, 2022, Art
no. 4006113, doi:
10.1109/TIM.2022.3186355.
[10] K.-C. Chang et al., “Usefulness of machine
learning-based detection and classification of
cardiac arrhythmias with 12-lead
electrocardiograms,” Canadian Journal of
Cardiology, vol. 37, no. 1, pp. 94–104, 2021.
doi:10.1016/j.cjca.2020.02.096.
[11] Q. Yao, R. Wang, X. Fan, J. Liu, and Y. Li,
“Multi-class arrhythmia detection from 12-
lead varied-length ECG using attention-
based timeincremental convolutional neural
network,” Information Fusion, vol. 53, pp.
174–182, 2020.
doi:10.1016/j.inffus.2019.06.024.
[12] A. Dempster, F. Petitjean, and G. I. Webb,
“Rocket: Exceptionally fast and accurate
time series classification using random
convolutional kernels,” Data Mining and
Knowledge Discovery, vol. 34, no. 5, pp.
1454–1495, 2020. doi: 10.1007/s10618-020-
00701-z.
[13] A. P. Ruiz, M. Flynn, J. Large, M.
Middlehurst, and A. Bagnall, “The great
multivariate time series Classification bake
off: A review and experimental evaluation of
recent algorithmic advances,” Data Mining
and Knowledge Discovery, vol. 35, no. 2, pp.
401–449, 2020. doi: 10.1007/s10618-020-
00727-3.
[14] H. Ismail Fawaz, G. Forestier, J. Weber, L.
Idoumghar, and P.-A. Muller, “Deep
Learning for Time Series classification: A
Review,” Data Mining and Knowledge
Discovery, vol. 33, no. 4, pp. 917–963, 2019.
doi: 10.1007/s10618-019-00619-1.
[15] W. M. N. D. Kulasinghe,
Maheshi B. Dissanayake, ”A Novel
LSTM-based Data Synthesis Approach for
Performance Improvement in Detecting
Epileptic Seizures,” WSEAS Transactions on
Biology and Biomedicine, vol. 20, pp. 132-
139, 2023,
https://doi.org/10.37394/23208.2023.20.13.
[16] Daehee Lee, Hyunseung Choo, Jongpil
Jeong, ”Anomaly Detection based on 1D-
CNN-LSTM Auto-Encoder for Bearing
Data,” WSEAS Transactions on Information
Science and Applications, vol. 20, pp. 16,
2023,
https://doi.org/10.37394/23209.2023.20.1.
[17] G. Chiarion, L. Sparacino, Y. Antonacci, L.
Faes, and L. Mesin, “Connectivity analysis in
EEG DATA: A tutorial review of the state of
the art and emerging trends,”
Bioengineering, vol. 10, no. 3, p. 372, 2023.
doi: 10.3390/bioengineering10030372.
[18] P. Wagner et al., “PTB-XL, a large publicly
available electrocardiography dataset,”
Scientific Data, vol. 7, no. 1, 2020. doi:
10.1038/s41597020-0495-6.
[19] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou,
“A survey of Convolutional Neural
Networks: Analysis, applications, and
prospects,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no.
12, pp. 6999–7019, 2022. doi:
10.1109/tnnls.2021.3084827.
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.9
Pushpam Jain, Amey Deshmukh,
Himanshu Padole